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The Geometry of Ill-Conditioning 

JAMES W . DEMMEL 

Department of Computer Science, Courant Institute, New York, Nena York 10012 

Numerous problems in numerical analysis, including matrix inversion, eigen- 
value calculations, and  polynomial zero finding, share the following property: the 
difficulty of solving a  given problem is large when  the distance from that problem 
to the nearest  “ill-posed” one  is small. For example, the closer a  matrix is to the 
set of noninvertible matrices, the larger its condit ion number  with respect to 
inversion. W e  show that the sets of i l l-posed problems for matrix inversion, eigen- 
problems, and  polynomial zero finding all have  a  common algebraic and  geometr ic 
structure which lets us  compute the probability distribution of the distance from a  
“random” problem to the set. From this probability distribution we derive, for 
example, the distribution of the condit ion number  of a  random matrix. W e  exam- 
ine the relevance of this theory to the analysis and  construction of numerical 
algorithms dest ined to be  run in finite precision arithmetic. SC 1987 Academic 

Press, Inc. 

1. INTRODUCTION 

To  investigate the probability that a  numerical analysis problem is diffi- 
cult, we need  to do  three things: 

(1) Choose a  measure of difficulty, 
(2) Choose a  probability distribution on  the set of problems, 
(3) Compute the distribution of the measure of difficulty induced by 

the distribution on  the set of problems. 

The  measure of difficulty we shall use in this paper  is the condition 
number, which measures the sensitivity of the solution to small changes in 
the problem. For the problems we consider in this paper  (matrix inver- 
sion, polynomial zero finding, and  eigenvalue calculation), there are well- 
known condition numbers in the literature of which we shall use slightly 
mod ified versions to be  discussed more fully later. The  condition number  
is an  appropriate measure of difficulty because it can be  used to measure 
the expected loss of accuracy in the computed solution, or even the 
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number of iterations required for an iterative algorithm to converge to a 
solution. 

The probability distribution on the set of problems for which we will 
attain most of our results will be the “uniform distribution” which we 
define as follows. We will identify each problem as a point in either RN (if 
it is real) or CY (if it is complex). For example, a real n by it matrix A will 
be considered to be a point in Rn2, where each entry of A forms a coordi- 
nate in RR2 in the natural way. Similarly, a complex nth degree polynomial 
can be identified with a point in Cn+’ by using its coefficients as coordi- 
nates. On the space RN (or CN) we will take any spherically symmetric 
distribution; i.e., the induced distribution of the normalized problem xl/x/l 
(1(./1 is the Euclidean norm) must be uniform on the unit sphere in RN. For 
example, we could take a uniform distribution on the interior of the unit 
ball in RN, or let each component be an independent Gaussian random 
variable with mean 0 and standard deviation I. Our answers will hold for 
this entire class of distributions because our condition numbers are homo- 
geneous (multiplying a problem by a nonzero scalar does not change its 
condition number). 

The main justification for using a uniform distribution is that it appears 
to be fair: each problem is as likely as any other. However, it does not 
appear to apply in practice for a variety of reasons, including the fact that 
any set of problems which can be represented in a computer is necessarily 
discrete rather than continuous. We will discuss the validity of our choice 
of uniform distribution as well as alternatives at length in Section 6. 

Finally, given this distribution, we must compute the induced probabil- 
ity distribution of the condition number. It turns out that all the problems 
we consider here have a common geometric structure which lets us com- 
pute the distributions of their condition numbers with a single analysis, 
which goes as follows: 

(i) Certain problems of each kind are ill-posed, i.e., their condition 
number is infinite. These ill-posed problems form an algebraic variety 
within the space of all problems. For example, the singular matrices are 
ill-posed with respect to the problem of inversion, and they lie on the 
variety where the determinant, a polynomial in the matrix entries, is zero. 
Geometrically, varieties are possibly self-intersecting surfaces in the 
space of problems. 

(ii) The condition number of a problem has a simple geometric 
interpretation: it is proportional to (or bounded by a multiple of) the 
reciprocal of the distance to the set of ill-posed problems. Thus, as a 
problem gets closer to the set of ill-posed ones, its condition number 
approaches infinity. In the case of matrix inversion, for example, the 
traditional condition number is exactly inversely proportional to the dis- 
tance to the nearest singular matrix. 
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(iii) The last observation implies that the set of problems of condi- 
tion number at least x is (approximately) the set of problems within dis- 
tance c/x (c a constant) of the variety of ill-posed sets. Sets of this sort, 
called tubular neighborhoods, have been studied extensively by geome- 
ters. We will present upper bounds, lower bounds, and asymptotic values 
for the volumes of such sets. The asymptotic results, lower bounds, and 
some of the upper bounds are new. The formulas are very simple, depend- 
ing only on x, the degree of N of the ambient space, the dimension of the 
variety, and the degree of the variety. These volume bounds in turn bound 
the volume of the set of problems with condition number at least x. Since 
we are assuming the problems are uniformly distributed, volume is pro- 
portional to probability. 

Thus, for example, we will prove that a scaled version K(A) = lbllF . 
lbA-‘/l of the usual condition number of a complex matrix with respect to 
inversion satisfies 

(1 _ X-1)2n2-2 e2ns(1 + r~~/x)~“~-~ 
4n4x2 

5 Prob(K(A) 2 x) I x2 ’ 

and that asymptotically 

Prob(fc(A) 2 x) = 
n(n2 - 1) 

x2 

In other words, the probability that the condition number exceeds x de- 
creases as the square of the reciprocal of x. Even for moderate x the upper 
bound exceeds the asymptotic limit by a ratio of only about e2n2. If A is 
real we will show 

C(1 - 1/x)“2-’ 
X 

5 Prob(K(A) 2 x) 5 k$1 2 * (“k’) . (1:)” , 

where C is a constant proportional to the (n2 - l)-dimensional volume of 
the set of singular matrices inside the unit ball. Thus, for real matrices the 
probability that the condition number exceeds x decreases as xP’. 

There are a number of open questions and conjectures concerning these 
volume bounds, in particular for how general a class of real varieties they 
apply (the case of complex varieties is simpler). We will discuss the 
history of this work and open problems in detail in Section 4. 

It turns out that the reciprocal relationship between condition number 
and distance to the nearest ill-posed problem holds for a much wider class 
of problem than just matrix inversion, polynomial zero finding, and eigen- 
value calculations: it is shared, at least asymptotically, by any problem 
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whose solution is an algebraic function. For simplicity we shall restrict 
ourselves to the three aforementioned problems, but our results do apply 
more widely, as discussed in Section 3 and Demmel (1986). 

This work was inspired by earlier work in a number of fields. Demmel 
(1986), Gastinel(1966), Hough (1977), Kahan (1972), Ruhe (1970), Stewart 
(1973), Wilkinson (1972, 1984a,b) and others have analyzed the relation- 
ship between the condition number and the distance to the nearest ill- 
posed problem mentioned above in (ii). Gray (1982a, 1982b), Griffiths 
(1978), Hotelling (1939), Lelong (1968), Ocneau (1985), Renegar (1987), 
Santalo (1976), Smale (1981), and Weyl(1939) have worked on bounds of 
volumes of tubular neighborhoods. These volume bounds have been used 
by Smale (198 1, 1986)) Renegar (1987), and others to analyze the efficiency 
of Newton’s method for finding zeros of polynomials. This latter work 
inspired the author (Demmel, 1983) to apply these bounds to conditioning. 
Ocneanu (to appear) and Kostlan (1985) have also analyzed the statistical 
properties of the condition number for matrix inversion. 

The rest of this paper is organized as follows. Section 2 defines nota- 
tion. Section 3 discusses the relationship between conditioning and the 
distance to the nearest ill-posed problem. Section 4 presents the bounds 
on the volumes of tubular neighborhoods we shall use and states some 
related open problems. Section 5 computes the distributions of the condi- 
tion numbers of our three problems. Section 6 discusses the limitations of 
assuming a uniform distribution and suggests alternatives and open prob- 
lems. 

2. NOTATION 

We introduce several ideas we will need from numerical analysis, alge- 
bra, and geometry. [lxll will denote the Euclidean norm of the vector x as 
well as the induced matrix norm 

/IA/IF will denote the Frobenius norm 

IIAIIF s (C I&j Iz)“‘. 
ij 

If P is a set and x is a point, we will let dist(x, P) denote the Euclidean 
distance from x to the nearest point in P. 

A subset M of RN is called an n-dimensional manifold if it is locally 
homeomorphic to RN. We also write n = dim(M). The codimension of M, 
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written codim(M), is N - n. In this paper dimension will always refer to 
the real dimension rather than the complex dimension, which is half the 
real dimension. 

A variety is the set of sblutions of a system of polynomial equations. A 
variety is homogeneous if it is cone-shaped; i.e., if x is in the variety so is 
every scalar multiple CU. A variety is not generally a manifold since it can 
have singularities in the neighborhood of which it is not homeomorphic to 
Euclidean space. However, points q with relatively open neighborhoods 
U, C P that are manifolds are dense in P (Kendig, 1977, Theorem 4.2.4) 
so that the following definition makes sense: the dimension of P at p, 
written dim,(P), is 

dim,(P) = lim sup dim( U,), 
VP 

lpU,CP 
U, a manifold 

We in turn define the dimension ofthe variety P as the maximum over all 
p E P of dim,(P). If dim,(P) is constant for all p, we call P pure dimen- 
sional. A complex variety defined by a single nonconstant polynomial is 
called a complex hypersurfuce. Complex hypersurfaces are pure dimen- 
sional with codimension 2. A real hypersurfuce has codimension 1 every- 
where. The real variety defined by the polynomialsf, , . . . ,f, is called a 
complete intersection if it is pure dimensional of codimension p. 

Now we define the degree of a purely n-dimensional variety P in RN. 
Let LN-” be a (N - n)-dimensional linear manifold (plane) in RN. Since 
dim(LN-“) + dim(P) = dim(RN) = N we say that LN-” and RN are of 
complementary dimension. Generically, LN-* and P will intersect in a 
surface of codimension equal to the sum of their codimensions, that is, N. 
In other words, their intersection will be of dimension 0 (a finite collection 
of points). If P is a complex homogeneous variety, then for almost all 
planes LN-” this collection will contain the same number of points, and 
this common number is called the degree of P, and is written deg(P) (see 
Kendig, 1977, Theorem 4.6.2). Intuitively, deg(P) gives the number of 
“leaves” of the variety P that a typical plane LN-” will intersect. In the 
case of a nonhomogeneous or real variety P, deg(P) is defined analogously 
as the maximum (finite) intersection number of a plane LA’-” and the n- 
dimensional variety P in RN, although the intersection number will not 
generally be constant for almost all LN-“. 

This concept of degree is a generalization of the degree of a polynomial. 
Indeed, if P is complex and defined as the solution set of a single irreduc- 
ible polynomial, then the degree of the polynomial equals the degree of P 
as defined above (Kendig, 1977). 

By l-volume of an n-dimensional manifold M (1 2 n) we mean the 
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f-dimensional Lebesgue measure of M, if it exists. Note that if 1 > n this 
volume is zero. The notation vol(M) denotes the n-volume of the n- 
dimensional manifold M. 

3. CONDITION NUMBERS AND THE DISTANCE TO THE NEAREST 
ILL-POSED PROBLEM 

We claim that many classes of numerical analysis problems permit the 
following geometric characterization of their condition numbers: 

(i) Certain problems of each class are ill-posed; i.e., their condition 
numbers are infinite. These problems form a variety within the space of all 
problems. 

(ii) The condition number of a problem has a simple geometric in- 
terpretation: it is proportional to (or bounded by a multiple of) the recip- 
rocal of the distance to the set of ill-posed problems. Thus, as a problem 
gets closer to the set of ill-posed ones, its condition number approaches 
infinity. 

In this section we will cite results from the literature to prove these 
claims for the following three classes of problems: matrix inversion, poly- 
nomial zero finding, and eigenvalue calculation. Afterward we will outline 
why this characterization applies to many other problems as well (Dem- 
mel, 1986). 

First we need to define condition number more precisely. If X is our 
space of problems equipped with norm Il./lx, Y our space of solutions 
equipped with norm [/*llr, andf: X + Y is the solution map for our prob- 
lem, the usual definition of the relative condition number is 

K&j-, X) = lim sup IIAX + 6x1 - .fc~,1IYu(x)llY 
6X-O II~4x4lxllx 

= ll~f~~l;4xllx 
XY ’ 

(3.1) 

if the Jacobian Dfexists (~~~~~ Xy is the induced norm). Note that the essen- 
tial information about the conditioning is contained in the IID~)(~~ factor. 
We may therefore use a multiple of IIDF(I Xy instead of ~~~~ without losing 
essential information. 

All three of our problems are homogeneous: multiplying the problem by 
a scalar does not change the condition number. Therefore, the set of ill- 
posed problems will also be homogeneous, or cone-shaped. This permits 
us to normalize all our problems to have unit norm (lie on the unit sphere 
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in either RN or C~), and implies that any results on the distribution of the 
condition number will hold for any distribution of problems inducing the 
same distribution of xlllxll on the unit sphere. We will also see that for all 
our problems the set ZP of ill-posed problems forms a hypersurface. 

Matrix Inversion. The usual relative condition number as defined in 
(3.1) with the 11*1/ norm on both the problem and solution spaces is (Golub 
and Van Loan, 1983) 

We shall use the nearly equivalent condition number 

K(A) = II& . IIA-‘Il. 

These condition numbers are both homogeneous, and infinite when A is 
singular, so the set of ill-posed problems is a variety defined by the single 
nth degree homogeneous irreducible polynomial det(A) = 0, where n = 
dim(A) (Van der Waerden, 1953). Denote the set of ill-posed problems by 
ZP. From the last section, we see that if A is complex, ZP is a complex 
hypersurface. If A is real, it is easy to verify that ZP is still a real hypersur- 
face by using the explicit parameterization provided by Gaussian elimina- 
tion (Demmel, 1983). 

A theorem of Eckart and Young (1936) gives the distance from a non- 
singular matrix to ZP: 

THEOREM 3.1 (Eckart and Young, 1936). dist(A, ZP) = J(A-lJ(-l. 
Therefore, we see that in terms of K we may write 

if IIAIIF = I, then dist(A, ZP) = ~/K(A), (3.2) 

i.e., that the distance from a normalized problem A to the nearest ill- 
posed problem is the reciprocal of its condition number. 

Polynomial Zero Finding. In this case we are interested in the sensi- 
tivity of the zeros of a polynomial to small perturbations in the coeffi- 
cients. If p(x) is an nth-degree polynomial, let llpll denote the Euclidean 
norm of the vector of its coefficients. Ifp(z) = 0 and 8p is a small perturba- 
tion of p, it is easy to verify that to first order the perturbed polynomial p 
+ Sp has a zero at z + 6z, where 

-6Pcd 6z = - 
P’(Z) ’ 
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implying that the relative condition number is 

n(z) . IIPII 
‘GedP~ 2) = ,p,(z), 3 

where 

n(z) = (z-I( (i lz2iljl’2. 
i=o 

Note that the condition number depends both on the polynomial p and on 
the choice of zero z. For simplicity we will use the similar condition 
number 

lkll 
‘dP, 2) = ,p,czj,. 

Both condition numbers are infinite when p’(z) = 0, i.e., when z is a 
multiple zero. Thus we will take the set IP of ill-posed problems to be 
those polynomials with multiple zeros. A necessary and sufficient condi- 
tion for a polynomial to have a multiple zero is that its discriminant, an 
irreducible homogeneous polynomial of degree 2n - 2 in the coefficients 
ofp (Van der Waerden, 1953), be zero. Ifp is complex, this implies the set 
of polynomials with zero discriminant is a hypersurface. If p is real, this 
set of polynomials is still a hypersurface, as may be verified using the 
parameterization provided by the leading coefficient p,, and the zeros. The 
discriminant may also be zero if the two leading coefficients of p equal 
zero (corresponding to a double eigenvalue at x), but this set is a subvari- 
ety of double the codimension of the hypersurface in which it lies, and so 
forms a set of measure zero we may neglect. 

Now we need to estimate the distance from a given polynomial to one 
with a multiple zero. The estimate we shall use is due to Hough (1977) and 
says 

THEOREM 3.2 (Hough, 1977; Demmel, 1986). The distance dist(p, ZP) 
from the polynomial p of degree at least 2 to one with a multiple zero is 
bounded by 

dist(p, ZP) 5 ti . (p’(z)/, 

where p(z) = 0. 

In fact, this is quite a weak result gotten by estimating the smallest 
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change in p needed to make a double zero at z, which turns out to be a 
linear least-squares problem. Thus we may write 

if \Ip(I = 1, then dist(p, ZP) 5 &, 
, (3.3) 

i.e., that the distance from a normalized problem p to the nearest ill-posed 
problem is bounded by a multiple of the reciprocal of its condition 
number. 

To see how much (3.3) may overestimate dist(p, ZP), we present a 
lower bound. Note that by changing the argument of p from x to (yx, a! a 
scalar, we may make the leading coefficient pn larger than the other coeffi- 
cients. 

THEOREM 3.3 (Demmel, 1986). Assume that p is an nth-degree poly- 
nomial satisfying I(p\I = 1 and Ipi\ < Ip,#nfor i 5 n. Then 

dist(p, ZP) 2 m in 
1 0.0235 

z;:p(zJ=O 
2, nz 

* K*(P, Zi> . (3.4) 

Thus we see that the distance to the nearest ill-posed problem is bounded 
below essentially by a multiple of the square of the condition number. 
This is a general phenomenon among algebraic problems to which we 
shall return below. 

Eigenuulue Calculations. We will be interested both in the sensitivity 
of eigenvalues and eigenvectors. More precisely, we will consider the 
sensitivity of the projection associated with an eigenvalue (Kato, 1966). If 
T is a matrix with simple eigenvalue A, right eigenvector x and left eigen- 
vector, y, the projection P associated with A is the matrix P = xy TIy Tx. 
The reduced resoluent associated with A is the matrix 

S = lii (I - P) * (T - z)-’ 

If T has n distinct eigenvalues Ai with projections Pi one can write 

S = ATA (Ai - A)-‘Pi. 

If 6T is a small perturbation of T, one can show that to first order A 
changes to A + 6A and P changes to P + 6P (Kato, 1966), where 

6A = tr P6T and 6P = -SGTP - PGTS. 
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It is easy to verify that (6hl can be as large as ((PI1 1 @T/l and (16~11 can be at 
least as large as l/~/j . IIP/I + 116~(I ( an d no more than twice as large as this). 
Therefore we may take as condition numbers 

and 

both of which are homogeneous. 
Both condition numbers are infinite when A is a multiple eigenvalue. 

Thus we will take the set ZP of ill-posed problems to be those matrices 
with multiple eigenvalues. We may see that ZP is a variety as follows. Let 
p(T, A) be the characteristic polynomial of T. T will have multiple eigen- 
values if and only if p has multiple zeros, which happens if and only if 
the discriminant of p, a homogeneous polynomial of degree rr2 - II in 
the entries of T, is zero (note that p is manic) (Kendig, 1977; Van der 
Waerden, 19.53). It is not hard to show that this polynomial is irreduci- 
ble (Demmel, 1983). Thus we see that if T is complex, fP is a hypersur- 
face. If T is real, IP is still a hypersurface (Arnold. 1971). 

We now need to relate the above condition numbers of T to the distance 
from T to ZP. A slight restatement of a theorem due to Wilkinson states. 

THEOREM 3.4 (Wilkinson, 1972). dist(T, ZP) 5 V? . IJT(IFIIIP. 
Therefore, in terms of K we may write 

$llTlk = 1, then dist(T, ZP) 5 A. 
? 

(3.5) 

Wilkinson’s theorem provides a somewhat weak upper bound on dist(T, 
ZP). The condition for P on the other hand provides a lower bound on 
dist(T, ZP): 

THEOREM 3.5 (Demmel, 1986). dist(T, ZP) 2 j/T[/~/(7 . K(T, P)). 
This result lets us write 

U-llTll~ = 1, then dist(T, ZP) 2 7 . K:T p). (3.6) 

For somewhat stronger results and discussion, see Demmel (1986). 
The phenomenon described above for matrix inversion, polynomial 

zero finding, and eigenvalue calculation is actually quite common in nu- 
merical analysis. It turns out all the above results can be derived from the 
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same underlying principle, that the condition number K satisfies one or 
both of the differential inequalities 

where DK is the gradient of K. The lower bound on 11~~11 implies that the 
upper bound on dist(T, ZZ’), 

dist(T, ZP) 5 m . ycT). 

holds, and the upper bound on ~IDKII implies that the lower bound 

1 

holds. This phenomenon also appears in pole placement in linear control 
theory, Newton’s method, and elsewhere (Demmel, 1986). In the case of 
algebraic functions, one can show that at least for asymptotically large 
condition numbers, differential inequalities of the form 

m . K* 5 ll,!)Kll %  M . K3 

hold, the new upper bound on /DKII yielding the lower bound on dist 
(T, If’) 

1 
dist(T, ZP) 2 2M . K2tTj, 

which is the source of inequality (3.4) above. 
Note also that the set of ill-posed problems is a hypersurface in our 

three examples above. O ther kinds of varieties are possible as well. For 
example, polynomials with at most m distinct zeros form a subvariety of 
the variety of polynomials with at least one multiple zero and have codi- 
mension 2(n - m) (if complex) or n - m (if real) (Demmel, 1983). Sincej- 
tuble zeros are more sensitive than (j - 1)-tuple zeros (Wilkinson, 1965) 
there is a natural hierarchy of sets of ever more ill-posed problems, each 
one forming a subvariety of the previous set. Similar comments apply to 
eigenvalue calculations (j-tuple eigenvalues are more sensitive than (j - 
l)-tuple eigenvalues) and rank-deficient linear least-squares problems 
(problems with higher rank deficiency are more sensitive than ones with 
lower rank deficiency). Unfortunately, not all our results on volumes of 
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tubular neighborhoods of varieties apply as yet to these more general 
varieties. We will discuss these open problems in the next section. 

4. ON VOLUMESOFTUBES 

In this section we state our main volume estimates. Proofs appear 
elsewhere (Demmel, 1987). 

First we consider complex polynomials. The upper bounds in the fol- 
lowing theorem are obtained by generalizing an argument of Renegar 
(1987), who obtained the upper bound for hypersurfaces: 

THEOREM 4.1. Suppose M is a complex, purely 2d-dimensional vari- 
ety in CN. Let f (E) be the fraction of the volume of the unit ball in CN 
which is within distance E 5 1 of M. Then 

fW 5 r(N -2 I(z$(!f)t ,,2) e2N2(N - 1)2N-2d-2 . deg(M) 
(4.1) . $N-d) . (1 + ~42”. 

Zf M is a hypersurface (d = N - l), then this upper bound may be 
improved to 

f(8) 5 e2N3 * deg(M) . E* . (1 + N.Y)~(~-‘). (4.2) 

Zf M passes through the origin, it is also true that 

(1 _ E)2de2(N-d) . T(N - d + 1/2)I’(d + I/2) 
deg(M)G I(N + l/2) 

5 f(E). (4.3) 

Zf M is a hypersurface passing through the origin this lower bound may be 
improved to 

(1 - &)*N-*&* 
N deg(M) S f(E)* (4.4) 

Now we specialize to the case of M homogeneous. In this case the 
upper bound (4.1) may be improved to 

f(E) I e*N*(N - 1)2N-2d-2 * deg(M) * &*cNmd) . (1 + NE)~~. (4.5) 

The lower bound (4.3) may be improved to 
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(1 _ E)2dE2W-d) . 
r(N - d + 1/2)P(d + l/2) 

c7r T(N + l/2) sJ%>. (4.6) 

If M is also a hypersurface, the lower bound (4.4) may be further im- 
proved to 

(1 - 42N-2&2 ~ f(E) 
N (4.7) 

Finally, we have the following asymptotic expression for small E: 

&f(E) = (T) . &g(M) - c2cNed) + o(eZcNed)). (4.8) 

Thus, we have upper bounds, lower bounds, and asymptotic formulas 
all of which only depend on E, N, d, and deg(M). All our expressions are 
proportional to EZ~(+~), and so differ at most only by factors depending on 
the parameters N, deg(M), and d. All these results are new, except for the 
upper bound (4.2) for d = N - 1 (Renegar, 1987). 

These results can be used to give bounds for Prob(dist(p, M) 5 E) when 
M is homogeneous and p is uniformly distributed on the unit sphere in C?“: 

THEOREM 4.2. Suppose M is a complex, homogeneous, purely 2d- 
dimensional variety in CN. Let p be distributed uniformly on the unit 
sphere centered at the origin in CN. Then for d < N - 1 

Prob(dist(p, M) I E) s e2N2(N - 1)2N-2d-2 * deg(M) * a2cNmd) * (1 + NE)~~, 

(4.9) 

(1 - E)2dE2Wd) . I-(N - d + 1/2)I’(d + l/2) 
4Nv7r r(N + l/2) % Prob(dist(p, M) I s), 

(4.10) 
and for asymptotically small E 

Prob(dist(p, M) I: E) = (;“: 1 :) * deg(M) . &2(N-d) + o(E’(~-~)). (4.11) 

For hypersurfaces (d = N - 1) 

(1 - c)~~~~-& 2 Prob(dist(p, M) 5 e) 5 PIN’. deg(M) . E?. (I + N.Y)“~~” 

(4.12) 
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and for asymptotically small E 

Prob(dist(p, M) 5 E) = (N - 1) deg(M)&* + o(E*). (4.13) 

It is estimates (4.12) and (4.13) we shall apply to condition numbers in 
the next section. 

Now we turn to real varieties. The bounds are necessarily looser, since 
a d-dimensional real variety can have an arbitrarily small volume; this is 
in strict contrast to complex varieties, where we can bound the volume 
above and below just in terms of the degree. The next theorem is due to 
Ocneanu: 

THEOREM 4.3 (Ocneanu, 1985). Suppose M is a real, purely d-dimen- 
sional variety in RN. Suppose further that M is the complete intersection 
of the polynomials gl, . . . , gn-d. Let D = max deg(gJ, andf(s) be the 
fraction of the volume of the unit ball in RN which lies within distance E of 
M. Then 

(4.14) 

It appears that Ocneanu’s proof may be able to be extended to give an 
asymptotic formula for f (e), which we state as a 

Conjecture. Suppose M is as in Theorem 4.3. Then for asymptotically 
small 8 

f(c) = vol(M) . ~n-~ * 
Nr(NI2) 

(N _ d),+/Zr((N _ d)/2) + o(EN-dh c4’15) 

where vol(M) is the d-dimensional volume of M. 
Without any assumptions about complete intersection, we can compute 

a lower bound for f (8): 
THEOREM 4.4 Suppose M is a real, purely d-dimensional variety in 

RN. Let vol(M[r]) be the d-dimensional volume of the subset of M within 
distance r of the origin. Then 

vol(M[l - E]) EN-d dI’(d/2)T((d + 1)/2)I((N - d + 1)/2) 
de&W ’ 2?T(d+‘)‘q(N + 1)/2) If(&). 

(4.16) 

Zf M is homogeneous, vol(M[l - E]) may be replaced by (1 - E)~ 
vol(M[ 11). 
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Note that the ratio between the conjectured asymptotic value in (4.15) 
and the lower bound in (4.16) depends only on N, d, and deg(A4). 

As before, we can translate the estimates in the last two theorems into 
estimates on Prob(dist(p, M) I E), wherep is uniformly distributed on the 
unit sphere: 

THEOREM 4.5. Let M be a real, purely d-dimensional homogeneous 
variety in R N. Suppose p is uniformly distributed on the unit sphere in RN. 
Then 

v;;gy;;) . (1 _ E)dEN-d . 
&(d/2)r((d + 1)/2)r((N - d + 1)/2) 

sNdd+w((N + 1)/2) 

4 Prob(dist(p, M) I E). 
(4.17) 

Zf, in addition, M is the complete intersection of N - d polynomials, each 
of degree at most D, then 

Prob(dist(p, M) 5 E) I 2(N - d) ,=$-., (T) * (20~)~. (4.18) 

Zf the conjecture (4.15) is true, then this would yield the following 
estimate for asymptotically small E when M is a complete intersection: 

dI’(N/2) Prob(dist(p, M) 5 8) = WI(M) * ENmd . (N _ +d/2r((N _ d)/2) 

+ 0(&‘-q. (4.19) 

Summarizing these results for the case of a real, homogeneous hyper- 
surface defined by a single polynomial, we have 

WM[11) 
de&W * (I - E)~-‘E . 3 5 Prob(dist(p, M) 5 e) 

(4.20) 

and, for asymptotically small E (if the conjecture (4.15) is true): 

Prob(dist(p, M) 5 C) = vol(M) . E 
(N - l)I(N/2) 

TNi2 + O(E). (4.21) 

It is estimate (4.20) we will use to estimate the distribution of condition 
numbers of real problems. 
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We may explain these theorems intuitively as follows. If M is a d- 
dimensional surface in RN, the dominating term in the expression for the 
volume of the set of points within distance E of M turns out to be (Weyl, 
1939) 

(d-dimensional volume of M) * (N - d)-dimensional 

volume of a unit ball in RNmd) . cNed. (4.22) 

Suppose, for example, M is a straight line of length 1 in R2. Then d = 1, 
N = 2, and the estimate of (4.22) is 1. 2 . e, the area of a rectangle of length 
1 and width 2~ centered on M. It turns out that even if M is curved that as 
long as its radius of curvature everywhere exceeds E, the area of the stripe 
of radius 2.5 centered on M is exactly 21.5. If M is a straight line of length 1 
in R3, (4.22) gives the volume 1 * 7~ * s2 of the right circular cylinder of 
length 1 and radius E centered on M. If M is curved, this formula is still 
asymptotically correct for small E. If M is a square of side 1 in R2, (4.22) 
correctly gives the volume l2 . 2 . E of the rectangular parallelepiped of 
thickness 2.5 centered on M. Again, bending M does not change the as- 
ymptotic correctness of (4.22). In fact, if M is a smooth compact mani- 
fold, for sufficiently small E the volume of the set of points within distance 
E of M is a polynomial in E with leading term given in (4.22) (Weyl, 1939). 

It remains to estimate the d-dimensional volume of M needed in (4.22). 
Here we make use of the fact that M is a variety, for there are formulas 
from integral geometry for estimating the volume of a set M in RN in terms 
of the number of points in M n L, where L is a plane of dimension N - d. 
For varieties, this number is bounded by deg(M). In fact, if M is a com- 
plex homogeneous purely 2d-dimension variety in CN, the 2d-volume of 
the part of M inside the unit ball is exactly deg(M)nN/N! (Thie, 1967). No 
such statement can be made about real varieties, so a formula like (4.4) 
cannot hold for real varieties. 

Open Problems. Ocneanu’s proof of Theorem 4.3 depends on being 
able to express the real variety M as a complete intersection. Not all 
varieties permit such a representation. For example, the 3 by 3 real matri- 
ces of rank at most I forms a variety of codimension 4 but 9 polynomials 
(the determinants of all 2 by 2 submatrices) are needed for its definition. Is 
there a bound for real varieties that does not depend on the property of 
complete intersection? Also, Ocneanu’s bound contains the factor D N-d, 
which by Bezout’s theorem (Van der Waerden, 1953) is a possibly pessi- 
mistic upper bound for deg(M). Is there a bound which depends only 
linearly on deg(M)? More generally, is there an upper bound which de- 
pends linearly on vol(M[l])? 
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All the asymptotic expressions above depend on the contribution to 
f(z) from small neighborhoods of the singular set of M  going to zero. For 
‘complex varieties, the proof of the upper bounds yields this fact. 
Ocneanu’s proof appears to yield it as well, leading us to make conjecture 
(4.15). 

The proof of our lower bounds uses arguments from integral geometry 
(Santalo, 1976) which cannot rule out the possibility that the surface 
“folds over” onto itself deg(M) times, leading to the deg(M) factor in the 
denominator of (4.3) and (4.4). This factor seems unnecessary; can it be 
removed? 

5. COMPUTING THE DISTRIBUTIONS OF CONDITION NUMBERS 

In this section we apply our geometrical estimates of the last section to 
compute the distributions of the condition numbers discussed in Sec- 
tion 3. 

Matrix Inversion. Applying estimates (4.12) and (4.13) to Eq. (3.2) 
yields the following theorem: 

THEOREM 5.1. Let A be a random complex n by n matrix distributed in 
such a way that A/llAll F  is uniformly distributed on the unit sphere. Let 
K(A) = llAl]F * jIA-‘ll. Then 

(1 - 1/x)2”2-2 e2n5(1 + n2/x)2n2-2 
4n4x2 5 Prob(K(A) 2 x) 9 

X2 
(5.1) 

and 

Prob(K(A) 2 x) = 
n(n2 - 1) 

x2 (5.2) 

Remark. The upper bound in (5.1) exceeds the asymptotic value in 
(5.2) by a factor of only about e2n4/(n2 - 1) for sufficiently large x. How- 
ever, even for n = 10, x must exceed about 5300 for the upper bound to 
drop below 1. For n = 100, x must exceed 2.2 * 10’ for the upper bound to 
drop below 1. 

Applying estimate (4.20) to Eq. (3.2) yields 

THEOREM 5.2. Let A be a random real n by n matrix distributed in 
such a way that A/llAll F  is uniformly distributed on the unit sphere. Let 
K(A) = ljAl/F . IIA-‘ll. Then 
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C(1 - 1/X)“2-’ 
X 

5 Prob(K(A) 2 x) I j$ 2 (I) - (G)‘, (5.3) 

where C > 0 is a constant proportional to the volume of the variety of 
singular matrices inside the unit bail. 

Remark. When n = 10, x must exceed 4900 for the upper bound in (5.3) 
to be less than 1. More generally, for large n, x must exceed about 4.93n3 
for the upper bound to be less than 1. One can prove this by noting that 
the upper bound may also be written as 2[(1 + 2nlx)“’ - 11. 

Other sets of interest are matrices of rank at most r < n - I. The 
volumes of these sets can also be estimated from above and below using 
Theorem 4.2, provided we can bound the degree of these varieties. 

Polynomial Zero Finding. Applying estimate (4.12) to inequality (3.3) 
yields the following theorem: 

THEOREM 5.3. Let p be a random complex nth degree polynomial 
distributed in such a way that p/l/pll F is uniformly distributed on the unit 
sphere. Let K(P) = max llpll/lp’(z)l, w h ere the maximum is over all zeros 

of p. Then 

Prob(K(A) 2 x) I 
4e2(n + 1)2(n - l)(l + ti(n + I)/x)~” 

X2 . (5.4) 

Applying estimate (4.20) to inequality (3.3) yields 

THEOREM 5.4. Let p be a random real nth-degree polynomial distrib- 
uted in such a way that p/l(pJJ F is uniformly distributed on the unit sphere. 
Let K(P) be as in Theorem 5.2. Then 

Prob(K(A) ?I x) 5 2 i$ cni’) (25’2(:- ‘)I1 . 

Eigenvalue Calculations. Applying estimate (4.12) to inequality (3.5) 
yields 

THEOREM 5.5 Let A be a random complex n by n matrix distributed in 
such a way that Al(lA/ F is untformly distributed on the unit sphere. Let 
h(A) = ~(2,” I(PmtdI, h w ere the max is over all eigenvalues h(A) of A 

and PI(A) is the projection associated with A(A). Then 

Prob(Kh(A) 2 x) 5 
2e2n5(n - l)(l + V%t2/x)2n2-2 

X2 
(5.6) 
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Applying estimate (4.20) to inequality (3.5) yields 

THEOREM 5.6. Let A be a random real n by n matri.x distributed in 
such a way that AIIwII F  is uniformly distributed on the unit sphere. Let 
K~(A) be as in Theorem 5.4. Then 

Prob(K*(A) 2 X) 5 2 $+ (:) ( 23’2(nz - n))’ . (5.7) 

Applying estimate (4.9) to inequality (3.6) yields 

THEOREM 5.7. Let A be a random complex n by n matrix distributed in 
such a way that A/lwll F  is uniformly distributed on the unit sphere. Let 
o(A) = Ttp Ihd ’ Ihd ’ IlAll F, where the max is over all eigenvalues 

A(A) of A, PA(A) is the projection associated with A(A), and Sk(A) is the 
reduced resolvent associated with h(A). Then 

(1 - 1/x)2”2-* 
196n4x2 I Prob(Kp(A) 2 x) 

One can also prove a lower bound on Prob(&A) 2 x) for real matrices 
of the form C/x, but C is proportional to the volume of the variety of real 
matrices with multiple eigenvalues and lying inside the unit ball, and 
seems difficult to estimate. 

6. PRACTICAL APPLICATIONS AND LIMITATIONS 

In this section we show how to estimate the distribution of the error in 
results computed by finite precision algorithms for the problems we ana- 
lyzed above. The new tool required is backward error analysis (Wilkin- 
son, 1963); using it we show that except in the improbable situation that 
the problem to be solved is close to the set ZP of ill-posed problems, a 
backward stable algorithm will supply an accurate answer. We analyze 
Gaussian elimination this way in Section 6.1. 

Such an analysis assumes problems are distributed uniformly as dis- 
cussed in Section 1. This assumption breaks down in two important situa- 
tions. First, some algorithms produce problems which tend to lie very 
close to the set ZP of ill-posed problems, or which in fact converge to ZP. 
For example, inverse iteration to compute eigenvalues and eigenvectors 
involves solving a sequence of linear equations with increasingly ill-condi- 
tioned coefficient matrices. Another example is the numerical solution of 
differential equations; the resulting matrices are approximations of un- 
bounded operators and are necessarily close to singular. 
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Second, the set of problems representable in a computer (in finite preci- 
sion arithmetic) is necessarily finite and so any distribution we put on this 
set will necessarily be discrete, not continuous as assumed in our pre- 
vious analysis. As long as the discrete points are dense enough to model 
the continuum (this depends on the individual problem), the continuous 
model is relevant. It will turn out, however, that this discreteness ulti- 
mately leads to qualitatively different behavior of algorithms than is pre- 
dicted by the continuous model. We discuss this situation further in Sec- 
tion 6.2. 

Finally, in Section 6.3, we discuss how this theory might be extended to 
the finite precision case and what such an extension would tell us about 
the design both of numerical algorithms and computer arithmetic. In par- 
ticular, we show how it would tell us how many finite precision problems 
we could solve as a function of the extra precision used in intermediate 
calculations. This information would be of use in algorithm and even 
computer hardware design. Accomplishing this extension is an open 
problem. 

6.1. A Paradigm for Analyzing the Accuracy of Finite 
Precision Algorithms 

The paradigm for applying the probabilistic model to the analysis of 
algorithms is as follows: 

(1) Within the space of problems, identify the set ZP of ill-posed ones, 
and show that the closer a problem is to ZP the more sensitive the solution 
is to small changes in the problem. 

(2) Show that the algorithm in question computes an accurate solution 
for a problem close to the one it received as input (this is known as 
“backward stability” (Wilkinson, 1963)). Combined with the result of(l), 
this will show that the algorithm will compute an accurate solution to a 
problem as long as the problem is far enough from ZP. 

(3) Compute the probability that a random problem is close to ZP. 
Using this probability distribution in conjunction with the result of (2) we 
can compute the probability of the algorithm computing an accurate 
result. 

This paradigm is best explained by applying it to matrix inversion: 

(I) The set of matrices ZP which are ill-posed with respect to inver- 
sion are the singular matrices. As discussed in Section 3, the condition 
number 
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measures how difficult the matrix M is to invert, and when /[M[~F = 1 it is 
the reciprocal of the distance to the nearest singular matrix. 

(2) Gaussian elimination with partial pivoting is a standard algorithm 
for matrix inversion and is well known to be a backward stable algorithm 
(Wilkinson, 1963). Backward stability means that when applying Gaus- 
sian elimination to compute the solution of the system of linear equations 
Mx = 6, one gets an answer f which satisfies (M + 6M)Z = 6, where 6M is 
small in norm compared to M. More precisely, let Xi be the ith column of 
the approximation to M-’ computed using Gaussian elimination, where 
the arithmetic operations performed (addition, subtraction, multiplica- 
tion, and division) are all rounded off to b bits of precision. Then Xi is the 
value of the ith column of the inverse of a matrix M + 6Mi where 6Mi is 
small, 

((~M;((F 5 f-(n) . P - I(MI(F, (6.2) 

wheref(n) is a function only of n, the dimension of M (Wilkinson, 1963). 
This last expression can be used to bound the relative error in the com- 
puted solution (Wilkinson, 1963): 

ix,,-&% ~ fi K(M) . f(n) * 2-b 
I 

F - 1 - K(M) -f(n) * 2-b’ (6.3) 

In other words, as long as the bound (6.2) on ll8MillF is not so large that M 
+ 6Mi could be singular, i.e., as long as 

dist(M, ZP) > f(n) * 2-h 9 IlMllF 

or, substituting from (6.1) 

K(M) < 2b/f(n>, (6.4) 

then the relative error in the computed inverse X is bounded, and the 
smaller the value of K(M) the more accurate is the solution. 

(3) Assuming M is complex we can apply Theorem 5.1 (which gives 
the probability distribution of the condition number) to estimate the prob- 
ability that a random matrix can be inverted accurately: 

which, after some rearrangement (and assuming E < I), 
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= Prob K(M) 5 
f(n) . (2 + &)2-h 1 

2 1 - (e%(l + $f(n)(VL + E) * (2~%))2~2-2f2(n)(V5 + &)2) . CT,* . 

This inequality implies that as we compute with higher and higher preci- 
sion (b increases), the probability of getting a computed answer with 
accuracy E goes to 1 at least as fast as 1 - 0 (4-b). Note that the inequality 
only makes sense for 2-h/r small, that is, if the error 2-” in the arithmetic 
is smaller than the error F demanded of the answer. This restriction makes 
sense numerically, since we cannot expect more precision than we com- 
pute with. The restriction also implies that the finite precision numbers 
are sufficiently dense to approximate the continuum, since the radius Y of 
the neighborhood around ZP, r = f(n)(fi + &)2-V&, is much larger than 
the distance between adjacent finite precision points 2-“. This situation is 
depicted in Fig. 1 and discussed in the next section. 

We may use the same kind of paradigm as discussed so far to analyze 
the speed of convergence of an algorithm rather than its accuracy. In this 
case the paradigm is 

(1’) Identify the ill-posed problems ZP. 
(2’) Show that the closer a problem is to ZP, the more slowly the 

algorithm converges. 
(3’) Compute the probability that a random problem is close to ZP. 

Combined with (2’) this yields the probability distribution of the speed of 
convergence. 

This approach has been used by Smale (1981) and Renegar (1987) in 
their average speed analyses of Newton’s method for finding zeros of 
polynomials. 

2-b 

FIG. 1. An Y > 2-b neighborhood of IP 
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6.2. Limitations of the Probabilistic Model 

In this section we discuss limitations to the applicability of our model. 
As mentioned before, the model does not apply in situations where the 
problems tend to be clustered about the ill-posed problems. One such 
example is inverse iteration for computing the eigenvalues and eigenvec- 
tot-s of a matrix: 

xi+, = (A - h;)m’x; 

Ait1 = (Ax;, ,)!k(+, , where Ix{+,1 = max I.x:+,~. 

If A; is a good approximation to the simple eigenvalue A, and xi approxi- 
mates the corresponding eigenvector X, then Ai+] and xi+] will be even 
better approximations to A and X. As hi approaches A, the matrices A - A; 
become increasingly ill-conditioned. Thus, the set of matrices {A - hi} 
being (conceptually) inverted (actually, one solves (A - Ai)Xi+i = xi di- 
rectly) converges to the set ZP of ill-posed problems, and so is far from 
uniformly distributed. This invalidates the assumption of the model, even 
in exact arithmetic. In finite precision arithmetic, inverse iteration works 
very well, even though naive backward error analysis as in Section 6.1 
might lead us to expect total loss of precision. This is because the round- 
ing errors committed while solving (A - hi)xi+l = xi provably conspire to 
produce an error lying almost certainly in the direction of the desired 
eigenvector (Golub and Van Loan, 1983). 

The second way in which the model breaks down depends on the ulti- 
mate discreteness of the finite precision numbers which can be repre- 
sented in a computer. The natural version of a “uniform distribution” in 
this case is simply counting measure. The continuous model is a good 
approximation to counting measure only as long as the finite precision 
numbers are dense enough to resemble the continuum. In Fig. 1, for 
example, the area of the set of points within distance r of the curve ZP is a 
good approximation to the number of dots (finite precision points) within 
distance r of ZP (scaled appropriately). This is true because the radius r of 
the neighborhood of ZP is large compared to the spacing 2-b between dots. 
When r < 2-b on the other hand as in Fig. 2 the area of the set of points 
within distance r of ZP is not necessarily a good approximation of the 
number of dots within r of ZP. For example, if ZP were a straight line 
passing exactly halfway between two rows of dots, there would be no dots 
within distance 2-b-l of ZP. If on the other hand ZP were a straight line 
running along a row of dots, there would be a constant nonzero number of 
dots within distance n of ZP for all q < 2-b. Thus, when the radius of the 
neighborhood of ZP gets smaller than the interdot distance 2-b, the model 
breaks down. 
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FIG. 2. An r < 2-b neighborhood of IP 

Specifically, let us consider matrix inversion. In the continuous model 
the exactly singular matrices form a set of measure zero, so the chance of 
a random problem being singular is zero. Also, there are nonsingular 
matrices arbitrarily close to the set of singular ones, and so of unbounded 
condition number. Consider now the finite (but large) set of matrices 
which can be represented in a computer using finite precision arithmetic. 
Some fraction of this finite set are exactly singular, so in choosing one 
member of this finite set at random (using counting measure) there is a 
nonzero probability of getting an exactly singular matrix. Furthermore, 
the remaining nonsingular matrices have condition numbers bounded by 
some finite value K. Thus, instead of Prob(K(A) r X) decreasing monoton- 
ically to 0 as x increases as in the continuous case, Prob(K(A) 2 x) be- 
comes constant and nonzero for x > K. This is clearly significantly differ- 
ent behavior. It does not, however, invalidate the analysis of Gaussian 
elimination in the last section, because we assumed 2-b < Y, i.e., the 
situation in Fig. 1. 

In the next section we discuss what we could do if we could compute 
Prob(K(A) 1 x) in the discrete case for all X, in particular for x too large for 
the continuous approximation to apply. 

6.3. How to Use the Discrete Distribution of Points 
within Distance E of a Variety 

Before proceeding, we need to say what probability measure we are 
going to put on the discrete set of finite precision points. The last section 
showed that no single distribution is good for all applications, but a uni- 
form distribution remains a neutral and interesting choice. So far we have 
been implicitly using fixed point numbers, in which case assigning equal 
probability to each point (counting measure) gives a uniform distribution. 
For floating point numbers, however, this is no longer appropriate since 
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the floating point numbers are not evenly distributed on the number line. 
Since floating point numbers are much closer together near the origin than 
far away from it (the distance between adjacent numbers is approximately 
a constant times the number), counting measure would assign much more 
probability to equal length intervals near the origin than far away from it. 
A simple way to adjust for this nonuniform spacing is to assign to each 
point M a probability proportional to the volume of the small parallel- 
epiped of points which round to M (i.e., the parallelepiped centered at M 
with sides equal in length to the distance between adjacent finite precision 
points). In the case of fixed point arithmetic, this just reproduces counting 
measure, whereas with floating point arithmetic points near 0 have 
smaller probability than larger points, and intervals of equal length have 
approximately equal probabilities. Actually, the question of the distribu- 
tion of the digits of a floating point number has a large literature (Knuth, 
1969; Hamming, 1970; and Bareiss, 1981) but the discussion in this section 
does not depend strongly on the actual distribution of digits chosen. 

We claim that knowing the probability distribution of the distance of a 
random finite precision problem to the set ZP of ill-posed problems will tell 
us how many finite precision problems we can solve as a function of the 
extra precision used in intermediate calculations. As mentioned before, 
programmers often resort to extra precision arithmetic to get more accu- 
rate solutions to problems which are given only to single precision. This 
extra precision has a cost (in speed and memory) dependent on the num- 
ber of digits carried, so programmers usually avoid extra precision unless 
persuaded otherwise by bad experiences, an error analysis, or paranoia. 
Therefore an accurate estimate of how many problems can be solved as a 
function of the extra precision used would not only help programmers 
decide how much to use but possibly influence hardware designers when 
they decide how much precision to make available in their computer 
systems. 

How does knowledge of this probability distribution tell us how much 
extra precision to use? The paradigm in Section 6.1 tells us how. Consider 
matrix inversion. Formula (6.3) tells us that using fixed point arithmetic of 
accuracy 2-h permits us to compute inverses of matrices to within accu- 
racy E as long as their condition numbers are less than &f(n)@& + 
~)2-~. Suppose we choose our problems at random from the set of matri- 
ces with &bit entries, and let PrObb,,(K(M) 2 X) be the discrete distribu- 
tion function of the condition number. Then 

bounds from below the fraction of 6,-bit matrices we can invert with 
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accuracy E as a function of the number of bits b 2 b. carried in the 
calculation. By examining Nb,(b) as a function of b, one can decide ex- 
actly how much improvement one gets for each additional bit of precision 
b. For example, we know from the previous discussion that there is a G 
such that when b 2 b Nb,(b) is constant and nonzero. Therefore, it clearly 
does not pay to increase b beyond b 

This discussion has assumed so far that the finite precision input is 
known exactly, i.e., that there is no error inherited from previous compu- 
tations or from measurement errors. In general there will be such errors, 
and they will almost always be at least a few units in the last place of the 
input problem. In other words, there already is a ball of uncertainty 
around the input problem with a radius equal to a small multiple of the 
interpoint distance 2-ho. Therefore, it may make no sense to use higher 
precision to accurately solve problems lying very close to ZP when the 
inherited input error is so large that the true answer is inherently very 
uncertain. In such situations programmers sometimes shrug and settle for 
the backward stability provided by the algorithm, even if the delivered 
solution is entirely wrong, because the act of solution has scarcely wors- 
ened the uncertainty inherited from the data, and the programmer de- 
clines to be held responsible for the uncertainty inherent in the data. 
Nevertheless, getting an accurate answer for as many inputs as possible is 
a worthwhile goal, so we will not concern ourselves with possible errors 
made in creating the input matrices. 

We close with another application of the discrete distribution Prob 
,,O(~(M) e x). Consider the rather simple problem of inverting real 2 by 2 
matrices. This problem is small enough that we can exhaustively compute 
ProbbO(K(M) 2 x) for low precision arithmetic. We have done this for b. = 
3, 4, 5, 6, and 7 (all numbers lay between 0 and 1 in absolute value, and 
each fixed point matrix was assigned the same probability). Let P(r) = 
ProbhO(K(M) 2 l/r). We recall that in the continuous case (Theorem 5.2) 
P(r) would be approximately a linear function of I-. For all values of b. 
tested, we observed approximately the behavior of P(r) as shown in Fig. 
3. Surprisingly, we observed linear dependence of P(r) on Y not only for Y 
larger than 2-bo (corresponding to Fig. 1) but for Y quite a bit smaller than 
2-bo (Fig. 2). The fraction of problems within 2-bo of a singular matrix was 
about 21pbo. This linear behavior of P(r) continued until r reached approxi- 
mately 2-2bo, and there the graph of the distribution became horizontal 
and remained so all the way to the origin, intersecting the vertical axis at 
about 22-2bo. This means that all matrices closer to ZP than approximately 
2-2bo were exactly singular. The fraction of matrices which were exactly 
singular was 22-2bo. 

What does this tell us about the use of extra precision? Basically, as 
long as the distribution function P(r) remains linear, it says that for every 
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Prob(dist(M,IP)sr) 

0 ; 2-b 

FIG. 3. Observed probability distribution of the distance r to the nearest singular matrix. 

extra bit of intermediate precision, we can solve half the problems we 
couldn’t solve before. This regime continues until we reach double preci- 
sion, at which point the only problems we can’t solve are exactly singular. 
Indeed, since 

a c-1 [ 1 b d 

we can clearly compute the inverse accurately if we can compute the 
determinant ad - bc accurately. Since a, b, c, and d are given to single 
precision, double precision clearly suffices to compute ad - bc exactly. 

What if the discrete distribution function were similar for matrices of 
higher dimensions, that is, linear for a while and then suddenly horizontal 
when all worse conditioned matrices were exactly singular? It would 
again tell us that for a while, every extra bit of intermediate precision 
would let us solve half the problems we couldn’t solve before. Eventually, 
after enough extra bits, (and for inverting fixed precision II by n matrices, 
this clearly occurs no later than reaching n-tuple precision), all finite 
precision matrices which are not exactly singular could be inverted, and 
more precision would contribute nothing. Thus a programmer (or hard- 
ware designer) could choose the number of bits b with which to compute 
in order to guarantee that the fraction of unsolvable problems is suffi- 
ciently close to its m inimum. Of course, exhaustive evaluation of the 
distribution function is not reasonable for large problems, and estimating 
the distribution function becomes an interesting open question of number 
theory. 
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