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Abstract.

Concerns are growing in recent years about wetland resources and their changes, especially in coastal urban areas.
This study used IKONOS images to map an urban wetland and detect the changes of land-cover as well as general
water quality with post-classification comparison method. The results indicated that an Optimal Iterative
Unsupervised Classification (OIUC) method produced overall accuracy over 83% in land-cover classification. A
decrease of 7.08% in water surface area and an increase of 31.35% in vegetations area had been found in the wetland
for a period of 3 years. Also about 21.6% of the water was observed to change to worse quality. It shows IKONOS
image is advanced in studying changes of an urban wetland at a local scale. Ground surveys that coinciding with
satellite data and new classification algorithms are needed to achieve better results
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Introduction

Wetland play an important role in offering wildlife habitat and tourist destinations, as well as providing
other services such as agricultural production, floodwater retention, fisheries, and also functioning as
important nutrient cycling capacity for maintaining water quality [1-3]. The concerns of damage and loss
of wetlands as a result of rapid urbanization, especially in urban regions, have been growing in recent
years.
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Monitoring the change of wetland water quality as well as landscape are increasingly central objectives
of management agencies. However, conventional methods including field sampling and surveying are
time-consuming and costly [4]. Remote sensing is effective in mapping and monitoring the wetland
conditions, and thus enables derivation of cost-effective solution for wetland management [4, 5]. While in
urban area which with highly fragmented landscapes, the characteristic spatial scale of water bodies and
vegetation are often much smaller. High spatial resolution remote sensing data then is necessary in
mapping complex land cover and land use, and monitoring the changes of wetland system within an urban
context at a local scale.

The IKONOS satellite collects images at 1-m resolution in panchromatic band and at 4-m resolution in
four multi-spectral bands, which has become a popular tool in the study of agriculture [6], urban
environmental quality [7], forest study [8, 9], land and water resource [10], etc. However, studies focused
on wetland system in a local scale area scarce.

The objectives of this research were to (1) detect the changes of an urban wetland over a specified time
period using post-classification comparison approach with IKONOS image; (2) develop a rapid way in
mapping wetland water quality and detecting water quality changes.

Methodologies

Study Site. Xixi wetland located in the downtown of Hangzhou, China, lies between 120°0'26"-
120°927" E and 30°3'35”-30°21'28" N and covers an area of about 11 square kilometers (Fig. 1). It
consists of rivers, brooks, swamps and lakes. Xixi is crisscrossed by six rivers and dotted with many piers,
docks and fish-scale-shaped ponds, forming the unique wetland landscape. It also boasts abundant water-
land vegetations and wild animals.
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Fig. 1 Location of Xixi Wetland in China

Data. Two cloud-free IKONOS images covering the whole Xixi Wetland area acquired in June 2003 and
January 2006 were selected, for the difficulties to find out two images well matched in season. All images
included four multi-spectral bands and a panchromatic band. The projection system was Universal
Transverse Mercator (UTM) Zone 51and the Spheroid and Datum was WGS 84.

Field sampling work was conducted on January 30, 2007. The field conditions and the results were
assumed to be similar and comparable to those in January 2006 as there was little change between the two
stages as we learned. The image characteristics and the corresponding wetland cover types were
examined and qualitative descriptions were recorded for the purposes of better image classification.
Water samples from 16 stations, which sampled based on good professional judgment and previous
information, were analyzed in laboratory for physicochemical parameters as secchi disk transparency
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(SDT), turbidity, conductivity, dissolved oxygen (DO), chemical oxygen demand (COD), biological
oxygen demand (BOD) and suspended solid (SS). Other background dada including limited ground
survey data, land use map and TM image in September 2003 were also acquired as reference data.

Image Processing. The 2003 image was rectified with reference to the recent 2006 image using ERDAS
Imagine 9.0 software. A two-order polynomial transformation model and a cubic convolution resample
method were used and RMSE fell within 0.2-0.6 pixels. As IKONOS image is advanced in visual
interpretation due to its high spatial resolution, a pan-sharpened multi-spectral image was produced for
better interpretation and the subsets for the study area were created finally with the boundary of Xixi
Wetland.

A classification procedure was performed with the two images before post-classification comparison
change detection. As it was difficult and expensive to obtain a suitable training set when large
homogenous sample size and enough multi-temporal “ground truth” data were not available, an Optimal
Iterative Unsupervised Classification (OIUC) method was used here instead of supervised classification
to overcome the limitations of unsupervised way [11, 12]. The OIUC includes three steps: (1)
development of reference datasets upon which to base the satellite image classification; (2) optimal
iterative classification using ISODATA clustering; and (3) post-classification treatment. This method has
been tested as an efficient and cost-effective alternative that yields high quality results for relatively large
geographic areas[13, 14]. 40 clusters were initially produced here and compared with the reference
images and other datasets. Spectral classes that agreed with observed classes using reference image were
considered good matches, and then labeled and removed from further consideration. Spectral classes that
were less clear were put back into the remaining pixel pool and rerun again. This was repeated as many
times as needed to assign our final classification results. As a great number of individual class pixels were
produced in the classification process, before forming the final result, we removed all pixel clusters with a
threshold of 3x3 pixels using CLUMP and ELIMINATE tools.

However, there were confusions among specific ground features which had similar spectral signatures.
For example, the shadows of buildings and roofs with asphalt were confused with open deep water.
Agricultural land with green crops was similar to other green vegetation according to their spectral
characteristics. Marshs or mudflats were also confused with some watered cropland. In the winter image
of 2006, the perished vegetations were confused with bare lands. By visual interpretation with reference
to the pan-sharpened color composite images according to their shape, color, texture and other ground
reference data, the confused pixels could be easily separated and edited manually.

Results and Discussions

Classification and Change Detection Accuracy. According to the landscape characteristics in Xixi, we
categorized it into six classes: (1) water body (permanent rivers, lakes, and ponds), (2) wetland (marsh
and mudflat), (3) vegetation (natural and planted), (4) agricultural (paddy field and dry cropland), (5)
developed (construction and road), (6) others (bare land and wasteland). Similar land cover types were
grouped together under these classifications.

The overall classification accuracies for 2003 and 2006 were 83.2% and 86.3%, with Kappa statistics
of 0.793 and 0.828. For individual classes, user’s and producer’s accuracies ranged from 60% to 96%,
and 65.8% to 100%, respectively. A higher overall classification accuracy and kappa coefficient showed a
better performance with the 2006 image. It is understandable that compared with the limited second-hand
ground survey and land use data of 2003, the field work in January 2007 was helpful to better interpret
the image of January 2006. For each land-cover type, the lower accuracy for “water body” of 2003 may
be attributed to the random selected reference pixels which fell in the border of the open water. The
accuracy for “agricultural” and “developed” was relative higher because some pixels were reclassified
manually by visual interpretation after unsupervised classification. The change detection accuracy was
71.8% for 2003-2006, evaluated by simply multiplied the individual classification accuracies.
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Land-cover Change. By comparing the classified images, a detailed land-cover type transformation
matrix was calculated and described in Table 1. It showed that the “water body” and “wetland” areas
were slightly decreased by 7.08% and 12.53%, respectively. This change could have two explanations.
The first was that the compared images were acquired in different seasons (June 2003 and January 2006).
Water level in some ponds which are separate from fluid water body is relative low in winter for

infrequent precipitation. Some ponds, originally with lower water levels, transformed to marsh or dry land.

However, some fluid rivers are little affected by weather condition as the water level is controlled
artificially for landscape demand. Furthermore, in later 2003, the “Xixi Wetland Protection Project”
initiated. Some protection practices filled and leveled up some ponds and wetlands. In fact, some shallow
or narrow water areas had also been dredged up to be wide rivers, which conversely increased the “water
body” area. It appeared that the overall decreased areas exceeded the increased areas. As for “vegetation”
areas, an obvious increase was observed (31.35%). Under the stress of environment degradation and the
slogan of protection, destroying the vegetation was forbidden in this region in recent years. Moreover, the
project of “National Wetland Park™ contributed to the increase of vegetation area by planting additional
vegetation. For the purpose of protecting the natural landscape and water quality, agricultural land in the
wetland area had been withdrawn extensively, which resulted in a large decrease of “agricultural” areas
and also an increase of “vegetation” areas. However, some agricultural land also transformed to bare or
waste land without proper utilization or management.

Table 1 Transform matrix of land-cover classes in Xixi Wetland from 2003 to 2006

Area of 2006 (ha.) Sum of
Water Wetland Vegetation Agricultural Developed Others 2003
body
Water body  336.52  51.68 50.69 1.57 11.36 7.25 459.07
Wetland 35.12  26.25 68.81 3.94 8.00 4.61 146.73
Area Vegetation 27.53  30.36 154.70 8.74 17.88 9.28 248.49
of
2003 Agricultural 7.66 4.54 26.36 42.94 12.43 3.93 97.86
(ha.)
Developed  13.30  12.47 19.63 0.82 66.25 5.44 117.91
Others 6.43 3.04 6.21 0.60 2.20 0.91 19.39
Sum of 2006 426.56 12834 32640 58.61 118.12 3142 1089.45

Water Quality Change. As known, SDT, Turbidity and SS are the most consistently collected water
quality indicators that can be derived from spectral reflectance data. Previous studies have shown a strong
correlation between the ground observation of water clarity and the responses in blue and red bands of
Landsat image[15, 16]. IKONOS imagery has four multi-spectral bands similar to Landsat TM 1-4 bands,
so we can also assess water quality by analyzing its spectral information. Then, general water quality
could be assessed qualitatively by image classification as limited ground reference data concurrently with
the remote sensing data was available to develop quantitative model. We masked out terrestrial features
and creating a water-only image of 2006. Unsupervised classification was performed on the water-only
image and three different spectral classes were generated. We defined the three classes as ‘Better’,
‘Medium’ and ‘Worse’ to represent three different water quality, that is, the class with higher reflectance
(brighter pixels) showed worse water quality, while a lower reflectance (darker pixels) showed better
water quality. In order to relate the spectral classes to different water quality and test the ability of
unsupervised classification to separate and group the pixels with different water quality, water quality
classes and corresponding range of indicator values were defined according to the previous observed
ground data (Table 2). Then, the sampled water quality data were grouped and compared with the image
classification results for validation by matching their locations.
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Table 2. Range of indicator values for different water quality classes.

Class SDT (cm) Turbidity (NTU) SS (mg/1)

Better >55 <7 <10
Medium 35-55 7-10 10-18

Worse <35 >10 >18

Water quality of 16 sampling sites was assigned for three indicators according to the criteria defined
in Table 2. For all indicators, water quality classes were completely consistent with each other at 7 sites
(Table 3). Other sites also showed good consistency between two indicators except for site 12. By
locating the 16 sites on the classified image, we found the spectral classes at 4 sites were consistent with
the results from other three indicators, and 5 sites were consistent with two indicators, while other sites
did not show a good consistency. Even though, it indicated that the spectral classification could generally
identify different water quality.

Table 3. Water quality classes reference to SDT, turbidity, SS and spectral classification results.

Sites 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15 16
SDT W MM B MM W M B B B B B M W B
Turbidty W B M B W M W W M B B wW M M W B
SS WMMIB WMWMMM B M M W M B
Spectral W W M B W W M W M B M M M M M B

B-Better, M-Medium, W-Worse

The image of June 2003 was processed and three water quality classes were assigned in the same way
because no ground monitoring data was available for 2003. We compared the water quality changes from
2003 to 2006 on the supposing that the water in same quality classes between the two images had similar
reflectance characteristics and similar range of indicator values. Because the area of water surface had
changed over the 3 years, we discussed the water quality change only in the unchanged area. A cross-
tabulation analysis (Table 4) showed that about 21.6% of the water area changed from better and medium
to worse class, while another 13.3% changed from medium and worse to better class. The area with worse
quality increased 75% from 2003 to 2006.

Table 4. Transform matrix of each water quality classes from June 2003 to January 2006

Area of 2006 (ha.) Sum of
Better Medium Worse 2003
Area of Bet.ter 58.75 62.79 25.37 146.91
2003(ha.) Medium 31.01 64.21 47.19 142.41
Worse 13.58 23.60 10.01 47.19
Sum of 2006 103.34 150.60 82.57 336.51

The water quality map of 2006 (Fig. 2B) showed that the water in main rivers were the worst. This
mainly attributed to the disturbance from anthropic activities, such as water traffic and tourism. Water in
the most ponds showed relatively better water quality, it is because most of the ponds were not accessible
while some ponds were polluted by aquiculture. It should be point out that there were confusions between
shallow water and high turbidity water, because the high bottom reflectance from shallow ponds were
similar with the reflectance from turbidity water. We ignored this problem here, for the depth and water
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quality information was not available in this paper. A detailed survey in large area was needed to improve
water quality classification in further study.

B

Conclusions

IKONOS image is advanced in studying an urban wetland at a local scale. An OIUC method, combined
with visual interpretation and post-classification processing, could also yield high classification accuracy.
A post-classification comparison method was also demonstrated as an efficient way to detect the wetland
changes. Unsupervised classification is also a useful tool to quickly assess general water quality when
detailed data is not available. Ground surveys that coinciding with satellite data and new classification
algorithms are needed to achieve better results. The results of this paper also showed that Xixi had
undergone tremendous landscape changes in those three years. Extended and periodic monitoring work is
necessary in the future for better protection and utilization of the urban wetland resources.
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