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Abstract Cysteine proteases continue to provide validated targets for treatment of human diseases. In
neurodegenerative disorders, multiple cysteine proteases provide targets for enzyme inhibitors, notably
caspases, calpains, and cathepsins. The reactive, active-site cysteine provides specificity for many inhibitor
designs over other families of proteases, such as aspartate and serine; however, a) inhibitor strategies often use
covalent enzyme modification, and b) obtaining selectivity within families of cysteine proteases and their
isozymes is problematic. This review provides a general update on strategies for cysteine protease inhibitor
design and a focus on cathepsin B and calpain 1 as drug targets for neurodegenerative disorders; the latter
focus providing an interesting query for the contemporary assumptions that irreversible, covalent protein
modification and low selectivity are anathema to therapeutic safety and efficacy.
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Table 1 Cathepsin B: residue preference in peptide sub-
strates in each position11,12.

Unprimeda Preference Primeda Preference

P1 Gly4Ala, Met, Gln P10 Phe4Gly
P2 Val4Phe, Tyr P20 Val, Ile4Gly, Thr
P3 Gly4Lys, Phe P30 Gly

aSee Fig. 1 for depiction of primed and unprimed sites. Ala,
alanine; Gln, glutamine; Gly, glutamine; Ile, isoleucine; Lys, lysine;
Met, methionine; Phe, phenylalanine; Thr, threonine; Tyr, tyrosine;
Val, valine.

Figure 1 Nomenclature of primed and unprimed amino acid residues
in protease substrates and inhibitors.
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1. Introduction

Proteases are enzymes that irreversibly hydrolyze a peptide bond
in an amino acid sequence by nucleophilic attack and subsequent
hydrolysis of a tetrahedral intermediate. Proteases are grouped
according to the key catalytic group in the active site: serine (Ser),
threonine (Thr), cysteine (Cys), aspartate (Asp), glutamate (Glu),
or zinc in metalloproteases. Ser, Cys and Thr act directly as
nucleophiles that attack an amide carbonyl C, whereas Asp, Glu
and metalloproteases activate a water molecule that then acts as a
nucleophile. The enzymes are also classified into exopeptidases
and endopeptidases by the position of the peptide bond in a protein
they cleave. Exopeptidases truncate one or several amino acids
from either the N- or the C-terminus of a peptide, whereas
endopeptidases cleave an internal peptide bond. The catalytic site
of CA-clan papain-like cysteine proteases consists of Cys,
histidine (His) and Asp residues and is highly conserved among
members of the enzyme family1. This review will focus on
approaches to inhibition of two families of protease enzymes,
calpains and cathepsins, of interest in neurodegeneration and
cancer therapy and the quixotic pursuit of selectivity.

2. Cysteine proteases

2.1. Cathepsins

Cathepsin inhibitors have been reviewed recently by Turk et al.2 and
earlier by Hernandez and Roush3. A review specific to cathepsin B
inhibitors has also been published by Frlan and Gobec4. Cathepsins
are a group of protease enzymes originally discovered in the cell
lysosome, with several members ubiquitous in the human body. They
are not catalytically conserved: cathepsins A, G are serine proteases;
cathepsins D, E are aspartate proteases; and the remainder are
lysosomal cysteine proteases, including the human isoforms B, C,
F, H, K, L, O, S, V, X and W2. Cathepsins B, F, H and L occur
throughout the CNS, while C, S, V and X are expressed in specific
cell types within the CNS. The pHmax for optimum cathepsin activity
is slightly acidic, corresponding to the environment found in the
lysosome. Although they have been traditionally viewed as enzymes
involved in terminal protein degradation, knockout (KO) mice have
revealed major roles in cell regulation, i.e. of cell proliferation and
adhesion, apoptosis, lipid metabolism and immune response5,6.

The crystal structure of a number of cathepsins has been
determined, among them cathepsin B7. Cathepsin B is unique
among the cathepsins in that it has an occluding loop, a peptide
sequence which when closed can hinder access to the primed side
of the substrate pocket. Thus cathepsin B can function as an endo-
or exopeptidase depending on pH8. The occluding loop has been
targeted for the design of non-electrophilic cathepsin B inhibitors9.
The lysosomal cathepsin K occurs in osteoclasts and is a major
factor in bone resorption and a target for treating osteoporosis.
Several inhibitors are in development, with one, odanacatib,
having reached phase III clinical trials10. Table 1 shows residue
preference of cathepsin B in peptide substrates in each posi-
tion11,12. Fig. 1 shows primed and unprimed amino acid residues
in protease substrates and inhibitors.

2.2. Calpains

Calpains are neutral, cytosolic cysteine proteases with 15 isoforms
reported, of which 11 have been identified in humans13,14. The first
reports characterizing members of the enzyme family emerged in 1964,
naming the enzyme calcium-activated neutral protease (CANP)15–17. .
The enzymes consist of a catalytic subunit (82 or 80 kDa for calpains 1
and 2, respectively) and a Ca2þ binding subunit (28 kDa)18. The
enzymes are unique among cysteine proteases in that the cytosolic
proenzyme is activated by Ca2þ ions, inducing a conformational
change. This change drives spatial proximity of the catalytic triad to the
regulatory subunit, domain I, and subsequent autocatalytic cleavage19.
The two most widely researched isoforms of calpain are ubiquitous,
these are termed calpains 1 and 2, or μ- and m-calpain, requiring 5–
30 mmol/L or millimolar Ca2þ for activation, respectively18. The
presence of phospholipids or phosphoinositides can decrease the
Ca2þ concentration required for the activation of calpain 220,21. The
expression of calpains 1 and 2 can vary greatly depending on cell types
and conditions. Other members of the calpain family are tissue-specific.
The active sites and substrates of calpains 1 and 2 are very similar, and
specific inhibitors have not been developed.

Calpains and cathepsins regulate the activity of other biomole-
cules through limited proteolytic cleavage at specific sites. The
products of these enzyme catalyzed reactions are often functional
proteins and therefore these cysteine proteases constitute important
regulatory enzymes. Protease activation is a necessary cog in the



Table 2 Calpain: residue preference in peptide substrates at
each position41.

Unprimed Preference Primed Preference

P1 Leu¼Phe P10 Met4Ala4Arg
P2 Leu4Val P20 Glu
P3 Phe4Leu4Pro P30 Arg4Lys
P4 Phe P40 No specificity
P5 Pro P50 No specificity

Leu, leucine; Arg, arginine; Glu, glutamic acid; Leu, leucine; Pro,
proline.

Figure 2 Structures of epoxysuccinate cysteine protease inhibitors.
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cellular machine under physiological conditions. Constant over-
activation of calpain and other proteolytic enzymes, however,
causes excessive protein degradation and neuronal death22. Cal-
pains play a key role in enzyme activation, platelet activation, cell
proliferation and signal transduction.

Calpains have numerous protein substrates including G-proteins
and cytoskeletal proteins such as spectrin, integrin and MAP-2.
Calpain substrates that are protein kinases and further regulate
the function and breakdown of cytoskeletal proteins are PKC,
ERK1/2, CaMKII, Cdk-5/p35, Bid, and Bax23. Transcription
factors (c-Jun, c-Fos24) and membrane receptors, e.g. EGFR, are
also substrates of calpain. Calpain regulates the activity of a
number of proteins that are part of processes influencing neuronal
plasticity, cognition and neurodegeneration25. CREB is a key
protein in synaptic plasticity, impaired activation of which is a key
contributor to pathogenesis of Alzheimer's disease (AD)26–29.
CREB is a substrate of calpain, and thus inhibitors have been
demonstrated to increase CREB phosphorylation, in turn restoring
synaptic plasticity in the APP/PS1 transgenic mouse model of
familial AD30. KO of calpain 1 in mice has been shown to
influence degradation of erythrocyte membrane proteins and
platelet aggregation, reportedly via action on the calpain substrate
PTP1B31,32.

The peptide sequence of the endogenous, specific inhibitor,
calpastatin, is known and the inhibition mechanism has been
elucidated33,34. Calpastatin binds to both P and P0 sides of the
active site, but does not occupy the active site, thus avoiding self-
immolation. Calpastatin regulates the proteolytic activity of
calpains35. Calpastatin is specific for the catalytically active form
of calpain, bound to Ca2þ, and consists of an N-terminal domain
and four repeats of an inhibitory domain. The peptide sequence of
the endogenous inhibitor has been truncated to generate calpain
inhibitors36. Improved cell permeability has been attempted by
conjugation of appropriate peptide sequences (i.e. penetratin), but
their clinical use in CNS indications is limited by the usual
bioavailability challenges of oligopeptide drugs37,38. Nevertheless,
upregulation or decreased degradation of calpastatin is a therapeu-
tic target in AD39,40. Table 2 shows residue preference of calpain
in peptide substrates at each position41.

Abnormal activation or dysregulation of calpains has been linked
to a number of pathological conditions. The increased intracellular
Ca2þ levels in traumatic brain injury (TBI) and cerebral ischemia
lead to increased calpain activation and secondary injury due to the
degradation of cell membrane components. Calpain 1 is a target in
chronic neurodegeneration occurring in AD, Parkinson's disease
(PD)42,43, Huntington's disease44,45, multiple sclerosis46–48, and
amyotrophic lateral sclerosis (ALS)49,50. Calpain 10 and the gene
encoding it have been linked to type 2 diabetes mellitus51,52. A
mutation causing loss of function of calpain 3 is believed to be
responsible for limb-girdle muscular dystrophy53.

Cysteine protease inhibitors belong to two general classes: the
most widely explored inhibitors use an electrophile to modify the
active cysteine covalently and a recognition motif for binding to
the active site; allosteric inhibitors have also been reported41.
3. Electrophilic warheads for Cys protease inhibitors

3.1. Irreversible covalent inhibitors

Electrophiles that alkylate, acylate, phosphonylate or sulfonylate
the active site cysteine irreversibly, include simple non-selective
alkylating or acylating agents such as iodoacetate, N-ethylmalei-
mide, and diisopropyl fluorophosphate. Examples of electrophilic
warheads used in selective and potent cysteine protease inhibitors
include epoxysuccinates, vinylsulfones, allyl sulfones54. vinyl
sulfonates, diazomethyl ketones and fluoro- or chloromethyl
ketones55–57. The latter were developed in the 1960s as inhibitors
of trypsin and chymotrypsin and react with both serine and
cysteine proteases. Halomethyl ketones can alkylate active site
His residues and the activated ketone has been proposed to form a
transition state analog at the active site57. Moderation of the
reactivity of halomethyl ketones led to the development of
acyloxymethyl ketones and other activated ketones such as
aryloxymethyl, sulfonium methyl and ketoheterocycles. Other
examples are vinyl ketones, vinyl esters and vinyl sulfones, which
provide alternate Michael acceptor electrophiles58,59. Diazo-
methylketones have been explored and selectivity among different
cathepsins attempted by the use of an appropriate recognition
group60–62.
3.1.1. Epoxysuccinates
Epoxysuccinates occupy an important role as Cys protease
inhibitors since the discovery of E-64 (1, Fig. 2) from Aspergillus
japonicus in 197763. Total synthesis of E-64 soon followed64.
A less hydrophilic derivative, E-64c (2), was designed later,
targeted against muscular dystrophy, and its ethyl ester prodrug,



Figure 3 Structures of aziridine and β-lactone cysteine protease
inhibitors.

Figure 4 Structures of Michael acceptor warheads in cysteine
protease inhibitors.
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E-64d (20), developed to overcome the poor absorption of E-64c,
progressed to phase III clinical trials65,66. The epoxide irreversibly
modifies the active site Cys, forming a thioether bond67,68.
Epoxysuccinates are selective towards Cys proteases due to the
nucleophilicity of the active site cysteine. Peptidomimetic recogni-
tion groups are used to increase binding, selectivity, and potency.
The amino acid preference of calpains has been investigated by the
generation of positional scanning epoxide libraries by Cuerrier
et al.69 The studies showed that for inhibition of calpains 1 and 2,
the preferred residues in the P3 and P4 positions are Trp and Arg
(Table 1) This led to the development of the WRX series of
calpain inhibitors (e.g. 6, Fig. 2). Members of this compound
library were reported to have 3 to 6-fold selectivity towards
calpain 2 vs. calpain 1 and significant selectivity for calpains over
cathepsins. However, changing the Leu or Val at the P2 position to
Tyr switched the selectivity towards cathepsin B70. Calpain
inhibitor reviews have appeared41,71–73.

The chemical space around the P0 substituent of epoxide-
containing peptidomimetics has been explored by Meara et
al.74,75. Carboxylic acid derivatives of E-64c were synthesized.
The potency for inhibition of papain and cathepsin B was reported
to increase by orders of magnitude in the following ranking of
epoxide P0 substituents: CH2OHoCOCH3oCOORoCONH2

oHoCONHOHoCOOH74 (Fig. 2). Assay of calpain inhibition
by a series of ester and amide derivatives of E-64c in intact and
lysed platelets revealed that a number of haloethyl esters were
comparable in cell permeability and stability to E-64d, while
amides of epoxysuccinic acids seemed to be low-potency inhibi-
tors76. E-64c itself had too poor cell permeability to inhibit calpain
in intact platelets76. Other amide derivatives of E-64c that
extended into the P0 site were weak calpain inhibitors compared
to the free acid76.

The first highly selective inhibitor of cathepsin B, CA-074 (4,
Fig. 2) was reported to exploit the exopeptidase activity of
cathepsin B, unique among the other members of the cathepsins.
CA-074 and its analogs bind to the occluding loop at the P0 site. Its
inactive methyl ester CA-074Me was designed to overcome poor
cell permeability of the parent compound. CA-074 and CA-074Me
were reported to undergo a loss of selectivity towards cathepsin B
in the presence of GSH or dithioerythritol (DTT)77,78. The
selectivity and bioavailability of epoxysuccinates was improved
by substituting heterocyclic analogs for His at the P2 recognition
group position by Schiefer et al.79, resulting in the preclinical
epoxysuccinate NYC-438 that reversed cognition deficits in the
APP/PS1 AD mouse model and was devoid of toxicity even at
200 mg/kg.
3.1.2. Miscellaneous oxiranes and strained ring electrophiles
An arylsulfonyloxirane warhead was developed in 2013 as a
cathepsin B, but the lack of a recognition group led to modest
inhibition80. Cyclic sulfates have been developed that show
selectivity for cathepsin B over calpain, presumably due to the
steric hindrance in the calpain active site81,82. Other Cys protease
inhibitors containing oxiranes, thiiranes and aziridines were
reviewed by Schirmeister et al.83 Vicik et al.84 explored a number
of nitrogen-containing heterocycles in the P1 site of peptidomi-
metic cysteine protease inhibitors. Most compounds were micro-
molar inhibitors of cathepsin L, with selectivity against cathepsin
B: the most potent compound had two electrophilic aziridines,
with cathepsin L Ki¼13 nmol/L and cathepsin B Ki¼9.4 mmol/L
(13, Fig. 3). This molecule conspicuously had an activity towards
cathepsin L that exceeded that of all other inhibitors, hinting at a
different binding mode.

Aziridines are inherently much more reactive to opportunistic
biological nucleophiles than oxiranes; however, incorporation of N
in an amide functionality attenuates this electrophilic reactivity.
Miraziridine A (14, Fig. 3) is a natural product from a marine
sponge, Theonella aff. mirabilis, with a reported cathepsin B IC50

of 2.1 mmol/L85, and both a reactive aziridine and less reactive
Michael acceptor α,β-unsaturated carboxylate as terminal
electrophiles.

β-Lactone and β-lactam electrophiles have been reported to
acylate Ser and Thr residues at the active site of bacterial
transpeptidases and have been used as antibiotics since the
discovery of penicillin. With the appropriate recognition group,
these four-membered rings (15, Fig. 3) also react with thiols in a
Cys protease active site83. A series of 6-substituted oxapenams was
developed with the more potent inhibitor having 4 nmol/L potency
against cathepsin L and good selectivity versus cathepsin B86.
3.1.3. Michael acceptors
While fumaric acid derivatives were reported not to inhibit calpain
and cathepsin B, similar Michael acceptors with an azapeptide
recognition group (16, Fig. 4) have reported good activity against
caspases87. Adducts of caspases with these Michael acceptors
formed by 1,4-conjugate addition have been identified by X-ray



Figure 5 Structures of diazomethyl, acyloxy and other ketone
cysteine protease inhibitors.

Figure 6 Structures of aldehyde and cyclopropenone inhibitors.
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crystallography87. The fumaric acid derivative of E-64c (DC-11,
17; Fig. 4) is 1000-fold less potent as an inhibitor of calpain 1 than
E-64c88,89, and is a weak irreversible inhibitor of cathepsins B and
L88. A related, potent inhibitor of falcipain 2 (Ki¼17 nmol/L, 18,
Fig. 4) was developed as an antimalarial drug with good selectivity
against cathepsins B and L (7.3 and 8.4 mmol/L)58.

Vinyl sulfone containing peptidomimetics with varied P2 amino
acids were explored as inhibitors of cathepsins K, L and S. The
inhibitors had highest potency for cathepsin S, reaching 13 nmol/L
in the case of P2¼Leu90. LHVS (19, Fig. 4) has been used as a
selective cathepsin S inhibitor in vivo and in vitro, to support a role
for cathepsin S in TBI91; however, Ki¼0.40, 3.4 and 4.7 mmol/L
for cathepsins S, B, and L, respectively90. The vinyl sulfone group
was successfully used in several falcipain 2 inhibitors (20,
Fig. 4)92.

3.1.4. Halomethyl ketones
Developed as an His-selective alkylating agent, the chloromethyl
ketone warhead is chemically reactive and alkylates reactive
cysteine residues. The compound Z-Leu-Leu-Phe-CH2Cl (21,
Fig. 5) was reported as a calpain inhibitor with moderate
potency93. Fluoromethyl ketone inhibitors were developed after
the synthetic methodology became available55. The direct analog
of the aforementioned chloromethyl ketone (22, Fig. 5) is a potent
inhibitor of human recombinant calpain 194. The chemical space
around the “cap” group was explored, resulting in examples of
inhibitors selective towards calpain 1 vs. cathepsin B. Fluoro-
methyl ketones are remarkably unreactive towards general thiol
nucleophiles such as GSH95; however, the potential of fluoroace-
tate formation through metabolism has hindered clinical develop-
ment96. Both fluoromethyl and chloromethyl ketones have been
reported as potent inactivators of cathepsin B with the correct
recognition group55,97.

3.1.5. Diazomethyl ketones
Pioneering work on this warhead by Shaw and others98–100

showed that diazomethyl ketones are irreversible inhibitors of
papain. The inhibition of calpain and the cathepsins depends on
the recognition peptide sequence used. Diazomethyl ketones are
cell permeable and sufficiently stable in the presence of thiol-
containing reducing agents such as DTT and mercaptoethanol101.
Selectivity was targeted for cathepsin isozymes60–62. A diazo-
methyl ketone analog (Z-Leu-Leu-Tyr-CH2N2, 23; Fig. 5) of the
aforementioned halomethyl ketones was reported with potency for
calpain 1 inhibition intermediate between cathepsin L and cathe-
psin B.61

3.1.6. Acyloxymethyl and other activated ketones
Acyloxymethyl ketones are reported to have low reactivity
towards GSH102. The cathepsin B inhibition of a series of
acyloxymethyl ketones (Z-Phe-Ala-CH2OCO-R) was inversely
correlated with the pKa of the carboxylate leaving group, with
the 2,6-bis-trifluoromethylbenzoate (24, Fig. 5) having the highest
potency103. The compounds also show potent inhibition of
cathepsins L and S but not calpain 1. An alternative approach
reported a sulfanylmethyl ketone (25, Fig. 5) that was a potent
inhibitor of cruzain with good selectivity (cruzain Ki�0.9 nmol/L,
cathepsin B�700 nmol/L, cathepsin L�28.8 nmol/L)104,105.
Unlike acyloxymethyl ketones, sulfonium methyl ketone peptido-
mimetics, e.g., Z-Leu-Leu-Phe-CH2S

þ(Me)2 (26, Fig. 5), inhibited
calpain 1 with high potency.
Activated ketones provide a leaving group for displacement by
active site thiol, presumably via a mechanism similar to that shown
above for the diazomethyl ketones. The benzotriazol-1-yl leaving
group has been successfully utilized to inhibit calpain potently;
however, this activated ketone was unstable in aqueous solu-
tions106. Tetrafluoro-phenoxymethyl ketones (e.g. 27) have been
developed as potent cruzain inhibitors107.

The 1,2,4-thiadiazole based inhibitors do not easily fit into the
classes of irreversible covalent enzyme inhibitors discussed above,
but the use of this thiophilic warhead for inhibition of cathepsin B
(28: Ki�2 mmol/L) deserves mention, providing selectivity over
non-cysteine protease families108.

3.2. Reversible inhibitors

Reversible Cys protease inhibitors are compounds forming a non-
covalent complex with the enzyme. These inhibitors can bind to
the active site without substrate bound (transition state analogs,
competitive inhibitors) or with substrate already bound (uncom-
petitive inhibitors). A third type of reversible inhibitor binds to an
allosteric site (non-competitive inhibitors). Reversible inhibitors do
not form covalent adducts with the enzyme and can be removed by
dialysis if the non-covalent binding affinity is not too high.

3.2.1. Aldehydes and ketones
Since by definition, reversible covalent inhibitors do not yield a
stable adducted enzyme, evidence for covalent mechanisms must



Figure 7 Structures of ketoamide and ketoheterocycle cysteine
protease inhibitors.
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be obtained from kinetic analysis, which has not always been
carried out in sufficient detail for definitive conclusions. The most
well studied examples are peptidomimetic aldehydes and trifluor-
omethyl ketones109–111. Peptide aldehydes were isolated from
Streptomyces strains and were found to inhibit calpain and other
proteases112. The physicochemical characteristics of the com-
pounds were improved by substituting the terminal amino acid
for a hydrophobic cap group such as benzyloxycarbonyl, resulting
in calpeptin (Z-Leu-Nle(norleucine)-H, 29 (Fig. 6), a 40 nmol/L
inhibitor of human platelet calpain 2113,114. Another cell permeable
aldehyde inhibitor relying on the same principles is Z-Val-Phe-H
(MDL 28,170, 30)115. When a phenylbutyryl group was substi-
tuted for Z, the resulting compound inhibited calpains 1 and 2 with
potency of 36 and 50 nmol/L, respectively, but the compound
showed some inhibition of trypsin, chymotrypsin and cathepsin H,
demonstrating the lower selectivity of the aldehyde warhead116.
Using an acetyl cap group gave, Ac-Leu-Leu-Nle-H (31, Fig. 6)
and Ac-Leu-Leu-Met-H (32, Fig. 6), which were named “calpain
inhibitor I” and “calpain inhibitor II”, respectively.116 Calpain
inhibitor I is a potent inhibitor of cathepsin L (0.5 nmol/L) and
calpain inhibitor II, of cathepsin B (100 nmol/L). Peptidomimetic
aldehydes can show high selectivity in biochemical assays;
however, the chemical reactivity of aldehydes, leading to rever-
sible Schiff base formation with proteins, metabolic oxidation and
reduction, and pH-dependent hydrate formation, result in unsatis-
factory stability and bioavailability, underlying a lack of progress
to the clinic117. Nevertheless, these aldehydes are widely used as
chemical probes for in vitro calpain inhibition.

Cyclic hemiacetals provide a prodrug approach to aldehyde
inhibitors designed to increase the biological half-life and enhance
PK properties. The aldehyde SJA-6017 (33, Fig. 6), IC50¼0.022
mmol/L (calpain 1) and IC50¼0.049 mmol/L (calpain 2), was
found to prevent cataract formation in rats. The hemiacetal prodrug
itself (34, Fig. 6) is less active: IC50¼0.88 mmol/L (calpain 1),
IC50¼2.6 mmol/L (calpain 2)118.

3.2.2. Cyclopropenones
Cyclopropenones have been reported as reversible covalent
inhibitors of calpain119. The major example is BDA-410 (35,
Fig. 6) with reported IC50 of 130 nmol/L and 630 nmol/L for
calpains 1 and 2, respectively120. BDA-410 is orally bioavailable
and has been reported to have a neuroprotective effect in AD
mouse models121. Potential mechanisms of action include both
1,2- and 1,4- addition to the cyclopropenone ring and charge-
transfer complex formation at the active site involving protonation
of the cyclopropenone to a stabilized aromatic hydroxycyclopro-
penyl cation122.

3.2.3. α-Keto derivatives
A carbonyl group adjacent to an acyl group, usually a carboxylate
ester/amide, or a heterocycle, provides an electrophile for reversible
addition of a nucleophilic Cys, Ser, or Thr at an enzyme active site.
α-Ketoacids, α-ketoesters, and α-ketoamides are not transition state
analogs, but have the ability to form a tetrahedral transition state
analog on addition of the enzyme nucleophile at the active site.
Substitution of the aldehyde moiety of known calpain inhibitors with
α-keto warheads has been a popular approach. In α-ketoacids,
H-bonding with an active site His has also been proposed to
contribute to inhibition to rationalize more potent inhibition compared
to esters or amides: Z-Leu-Phe-COOH (36, Fig. 7) (calpain 1 Ki

8.7 nmol/L, calpain 2 Ki 5.7 nmol/L)123. The P1 and P2 peptide
residues and hydrophobic cap group were explored extensively. In
the α-ketoester series, selectivity up to 12-fold towards calpain 2 vs.
calpain 1 was reported, with the best inhibitor (37, Fig. 7) providing
calpain 1 Ki¼100 nmol/L and calpain 2 Ki¼200 nmol/L. This
performance was bettered by the corresponding N-monosubstituted
α-ketoamides: 20oKio200 nmol/L for calpains 1 and 2 and
micromolar inhibition of cathepsin B. Calpain inhibitor, AK295
(38, Fig. 7), was reported to have neuroprotective effects in a rat
model of cerebral focal ischemia124.

The chemical space around the P3 cap group of ketoamides was
extensively explored, resulting in the creation of A-705239 (39)
and A-705253 (40, Fig. 7), non-selective inhibitors of calpain
(13.3 nmol/L, 27 nmol/L) and cathepsin B (27 nmol/L, 62 nmol/L),
but with improved water solubility, cell permeability, and metabolic
stability111. A-705239 rescued brain cells in a model of fluid
percussive traumatic brain injury111. Inhibitors with a heterocyclic
cap group, such as quinoline carboximides and chromenone deriva-
tives were described, along with ring-opened 4-aryl-4-oxobutanoic
acid derivatives125,126. These calpain inhibitors have been developed
by the cyclization and conformational restriction of the P3 amide and
recognition group of conventional ketoamide inhibitors. Ketoamide
inhibitors based on the structure of A-705239 and its analogs have
been further developed by AbbVie127. The modifications explored
included bioisosteric substitutions of the diarylalkene by substituted
and fused pyrazoles and replacement of the central benzene ring with
pyridine and oxopyrrole128–131. ABT-957, currently in clinical trials
for AD, represents the culmination of the ketoamide approach to
calpain inhibition in neurodegenerative disorders. Two representative
chemical structures published by Abbvie are shown (41, 42, Fig. 7).

α-Ketoheterocycles have been widely explored as inhibitors of
many non-cysteine and cysteine proteases, with a number of
examples of cathepsin inhibitors previously reviewed132. Early
examples, were developed by optimization of P0, P2, and P3
interactions133. Cathepsin K inhibitors were described with
Ki¼1.7–54 nmol/L and reported selectivity over cathepsins B and
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L (e.g. 43: cathepsin K Ki¼1.7 nmol/L, cathepsin S Ki¼350 nmol/
L, cathepsin L Ki¼220 nmol/L, cathepsin B Ki¼1 mmol/L; Fig. 7).
Other examples showed high potency, but low selectivity:
IC50¼0.25–1 nmol/L for cathepsins B, L, K and S.134 Similar
compounds with variations in the P2–P3 recognition motif were
reported as inhibitors of cathepsin S, some of them (e.g. 44, Fig. 7):
achieving a 100-fold selectivity vs. cathepsins B, K and L135.

Cyclic ketone inhibitors of cathepsin K have been described
that have been developed by locking alkoxymethyl or alkylami-
nomethyl ketones into an aza- or oxacycle to induce conforma-
tional restraint. Such compounds are reported as noncompetitive
reversible inhibitors of cathepsin Ki.

136 SB-357114 (45, Fig. 7)
was reported to inhibit human cathepsin K with a Ki of 0.16 nmol/
L, and cathepsins L, S and B with Ki values of 2.2, 4.0, and
500 nmol/L, respectively, yielding a marked reduction in bone
resorption in a nonhuman primate model of postmenopausal bone
loss137.

3.2.4. Nitriles
Nitrile warheads have been traditionally targeted at cysteine
proteases, although the increased reactivity of the related carbodii-
mide warhead has also been pursued for serine proteases. Several
examples of nitriles inhibiting cathepsin K have been reported138.
As introduced above, odanacatib (46, Fig. 8) has progressed to
clinical trials for osteoporosis. Drug optimization incorporated an
N-(1-cyanocyclopropyl)acetamide warhead to reduce the metabolic
lability of less substituted nitrile warheads. Monoalkylated acet-
amides have been developed as potent inhibitors of cathepsin S (the
most potent example is 47, Ki¼15 nmol/L; see Fig. 8) with
41000-fold selectivity over cathepsins B, K and L.
Figure 8 Structures of nitrile and carbodiimide inhibitors.
Selective cathepsin L inhibitors containing substituted and
unsubstituted cyanomethylene warheads have been reported, the
most potent (48, Fig. 8) having an IC50 of 1.26 nmol/L139,140. The
reactivity of carbodiimides towards nucleophilic addition is greater
than that of nitriles. Examples of these, N-cyanopyrrolidines (Fig. 8,
e.g. 49, IC50 cathepsin L 50 nmol/L, K 80 nmol/L, B 1.4 mmol/L)
and N-cyanoazetidines (e.g. 50, IC50 cathepsin L 5 nmol/L, K
6 nmol/L, B 150 nmol/L), have been prepared as reversible
inhibitors of cathepsins K, L, and B; expected to form a thiourea
intermediate at the active site. The higher potency of the azetidine
derivatives was attributed to the higher electrophilic reactivity. The
formation of an isothiourea with the active site cysteine has been
detected141. 2-Cyanopyrrolidines were described as selective cathe-
psin L inhibitors, the most potent compound (51, Ki¼5.3 mmol/L,
Fig. 8) was reported to be selective against cathepsin B142.

The 1,3,5-triazine-2-carbonitrile represents another approach to
modulating the reactivity of the nitrile warhead, including potent
inhibitors such as 52 (Fig. 8; Ki¼9 nmol/L, rhodesain; 2 nmol/L,
cathepsin L).143 Similarly, Merck have reported selective cathepsin S
inhibiting purine-6-carbonitriles (e.g. 53, Fig. 8) that had been designed
to exploit the differences between the active sites of cathepsins K and
S, but aqueous stability was too poor for clinical progress144. Merck
has reported other N-heterocycles as cathepsin inhibitors, such as
6-phenyl-1H-imidazo[4,5-c]pyridine-4-carbonitriles (54, Fig. 8: IC50

cathepsin S 6.9 nmol/L, cathepsin K 117 nmol/L)145. AstraZeneca has
optimized pharmacokinetic properties of aminoacetonitrile inhibitors of
cathepsin C working towards a clinical candidate, reporting an IC50 of
1 nmol/L and excellent selectivity for 55 (Fig. 8)146.
4. Non-covalent inhibitors

The endogenous inhibitor of calpain, calpastatin, interacts with
both the unprimed and primed sites of the enzyme without
extending into the active site. Truncated peptidic inhibitors were
designed based on the structure. Although this review is focused
on covalent inhibitors of cysteine proteases, examples of allosteric
inhibitors deserve brief mention. Early research identified mercap-
toacrylates as cell-permeable, selective, noncompetitive inhibitors
of calpain (i.e. PD-150606, 56 and PD-151746, 57, Fig. 9), which
were later reported to bind at an allosteric site on the Ca-binding
domain VI147,148. Neuroprotective activity was reported in models
of ischemia and in electrophysiological studies149. More recently,
biphenyl-containing high potency calpain inhibitors were reported
by Montero et al.150–152 (e.g. IC50 58, 98 nmol/L, and 59,
24 nmol/L; Fig. 9). Although the authors proposed the chelation
Figure 9 Allosteric inhibitors of calpain.
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of Ca2þ as the mechanism of action, the variability of reported
potency with the peptide sequence hints at an alternative allosteric
mechanism. Macrocyclic compounds incorporating biphenyls were
designed to improve physicochemical properties, at a significant
cost in potency153.
5. Covalent vs. non-covalent inhibition

Irreversible covalent enzyme inhibitors react with the target
enzyme after binding to it, and thus enzyme inactivation is not
an equilibrium process as with reversible inhibition, and requires
re-expression of the enzyme to reverse drug action, which may
occur after elimination of the drug from the body. There has been a
tendency to avoid irreversible, covalent inhibitors in drug devel-
opment to avoid the risk of: 1) unpredictable side effects such as
the generation of allergenic modified proteins (haptens); 2) non-
specific, irreversible modification of off-target proteins; and 3) the
difficulty in tracking metabolites when covalently bound to
proteins. The increased toxicity of “covalent drugs” has been
widely perceived, despite studies suggesting otherwise, such as the
lack of correlation of thiol conjugate formation with the in vivo
toxicity of 50 approved drugs154. Aspirin is a textbook example of
a covalent drug; however, it has taken the advent of covalent
kinase inhibitors in cancer therapy to open the floodgates to such
drugs155.
6. Therapeutic applications

6.1. Cathepsin inhibitors in cancer therapy

Inhibitors of cathepsins S, K, B and L have advanced to clinical
trials in osteoporosis10 and cancer156. Cathepsins B and L are
proposed biomarkers in cancer, with expression usually inversely
correlated with outcome, for example, cathepsin B activity is
increased in lung tumors and lymph node metastases157 ,and
correlates with poor prognosis in metastatic non-small cell lung
cancer157. Cathepsin B has been shown to have multiple roles in
cancer, including tumor invasion, the formation of metastases and
neovascularization, and is a pro-metastatic enzyme158. CA-074
inhibited the formation of bone metastases in breast cancer159;
however, JPM-OEt, a prodrug of an inhibitor of cathepsins B and
L, was ineffective in preventing metastases in breast cancer159.
CA-074 and a cathepsin B antibody reduced lung metastases in
mice after the injection of human melanoma cells160. In a further
mouse breast cancer model, CA-074 but not JPM-OEt, was found
to decrease tumor invasion, neovascularization, and bone metas-
tases161. The bioavailability of cathepsin inhibitor drug generated
by the prodrug, JPM-OEt, is problematic162.

6.2. Neurodegenerative diseases

Calpains and cathepsins play key roles in TBI, ischemic brain injury,
and in normal proteolytic and regulatory pathways in the brain
involved in signaling and synaptic and neuronal plasticity163.
Increased proteolytic activity is observed in neurodegenerative
diseases and numerous studies have been conducted to elucidate
the role of not only calpains and cathepsins, but also caspases164,165.
Calpain 1 is highly expressed in neurons166 and calpain 2 in glial
cells167. Elevated glutamate levels associated with excitotoxicity
cause an influx of Ca2þ into neurons and consequent abnormal and
extended hyperactivation of calpain. Chronic calpain activation, as
opposed to transient activation, is associated with the breakdown of
cell membranes, increased permeability of lysosomal membranes, and
elevation of intracellular cathepsin levels168. Inhibition of both calpain
and cathepsins has been reported to provide neuroprotection after
cerebral ischemia169. A dose-dependent reduction in infarct volume
by MDL 28,170, an aldehyde calpain inhibitor, was observed in a rat
cerebral ischemia model169. Indeed, numerous studies have concluded
that inhibition of cysteine proteases is neuroprotective in models of
brain injury, and since these inhibitors often lack selectivity, the need
for specific inhibitors needs examining91,169–172.

In TBI, secondary injury occurs after the initial insult as ion
homeostasis is disturbed, excitatory mediators and reactive oxygen
species are produced. As a consequence of cytosolic ion concentra-
tion change, calpains are activated and form part of a cascade of
events leading to cell membrane breakdown, apoptotic and necrotic
cell death165. The activity of cathepsin S was found to be increased in
mice 2–4 h after TBI, indicating that cathepsin S is one of the
enzymes causing secondary damage occurring after TBI. Neurologi-
cal abnormalities were found to be decreased in mice that underwent
TBI with prior intracerebral injection of LHVS, a vinyl sulfone
cathepsin S inhibitor that does not penetrate the blood–brain barrier91.
LHVS also inhibits other cathepsins with lower affinity90.

In AD, cathepsin B is found throughout the brain and also in
neurites and dendrites, whereas in normal brains cathepsin B
activity is localized in lysosomes173,174. The localization of
cystatins, the endogenous inhibitors of cathepsins, is also altered
in neurodegenerative diseases173. Neurofibrillary tangles (NFTs)
have been reported to contain increased amounts of calpain 2 and
cathepsins175. Calpain 1 is known to be hyperactivated in brains of
AD patients23. The level of calpastatin, the endogenous inhibitor
of calpain, is also decreased176. A deuterated analog of E-64d, a
pan-cysteine protease inhibitor known to inhibit calpains 1 and 2
as well as cathepsins B and L, is in clinical trials for AD
therapy171,177,178.
6.3. The calpain–cathepsin hypothesis of neuronal loss

It is widely accepted that neuronal loss through neurodegeneration
is a central event in the course of many acute and chronic disorders
of the central nervous system such as cerebral ischemia, trauma
and AD. The “calpain–cathepsin hypothesis” was formulated to
provide a mechanism for neuronal death based upon experimental
observations in the ischemic monkey paradigm. The hypothesis
posits that calpain 1 hyperactivation compromises the lysosomal
membranes and causes the release of cathepsins into the cyto-
plasm179. Calpain activation has been confirmed in the ischemic
monkey brain180 and in brains of AD patients23,181. Recent data
also suggests a dual role for Hsp70 as a chaperone for damaged
proteins and as an important factor in the maintenance of
lysosomal integrity. Calpain-mediated cleavage of Hsp 70.1 that
has been modified by oxidative stress may impair lysosomal
autophagy182,183.

Cathepsins released into the cytoplasm simultaneously damage
the lysosomal membrane from outside and attack mitochondria,
releasing cytochrome c and activating pro-apoptotic factors such as
caspases-9 and caspase-3184,185. Several gene KO studies and
pharmacological inhibitor experiments support this hypothesis. For
example, the cathepsin B inhibitor, CA-074Me, reduced biomar-
kers of apoptosis, such as Bax, and neuronal cell death, and
reduced memory loss in a TBI model186. Moreover, cathepsin B
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has been shown to be critical to TNF-α-mediated apoptosis by
experiments in a KO mouse.187 Interestingly, pro-apoptotic
activation was profoundly suppressed by cysteine protease inhibi-
tors leupeptin and E64.188 However, CA-074, an epoxysuccinate
cathepsin B inhibitor, did not inhibit digitonin-mediated caspase
activation188, indicating that not only lysosomal cathepsin B but
also other lysosomal cysteine protease are involved in the cascade
leading to neuronal death.189 In line with this postulate, the
abnormally high concentrations of cathepsins D and cathepsin L
in the cytosol, can activate Bid through proteolysis and cause the
release of cytochrome c from mitochondria as well as the
activation of caspase-9 and caspase-3184,185.
6.4. Are specific inhibitors essential for clinical success?

In TBI, a substantial increase in cathepsin B brain levels and activity
correlated with neuronal cell death and behavioral dysfunction186.
E-64d treatment in a TBI mouse model led to similar improvements
in WT compared to E-64d-treated cathepsin B KO mice, suggesting
that E-64d, a non-selective cysteine protease inhibitor, functions
primarily through cathepsin B inhibition in TBI170. However, at one
day post-trauma, E-64d-treated cathepsin B KO mice showed faster
recovery of the motor functions than was observed for untreated
cathepsin B KO mice170, indicating a neuroprotective role for “off-
target” inhibition of calpains, which are also validated drug targets in
TBI164,190. Indeed, brain calpain activity spikes within 24 h of
trauma191,192, and E-64d administration has been shown to reduce
calpain activity and provide neuroprotection after trauma193,194.
Therefore, in TBI treatment, some additional benefits of E-64d may
occur through inhibition of both cathepsin B and calpain 1, although
other targets cannot be excluded. The benefits of E-64d treatment in a
focal ischemia animal model were attributed to inhibition of cathepsin
B, calpain 1, and matrix metallopeptidase-9 (MMP-9)195, a known
contributor to TBI196,197, although the mechanism of indirect inhibi-
tion of MMP-9 by E-64d is not known.

In AD, ischemic pathology was noted in the first description of
disease neuropathology by Alois Alzheimer. Remarkably, the major-
ity (�90%) of AD patients show a cerebral amyloid angiopathy that
causes cerebral ischemia198,199. It is therefore logical to propose that
the calpain-cathepsin cascade, associated with ischemic neuronal
death, contributes to AD pathogenesis200. In AD brains, calpain 1
activity is increased 7-fold compared to age-matched brains201.
Amyloid precursor protein (APP) and amyloid β (Aβ) were also
reported to induce calpain activation202,203, and evidence exists for
reciprocal processing by calpain1 of APP204 and tau proteins205,206.
Activated calpain was observed to occur in neurofibrillary tangles,
senile plaques (SP), and dystrophic neuritis.23 Similarly, cathepsin D
was observed to be localized extracellularly within senile plaques by
immunoassay.207,208 In line with this observation, an age-dependent
significant increase of cathepsin D levels and activity was documen-
ted in AD human brains suggesting a possible relationship between
cathepsin D activation and SP formation208.

In activated microglia, cathepsin B was claimed to be a key player
in Aβ1-42 induced neuronal death209. Interestingly, this activated
microglia-mediated neurotoxicity was corrected by cathepsin B gene
knockdown as well as by the cathepsin B inhibitor CA-074.
Accordingly, cathepsin B was proposed to mediate neuronal death
initiated by inflammatory response to Aβ. Extra-lysosomal release of
cathepsins has a major role in neuronal loss in AD. In this context,
cathepsin B has been proposed to be an alternative executor of “β-
secretase activity”, possessing excellent kinetic efficiency and
specificity for cleaving wild-type APP at the β-secretase site in
sporadic AD: cathepsin B may be key to amyloidogenesis in 99% of
AD cases210. E-64d treatment rescued memory function, and
decreased brain Aβ1-40/Aβ1-42 and amyloid plaque neuropathology
in AD animal models expressing human APP containing the wild-
type β- and London mutant γ-secretase site (APPLon)
sequences171,177. Cathepsin B inhibition had no effect on Aβ
pathology in mice expressing APP containing the Swedish mutant
β-secretase site sequence (APPSwe)171,211. Nevertheless, BDA-410
and E-64 improved memory deficits in APPSwe mice30 in the
absence of effects on Aβ, possibly by inhibition of calpain 1.

In contrast to cathepsin B, cathepsin D displays equivalent kinetic
activity to BACE-1, cleaving the Swedish mutant β-secretase site
more efficiently than the wild-type sequence212; importantly, relevant
cathepsin D levels are about 280-fold greater than BACE-1212. In the
APPSwe mutant, an asparagine residue replaces lysine in the wild-type
protein. This P2 residue, is an important determinant of substrate
specificity for proteases including cathepsins213. Therefore, it is
possible that several cysteine proteases are involved in processing
the different APP mutations in familial AD. Cathepsin B, but not
BACE-1, efficiently cleaves the wild-type β-secretase site containing
isoaspartate (isoAsp) post-translational modification that is abundant
in AD brains, leading to further N-terminal truncated and modified,
neurotoxic Aβ peptide species such as pyroGluAβ214. In turn,
cathepsin B may be involved in the production of pGlu forms of
Aβ214 that aggregate at accelerated rates215.

Given evidence for multiple roles for calpain and cathepsins in
neurodegeneration, both independent of and associated with hallmark
AD pathology (Aβ and tau), it is difficult to conclude that therapy
will be unsuccessful without an entirely selective inhibitor of one
specific calpain or cathepsin isoform. Although calpain inhibitors,
theoretically may be effective in very, early presymptomatic AD,
diagnosis of this disease stage is not currently possible. Therefore, the
pharmacological inhibition of both calpain and “later” mediators of
neuronal death (cathepsins B, L, and D) would seem a reasonable
approach supported by results in animal models with agents such as
E-64, E-64d, and NYC-438.
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