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Abstract

Compressive strength of concrete, recognized as one of the most significant mechanical properties of concrete, is identified as one of
the most essential factors for the quality assurance of concrete. In the current study, three different data-driven models, i.e., Artificial
Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Multiple Linear Regression (MLR) were used to pre-
dict the 28 days compressive strength of recycled aggregate concrete (RAC). Recycled aggregate is the current need of the hour owing to
its environmental pleasant aspect of re-using the wastes due to construction. 14 different input parameters, including both dimensional
and non-dimensional parameters, were used in this study for predicting the 28 days compressive strength of concrete. The present study
concluded that estimation of 28 days compressive strength of recycled aggregate concrete was performed better by ANN and ANFIS in
comparison to MLR. In other words, comparing the test step of all the three models, it can be concluded that the MLR model is better to
be utilized for preliminary mix design of concrete, and ANN and ANFIS models are suggested to be used in the mix design optimization
and in the case of higher accuracy necessities. In addition, the performance of data-driven models with and without the non-dimensional
parameters is explored. It was observed that the data-driven models show better accuracy when the non-dimensional parameters were
used as additional input parameters. Furthermore, the effect of each non-dimensional parameter on the performance of each data-driven
model is investigated. Finally, the effect of number of input parameters on 28 days compressive strength of concrete is examined.
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1. Introduction

Scientists have always been concerned about the deplet-
ing natural resources and their scarcity has always been one
of the most important issues they have been struggling
with. Therefore, reducing the impact of this scarcity and
protecting the environment has always been an important
issue to scientists. One of the achievable keys to decrease
this impact may be using construction and demolition
waste (C&D) as replacement to natural resources, espe-
cially in concrete mix designs. C&D waste, specifically the
concrete waste can be turned to recycled aggregates (RA)
which can be used in concrete mixes. Adding the recycled
aggregates to concrete mixes is termed as recycled aggre-
gate concrete (RAC).

Scientists have investigated the effect of RA on charac-
teristics of concrete such as tensile strength, compressive
strength, etc. (Ajdukiewicz and Kliszczewicz, 2002; Tu
et al., 2006; Deshpande et al., 2011; Ryu, 2002). Using
RA as a replacement to natural aggregates would result in
the reduction in the compressive strength of RAC since they
hold attached mortar to the aggregates. In addition, the pre-
vailing criterion for the concrete with RA is the reduction of
the density of RAC because of the water absorption by the
mortar on the aggregates. Furthermore, the workability of
RAC is less than the concrete with conventional aggregates
because of the same explained water absorption. Finally,
replacing the natural aggregates by RA which would lead
to the reduction of the compressive strength might be
because of the weaker connections between mortar and
RCA (Ajdukiewicz and Kliszczewicz, 2002; Deshpande
et al., 2014). Compressive strength of concrete, recognized
as one of the most significant mechanical properties of con-
crete, is identified as one of the most essential factors for the
quality assurance of concrete. Studies have also shown that
the level of the compressive strength of RAC highly depends
on the strength of RA and therefore, the strength of RAC
made of RA with lower strength is less than that of concrete
made of RA with higher strength, and the extent of the
reduction is dependent on many factors, such as the type
of concrete, W/C ratios, moisture percentages, replacement
ratios, etc. (Ajdukiewicz and Kliszczewicz, 2002; Tu et al.,
2006; Ryu, 2002; Khademi et al., 2015a). Accordingly, this
diverse behavior of RA and RAC would lead to widespread
testing to reach more understandings of their performances.
Nevertheless, these different testings are time consuming,
expensive, and require large amounts of materials. There-
fore, in order to estimate the compressive strength of con-
crete, data-driven models which are based on measured
data can be a good replacement for this extensive testing.

Scientists have used data-driven models broadly in the
field of civil engineering. Jiang et al. have found the Artifi-
cial Neural Network capable in predicting the concrete cor-
rosion of sewers (Jiang et al., 2016). Sadowski and Nikoo
(2014) have concluded that the Imperialist Competitive
Algorithm is an efficient technique in estimating the corro-
sion current density of reinforced concrete (Sadowski and
Nikoo, 2014). Khademi and Behfarnia (2016) have con-
cluded that the Artificial Neural Network is a suitable
model in predicting the compressive strength of concrete,
however, Multiple Linear Regression is not capable enough
in the same prediction purposes (Khademi and Behfarnia,
2016). Nikoo et al. have claimed that the Artificial Neural
Network is a talented method in approximating the dis-
placement in concrete reinforcement building (Nikoo
et al., 2012). Padmini et al. have successfully used the
neuro-fuzzy models in determining the ultimate bearing
capacity of shallow foundations (Padmini et al., 2008).
(Khademi and Jamal, 2016) have found the Artificial Neu-
ral Network proficient in estimating the 28 days compres-
sive strength of concrete (Khademi and Jamal, 2016).

The present study proposes three different data-driven
models, i.e., Artificial Neural Network (ANN), Adaptive
Neuro Fuzzy Inference System (ANFIS), and Multiple
Linear Regression (MLR) models to predict the 28 days
compressive strength of concrete using 14 different input
variables. In addition, the performance of data-driven
models with and without the non-dimensional parameters
is explored. Furthermore, the effect of each non-
dimensional parameter on performance of all the presented
data-driven models is investigated. Finally, the effect of
number of input parameters on prediction of 28 days com-
pressive strength of concrete is studied.
2. Data preparation

In the present study, a total of 257 data sets was col-
lected from fresh experiments performed by authors
(Ajdukiewicz and Kliszczewicz, 2002; Tu et al., 2006;
Ryu, 2002; Deshpande et al., 2014; Hansen and Narud,
1983; Rao et al., 2011; Yong et al., 2009; Akbari et al.,
2011; Katz, 2003; Padmini et al., 2002; Dapena et al.,
2010; Fathifazl et al., 2009; Agarwal et al., 2011; Yaprak
et al., 2011; Schoppe, 2011; Zega and Di Maio, 2009;
Duangthidar et al., 2010; Poon et al., 2004; Adnan et al.,
2011; Domingo-Cabo et al., 2009; Kou, 2006; Pereira
et al., 2012; Lu et al., 2004; Gonçalves et al., 2004;
Corinaldesi, 2010; Li, 2011). The parameters were divided
into three categorizations of mandatory elements, non-
dimensional elements, and output elements described in
the following:

(A) Mandatory Elements (Raw Data): The weight per
cubic meter is considered as raw data based on stan-
dard mix design procedures followed worldwide
(Deshpande et al., 2014; Sadrmomtazi et al., 2013).
In this study, the mandatory parameters are
cement (C), natural fine aggregate (NFA), recycled
fine aggregate (RFA), natural coarse aggregates
10 mm (NCA10), natural coarse aggregates
20 mm (NCA20), recycled coarse aggregates 10 mm
(RCA10), recycled coarse aggregates 20 mm
(RCA200), admixture (AD), and water (W).



Table 1
Characteristics of input and output elements.

Parameter Unit Minimum Maximum

Cement (C) (kg/m3) 235 645
Natural fine aggregate (NFA) (kg/m3) 0 1050
Recycled fine aggregate (RFA) (kg/m3) 0 1050
Natural coarse aggregate 20 mm (NCA20) (kg/m3) 0 1508.64
Natural coarse aggregate 10 mm (NCA10) (kg/m3) 0 553
Recycled coarse aggregate 20 mm (RCA20) (kg/m3) 0 1508.64
Recycled coarse aggregate 10 mm (RCA10) (kg/m3) 0 840
Water (W) (kg/m3) 120 358
Admixture (AD) (kg/m3) 0 10.4
Aggregate to cement ratio (A/C) – 2.279 9.327
Water to cement ratio (W/C) – 0.299 1.028
Sand to aggregate ratio (S/A) – 0.149 1.566
Replacement ratio (RR) (%) – 0 100
Water to total materials (W/T) – 11.287 11.553
28 days compressive strength of concrete (N/mm2) 10.319 100.5

Table 2
Number of patterns in each specific range of 28 days compressive strength
of concrete.

Number Compressive Strength of
concrete Range (kg/m3)

Number
of Patterns

1 0–20 15
2 20–40 110
3 40–60 98
4 60–80 28
5 80–100 5
6 100–150 1
Total 257
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(B) Non-dimensional Elements: Any ratio of the manda-
tory parameters is considered as the non-dimensional
elements. In this study, the non-dimensional parame-
ters are water-cement ratio (W/C), sand-aggregate
ratio (S/A), water to total materials ratio (W/T),
replacement ratio of recycled aggregate to natural
aggregate by volume (RR), and aggregate to cement
ratio (A/C).

(C) Output Element (Dependent Parameter): In this
study, the 28 days compressive strength of recycled
aggregate concrete is considered as the output
parameter.

It is worth mentioning that in this study both the cate-
gorization of (A) and (B) are used as input variables and
the categorization (C) is used as output variable in the
data-driven modeling purposes. The range of these param-
eters (Deshpande et al., 2014) is presented in Table 1.

In addition, the number of 28 days compressive strength
patterns in each specific interval is shown in Table 2.

3. Estimation techniques

The prediction models, known as estimators, use the
measured data as input variables in their data-driven mod-
eling. In all the prediction models, there is a step involved
called ‘‘training step” which assists the model to learn from
a collection of training patterns (Khademi and Behfarnia,
2016). In the current study, three different data-driven
models, i.e. Multiple Linear Regression (MLR), Artificial
Neural Network (ANN), and Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS) are used as the prediction models,
each explained briefly in the following.
3.1. Multiple Linear Regression model (MLR)

Regression models generally estimate the level of corre-
lation between the input and output variables and deter-
mine their relationship form. Linear regressions are
mostly fitted by the least squares approach, however, they
might be fitted using other methods, like by minimizing the
‘‘lack of fit” in some other norms or by minimizing the
penalized version of the least squares loss function as in
ridge regression. Basically, the linear regression is divided
into two categorizations of simple and Multiple Linear
Regression. If the aim is to estimate the linear correlation
between one predictor and one criterion variable, the
model is assumed as the simple linear regression (SLR),
however, if the goal is to predict the linear correlation
between two or more predictors and still one criterion vari-
able, the model is called Multiple Linear Regression
(MLR). It is worth mentioning that the MLR is the most
common form of linear regression analysis and every value
of the independent variable is associated with a value of
dependent variable.

Normally, MLR estimates the level of correlation
between one response variable (dependent variable) from
two or more predictors (Independent variable). It should
be emphasized that the MLR explores a correlation in
terms of a straight line that best predicts all the individual
data points containing both target and output variables
(Khademi and Behfarnia, 2016). The general form of a
MLR model is as shown in Eq. (1) Chou and Tsai, 2012;
Bingöl et al., 2013:
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Ŷ ¼ a0 þ
Xm

j¼1

ajX j ð1Þ

where Ŷ is the model‘s output, X j‘s are the independent
input variables to the model, and a0; a1; a2; . . . ; am are par-
tial regression coefficients.
3.2. Artificial Neural Network (ANN)

Artificial Neural Network (ANN) is a data processing
system inspired by the configuration of the human brain.
ANN is basically made of artificial neurons which are iden-
tified as the highly interconnected processing constituents
acting altogether to achieve a specific problem (Khademi
and Jamal, 2016). Generally, ANN is used in complex
states where the customary computational techniques are
not efficient enough to resolve them.

It is worth mentioning that in the ANN model, the rela-
tionship between the predictors and output elements are
produced by the data themselves, and accordingly, the
ANN is talented to learn from examples widely. In addi-
tion, ANN is efficient in incomplete tasks and estimated
outcomes. Therefore, these two considerable characteristics
distinguish ANN from many other data-driven models and
results in usability of high majority of researchers.

The general structure of ANN is shown in Fig. 1. The
network contains different layers of neurons. In order to
predict any measurable functional relation between predic-
tors and output parameters to any desirable accuracy, one
hidden layer comprising a number of nodes is recom-
mended and this recommendation is used in the current
study.

The strength of connections is determined using
weighted connections. These weights are trained in such
as way that assists the ANN model to make the output
variables as close as possible to target values. ANN is com-
prised of three steps of training, validation, and test. The
most important acting of the training step is to minimize
Figure 1. Structure of ANN model.
the error function, mean square value (MSE), as n exam-
ple, presented in Eq. (2) Chen, 2010; Jang, 1993:

MSE ¼ 1

N

XN

i¼1

ðti � aiÞ2 ð2Þ

where ‘‘N” is the number of data, ti are the output values,
and ai are the target value values.

The validation step which is sometimes called the check
step in other data-driven modeling, ANN model, as an
example, is used for the construction purposes and per-
forms independently from the training step. Lastly, the test
step is used to predict the machine algorithm accuracy.

3.3. Adaptive Neuro Fuzzy Inference System (ANFIS)

Adaptive Neuro Fuzzy Inference System (ANFIS) is
identified as a universal estimator for responding to com-
plex problems. ANFIS is a class of adaptive, multi-layer
and feed-forward networks which is comprised of input–
output variables and a fuzzy rule base of the Takagi–
Sugeno type. The fuzzy reasoning mechanism of ANFIS
model with two fuzzy if-then rules for a first-order Sugeno
fuzzy model is expressed as (Mosavi and Nik, 2015):

Rule 1: IF x is A1 and y is B1, THEN f1 = p1x +
q1y + r1.

Rule 2: IF x is A2 and y is B2, THEN f2 = p2 x +
q2 y + r2.

The framework of ANFIS contains five layers, which act
differently from each other; however, the nodes of the same
layer perform similar to each other. The structure of
ANFIS is shown in Fig. 2.

As it is shown in Fig. 2, the structure of ANFIS is com-
prised of five different layers which are explained briefly in
the following:

Layer 1: This layer takes the responsibility for fuzzifica-
tion of input feature values in the range of 0 to 1. The
required values such as membership functions for each ith

node are defined in this layer, shown in Eq. (3):

O1
i ¼ lAi

ðxÞ ð3Þ
where x is the input to node i and Ai is the linguistic label
associated with this node function.

Layer 2: Each rule is a node in the ANFIS by using soft-
min or product to find out the rule matching factor wi. The
incoming signals are multiplied in this layer and sent the
product out, shown in Eq. (4).

wi ¼ lAi
ðyÞ � lBi

ðyÞ; i ¼ 1; 2 ð4Þ
Layer 3: The membership values are getting normalized

in this layer. The formulation of normalized firing strength
for node ith in this layer is shown in Eq. (5).

wi ¼ wi

ðw1 þ w2Þ ; i ¼ 1; 2 ð5Þ

Layer 4: This layer is able to establish the relationship
between the input and output values, shown in Eq. (6).



Figure 2. Structure of ANFIS model with two input variables.
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O4
i ¼ wiðpixþ qiy þ riÞ ð6Þ

where ŵi is the output resulted from layer 3, and {pi, qi, ri}
is the parameter set.

Layer 5: This layer which is also called the de-
fuzzification layer consists of one single node which gener-
ates the summation of all incoming signals from previous
node and results in a single value. In this layer, each rule
output is added to the output layer. Overall output can
be calculated using Eq. (7).

O5
i ¼

X
i
wif i ¼

P
iwif iP
iwi

ð7Þ
4. Methodology

In recent years, researchers have investigated widely on
various types of civil engineering materials, specifically
concrete and cement (Khademi and Jamal, 2016; Nik
et al., 2010; Gandomi et al., 2016; Bahari et al., 2012a;
MATLAB and Statistics Toolbox Release, 2014). The
28 days compressive strength of concrete is assumed as
the standard compressive strength of concrete, and as a
result, in both the engineering decisions and concrete con-
structions, estimating the compressive strength of concrete
is a significant fact (Khademi and Jamal, 2016). In this
study, 257 concrete mix designs were used to estimate the
28 days compressive strength of concrete. Three different
data-driven models, i.e., Multiple Linear Regression
(MLR), Artificial Neural Network (ANN), and Adaptive
Neuro-Fuzzy Inference System (ANFIS) were selected as
the prediction models and the estimation for the compres-
sive strength of concrete has been obtained. The dataset
was divided into two subsets of training and testing for
the MLR model, however, they were divided into three
subsets of training, validation, and testing for both ANN
and ANFIS models. All the data driven modeling have
been developed in MATLAB software (Nazari and
Khalaj, 2012). First, MLR, ANN, and ANFIS models
were compared with each other in case of prediction capa-
bilities. Next, the sensitivity analysis was performed on the
dataset in case of efficiency of each single input parameter
on compressive strength of concrete. Finally, the sensitivity
analysis was performed in case of the efficiency of the num-
ber of input parameters on compressive strength of con-
crete. The performance criterion for comparing the
results is chosen as coefficient of determination (R2), shown
in Eq. (8) Nikoo et al., 2015a:

R2 ¼
Pn

i¼1ðyi � yÞðŷi � ŷÞ� �2
Pn

i¼1ðyi � yÞ2Pn
i¼1ðŷi � ŷÞ2

ð8Þ

where ‘‘ yi” is the experimental strength of ‘‘ith” specimen
‘‘y” is the averaged experimental strength, ‘‘ŷi” is the calcu-

lated compressive strength of ‘‘i” th specimen, and ‘‘ŷ” is
the averaged calculated compressive strength.

Also, the sum of squared errors (SSE) and Mean
squared error (MSE) for all the three models is calculated
and compared with each other. The formula of SSE and
MSE are presented in Eqs. (9) and (2), respectively:

SSE ¼
XN

i¼1

ðxi � xiÞ2 ð9Þ

where n is the number of the specimens, xi is the measured
compressive strength and xi is the predicted compressive
strength.
4.1. Comparison of MLR, ANN, and ANFIS models

In order to compare the MLR, ANN, and ANFIS mod-
els, 14 different concrete mix parameters have been chosen
as input variables. These input parameters are divided into
two categorizations of mandatory and non-dimensional
elements. Mandatory parameters include cement (C), natu-
ral fine aggregate (NFA), recycled fine aggregate (RFA),
natural coarse aggregates 10 mm (NCA10), natural coarse
aggregates 20 mm (NCA20), recycled coarse aggregates
10 mm (RCA10), recycled coarse aggregates 20 mm
(RCA200), admixture (AD), and water (W), and the non-
dimensional parameters include water-cement ratio (W/
C), sand-aggregate ratio (S/A), water to total materials
ratio (W/T), replacement ratio of recycled aggregate to nat-
ural aggregate by volume (RR), and aggregate to cement



Figure 3. Relationship between the measured and predicted compressive
strength of the test step of the MLR model.
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ratio (A/C). Following, the performance of each expressed
data-driven model in predicting the 28 days compressive
strength of concrete is presented.

4.1.1. Multiple Linear Regression model (MLR)

In the MLR model, the data are divided into two subsets
of training and test. The proportions of training and testing
are characterized based on the fact that the general struc-
ture of the model is constructed with respect to the training
data set. Therefore, the amount of data in the training set
plays a significant role. The total number of specimens was
equal to 257 in which 85% of them (i.e. 218 specimens) were
chosen for the training step, and 15% of them (i.e. 39 spec-
imens) were selected for the test step. Fig. 3 shows the rela-
tionship between the measured and predicted compressive
strength of the MLR model for the test step.

As it is shown in the figure, the R2 value of the test step
in MLR model is determined as 0.6085. In addition, the
SSE and MSE are calculated as 3880.67 and 99.504, respec-
tively. To conclude, MLR model did not show the high
level of capability in predicting the 28 days compressive
strength of concrete. This might be due to the fact that
there is nonlinear relationship between the studied param-
eters and MLR model is mostly able to find out the linear
relationship between the response and predictor variables.

4.1.2. Artificial Neural Network model (ANN)

In the ANN model, the data are divided into three sub-
sets of training, validation, and test. The proportions of
training, validation, and testing are characterized based
on the fact that the general structure of the model is con-
structed based on the training data set. The total number
of specimens were equal to 257 in which 70% of them
(i.e. 179 specimens) were chosen for training step, 15% of
them (i.e. 39 specimens) were selected for the validation
step, and 15% of them (i.e. 39 specimens) were selected
for the test step. In addition, the sigmoidal tangent func-
tion was chosen for hidden nodes. Different algorithms
were tried to find the most suitable one, and among all of
them, the Levenberg–Marquardt (LM) algorithm was
selected. The ANN model was tested only with one hidden
layer. Furthermore, in order to approximate the number of
hidden nodes in the hidden layer, the experimental formula
shown in Eq. (10) was used Sajedi and Huang, 2015a.

NH <¼ 2N 1 þ 1 ð10Þ
In which NH is the maximum number of nodes in the

hidden layer and N1 is the number of inputs. Therefore,
in this study, based on the number of input variables which
was equal to 14, the maximum number of nodes in the hid-
den layer was chosen as 29. The structure of the ANN
modeling in Matlab environment (Nazari and Khalaj,
2012) with 14 input parameters, 29 hidden nodes in the hid-
den layer, and one output parameter [14:29:1:1] is shown in
Fig. 4.

Figs. 5 and 6 show the relationship between the mea-
sured and predicted compressive strength of the MLR
model for the training and validation steps, respectively.
R2 is a statistical estimation to show how close the mea-
sured and predicted values are to each other. As shown
in the figures, in both the training and validation step,
the model presents desirable results in case of R values.

In addition, in order to determine the performance of
the model, the coefficient of determination (R2) is evaluated
for the test step, shown in Fig. 7.

As shown in the Fig. 7, the coefficient of determination
for the testing of the ANN model is determined as
R2 = 0.9185. In addition, the SSE and MSE are determined
as 770.94 and 19.77, respectively. To conclude, the ANN
model is efficient in estimating the compressive strength
of concrete, as compared to MLR.

4.1.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

In this study, the ANFIS modeling was performed in
Matlab software and the proportions of training, valida-
tion (check), and testing were selected the same as the ones
selected for ANN modeling. Fig. 8 shows the measured and
predicted data for 28 days compressive strength of concrete
for the training step. Fig. 8 demonstrates good coincidence
of target and output data which indicate the capability of
the ANFIS model.

In addition, Fig. 9 shows the relationship between the
measured and predicted compressive strength for the test-
ing of the ANFIS model. The coefficient of determination
(R2) shows the level of capability of the ANFIS model in
predicting the 28 compressive strength of concrete.

As it is shown in the figure, the coefficient of determina-
tion for the test step of the ANFIS model is determined as
R2 = 0.9075. In addition, the SSE and MSE are determined
as 992.67 and 25.45, respectively. To conclude, the ANFIS
model is found to be capable in estimating the compressive
strength of concrete with satisfactory performance.

4.1.4. Comparison of results of MLR, ANN, and ANFIS

In recent years, scientists have performed different inves-
tigations on various types of civil engineering materials,
especially concrete and cement (Sajedi and Huang, 2015b;
Khademi et al., 2015b; Bahari et al., 2016, 2012b;



Figure 4. Structure of ANN model in Matlab environment with 14 input parameters, 29 hidden nodes in the hidden layer, and one output parameter.

Figure 5. Relationship between the measured and predicted compressive
strength of the training step of the ANN model.

Figure 6. Relationship between the measured and predicted compressive
strength of the validation step of the ANN model.

Figure 7. Relationship between the measured and predicted compressive
strength of the test step of the ANN model.
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Hawkins et al., 2012; Nikoo et al., 2015b; Vu-Bac et al.,
2015). The 28 days compressive strength of concrete is
assumed as the standard compressive strength of concrete,
and therefore, in both the engineering decisions and con-
crete constructions, estimating the compressive strength
of concrete is a significant fact. In this paper, the perfor-
mance of MLR, ANN, and ANFIS on predicting the
28 days compressive strength of concrete based on coeffi-
cient of determination (R2) and the sum of squared errors
(SSE) is studied. The higher values of R2 imply the higher
capability of the model in prediction purposes. The values
of R2 and SSE for all the three models are shown in
Table 3.

As it is illustrated in the Table, R2 and SSE values act
inversely. ANN model has the higher value of R2 as com-
pared to ANFIS and MLR. Therefore, ANN model is
found to be the most efficient model in predicting the 28
compressive strength of concrete.

In addition, according to the table, it can be concluded
that both the ANN and ANFIS models are capable enough
in predicting the 28 days compressive strength of concrete.
However, ANN outperforms ANFIS in the same prediction
purposes. On the other hand, MLR model is found to be
not reliable enough in predicting the 28 days compressive
strength of concrete. The higher accuracy of ANN and
ANFIS models in comparison to the MLR model may be
due to the nonlinear relationship between the parameters
which can be presented better by Ann and ANFIS. Nor-
mally, the MLR is a suggested model for proposing the pre-
liminary mix design, and for higher accuracy necessities, the
ANN and ANFIS models are recommended.

4.2. Sensitivity analysis

According to (Vu-Bac et al., 2014) sensitivity analysis
(SA) is the investigation of how much model output
parameters are influenced by changes in model input



Figure 8. Comparison between the ‘‘Target” and ‘‘Output” parameters for ‘‘Training” step in ANFIS model.

Figure 9. Relationship between the measured and predicted compressive
strength of the test step of the ANFIS model.
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parameters. In this study, the sensitivity analysis is per-
formed on the data using ANN and ANFIS models, which
were proved capable enough in the prediction purposes in
the last section. In this research, the sensitivity analysis is
performed from two different sides of views; (1) Sensitivity
analysis based on efficiency of each individual input param-
eter on the output value, and (2) Sensitivity analysis based
on efficiency of number of input parameters on the output
value. Both are discussed comprehensively in the following.
Table 3
R2 and SSE and MSE values for MLR, ANN, and ANFIS models.

Data-driven model Coefficient of determination (R2)

MLR 0.6085
ANN 0.9185
ANFIS 0.9075

Table 4
Characteristics of ANN and ANFIS models based on efficiency of each indiv

Input parameter

C, NFA, RFA, NC20, NC10, RCA20, RCA10, AD, W
C, NFA, RFA, NC20, NC10, RCA20, RCA10, AD, W, A/C
C, NFA, RFA, NC20, NC10, RCA20, RCA10, AD, W, S/A
C, NFA, RFA, NC20, NC10, RCA20, RCA10, AD, W, W/T
C, NFA, RFA, NC20, NC10, RCA20, RCA10, AD, W, R/R
C, NFA, RFA, NC20, NC10, RCA20, RCA10, AD, W, W/C
4.2.1. Sensitivity analysis based on efficiency of each

individual input parameter on the output value

In this section, the sensitivity analysis is performed
based on the effect of each individual non-dimensional
input parameter on the output value. In other words, in
order to understand the correlation of each input parame-
ter with the output parameter using ANN and ANFIS
models, ANN1, and ANFIS1 were constructed based on
the raw data as their input parameters. In addition, in
ANN2 and ANIS 2, (S/A) was added as an additional
parameter to the already existing ones in ANN1 and
ANFIS1. Therefore, the effect of (S/A) on the prediction
accuracy of the model was investigated. In the same way,
all the other non-dimensional elements i.e. (W/C), (W/T),
(A/C), (R/R) were added to ANN1 and ANFIS 1 individ-
ually and constructed in a separate network. The details of
these ANN and ANFIs models are shown in Table 4.

4.2.1.1. Sensitivity analysis using ANN model. Figs. 10–15
show the relationship between the target and output com-
pressive strength of ANN1 to ANN6, respectively, for both
the training and validation steps. According to these fig-
ures, the performance of ANN1 to ANN6 is shown based
on correlation coefficient (R).
Sum of squared errors (SSE) Mean squared error (MSE)

3880.67 99.5043
770.94 19.7676
992.67 25.4530

idual input parameter.

ANN model ANFIS model

ANN1 ANFIS1
ANN2 ANFIS2
ANN3 ANFIS3
ANN4 ANFIS4
ANN5 ANFIS5
ANN6 ANFIS6



Figure 10. Relationship between the target and output values for training and validation steps in ANN1.

Figure 11. Relationship between the target and output values for training and validation steps in ANN2.

Figure 12. Relationship between the target and output values for training and validation steps in ANN3.
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In addition, the results of the sensitivity analysis for
ANN for test step based on coefficient of determination
(R2), the sum of squared errors (SSE), and the mean
squared error (MSE) are shown in Table 5.
As it is shown in the table, when SA and RR were added
as non-dimensional parameters (ANN3 and ANN5) to the
model with just raw data (ANN1), the accuracy of estimat-
ing the 28 days compressive strength increases. On the



Figure 13. Relationship between the target and output values for training and validation steps in ANN4.

Figure 14. Relationship between the target and output values for training and validation steps in ANN5.

Figure 15. Relationship between the target and output values for training and validation steps in ANN6.
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other hand, adding other non-dimensional parameters like
A/C, W/T, and W/C (ANN2, ANN4, ANN6) to the model
with raw data (ANN1) has an inverse impact on the accu-
racy of estimating the 28 days compressive strength of con-
crete which might be due to the duplication of the
information.



Table 5
Values of R2, SSE, and MSE for Test Step of ANN1 to ANN6.

Model number Coefficient of determination (R2) Sum of squared errors (SSE) Mean squared error (MSE)

ANN1 0.9086 987.1835 25.3124
ANN2 0.9059 1023.276 26.23785
ANN3 0.9132 981.5367 25.16761
ANN4 0.9050 1036.297 26.57172
ANN5 0.9151 959.39 24.59974
ANN6 0.9009 1091.0940 27.97677

Figure 16. Relationship between the measured and predicted compressive
strength of the test step of the ANFIS1 model.

Figure 17. Relationship between the measured and predicted compressive
strength of the test step of the ANFIS2 model.

Figure 18. Relationship between the measured and predicted compressive
strength of the test step of the ANFIS3 model.

Figure 19. Relationship between the measured and predicted compressive
strength of the test step of the ANFIS 4 model.

Figure 20. Relationship between the measured and predicted compressive
strength of the test step of the ANFIS5 model.

Figure 21. Relationship between the measured and predicted compressive
strength of the test step of the ANFIS6 model.
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Table 6
Values of R2, SSE, and MSE for Test Step of ANFIS1 to ANFIS6.

Model number Coefficient of determination (R2) Sum of squared errors (SSE) Mean squared error (MSE)

ANFIS 1 0.9004 1095.052 28.07826
ANFIS 2 0.8996 1109.002 28.43595
ANFIS 3 0.9027 1020.8090 26.17459
ANFIS 4 0.8992 1116.678 28.63277
ANFIS 5 0.9031 1018.63 26.11872
ANFIS 6 0.8987 1130.014 28.97472

Figure 22. Coefficient of Determinations for the test steps of ANN1 to
ANN6.

Figure 23. Coefficient of Determinations for the test steps of ANFIS1 to
ANFIS6.

Table 7
Characteristics of ANN and ANFIS models based on efficiency of number of input parameters on coefficient of determination.

Input parameter ANN model ANFIS model

C, NFA, RFA, NC20, NC10 ANN7 ANFIS7
C, NFA, RFA, NC20, NC10, RCA20 ANN8 ANFIS8
C, NFA, RFA, NC20, NC10, RCA20, RCA10 ANN9 ANFIS9
C, NFA, RFA, NC20, NC10, RCA20, RCA10, AD ANN10 ANFIS10
C, NFA, RFA, NC20, NC10, RCA20, RCA10, AD, W ANN11 ANFIS11
C, NFA, RFA, NC20, NC10, RCA20, RCA10, AD, W, S/A ANN12 ANFIS12
C, NFA, RFA, NC20, NC10, RCA20, RCA10, AD, W, RR ANN13 ANFIS13

Figure 24. Coefficient of determinations for the test steps of ANN7 to
ANN13.

Figure 25. Coefficient of determinations for the test steps of ANFIS7 to
ANFIS13.
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4.2.1.2. Sensitivity analysis using ANFIS model. Figs. 16–21
show the relationship between the target and output com-
pressive strength of ANFIS1 to ANFIS6, respectively, for
the test step. According to these figures, the performance
of ANFIS1 to ANFIS6 is shown based on coefficient of
determination (R2).

In addition, the results of the sensitivity analysis of
ANFIS for the test step based on coefficient of determina-
tion (R2), the sum of squared errors (SSE), and the mean
squared error (MSE) are shown in Table 6.

As it is shown in the table, when the SA and RR were
added as non-dimensional parameters (ANFIS3 and
ANFIS5) to the model with just raw data (ANFIS1), the
accuracy of estimating the 28 days compressive strength
increases. On the other hand, adding other non-
dimensional parameters like A/C (ANFIS2), W/T
(ANFIS4), and W/C (ANFIS6) to the model with raw data
(ANFIS1) has an inverse impact on the accuracy of esti-
mating the 28 days compressive strength of concrete. This
inverse impact on the accuracy of the result might be due
to the fact that adding A/C, W/T, and W/C to ANFIs1
would result in the duplication of the information.
4.2.1.3. Results and discussion. Figs. 22 and 23 show the
coefficient of determination of constructed ANN and
ANFIS models, respectively. It is worth mentioning that
all these models are constructed to investigate the efficiency
of each individual input parameter on the output value.

As it is shown in the figures, adding SA and RA to the
model with just the raw data would lead to increase in the
accuracy of predicting the 28 days compressive strength of
concrete. However, adding A/C, W/T, and W/C to the
model with just the raw data would lead to decrease in
the accuracy of estimating the compressive strength of con-
crete. This might be due to the fact that adding A/C, W/T,
and W/C to raw data would lead to the duplication of
information which would result in the reduction of the
accuracy of predicting the 28 days compressive strength
of concrete.

In addition, comparing all the ANFIS and ANN mod-
els, it is illustrated that performance of ANN model is
more satisfactory in predicting the 28 days compressive
strength of concrete in comparison to ANFIS in terms of
coefficient of determination.
4.2.2. Sensitivity analysis based on efficiency of number of
input parameters on the output value

As it was investigated, adding A/C, W/T, and W/C to
the already existing raw data has a negative impact on
the coefficient of determination. Therefore, in this part, in
order to investigate the effect of the number of input
parameters on the coefficient of determination, the raw
data and the non-dimensional parameters which had posi-
tive impact on the coefficient of determination, i.e., RR and
S/A are used as input parameters in this part. Different
ANN and ANFIS models have been constructed to inves-
tigate the effect of number of input parameters on the coef-
ficient of determination, shown in Table 7.

The coefficient of determination (R2) for the test step of
all the presented ANN and ANFIS models in Table 7 are
shown in Figs. 24 and 25, respectively.

As it is shown in the figures, when the number of input
variables increase, the coefficient of determinations
increase. In other words, the more the number of input
variables are, the more accurate the coefficient of determi-
nations would be. It is worth mentioning that all these
input variables should be independent from each other to
have positive impact on the coefficient of determinations.

5. Conclusion

In this paper, three different data driven models, i.e.,
Artificial Neural Network (ANN), Adaptive Neuro-
Fuzzy Inference System (ANFIS), and Multiple Linear
Regression (MLR) were used to predict the 28 days com-
pressive strength of recycled aggregate concrete (RAC).
The following outcomes have been taken out from this
research:

(1) MLR model with R2 = 0.6085, SSE = 3880.67, and
MSE = 99.5043 was found not to be efficient enough
in predicting the 28 days compressive strength of con-
crete. This may be because of the nonlinear relation-
ship between the studied elements and MLR model is
mostly able to find out the linear relationship between
the input and output variables.

(2) ANN model with R2 = 0.9185, SSE = 770.94, and
MSE = 19.7676 was found to be capable in estimat-
ing the 28 days compressive strength of concrete.

(3) ANFIS model with R2 = 0.9075, SSE = 992.67, and
MSE = 25.4530 was found to be talented in approxi-
mating the 28 days compressive strength of concrete.

(4) ANN and ANFIS models were found to be efficient
in predicting the 28 days compressive strength of con-
crete, however MLR was found not to be capable
enough in the same predicting purposes. In other
words, MLR model is better to be used for prelimi-
nary mix design of concrete, and ANN and ANFIS
are recommended in the mix design optimization
and in the case of higher accuracy requirements.
The advantage of ANN and ANFIS might be due
to the fact that the relationship between the studied
variables is nonlinear and these two models are more
capable in determining the nonlinear relationship
between the response and predictor variables.

(5) Although both the ANN and ANFIS models are cap-
able enough to estimate the 28 days compressive
strength of concrete, ANN was found more efficient
than ANFIS.

(6) Adding non-dimensional parameters of SA and RA
to the model with just the raw data would lead to
increase in the accuracy of predicting the 28 days
compressive strength of concrete.
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(7) Adding non-dimensional parameters of A/C, W/T,
and W/C to the model with just the raw data would
lead to decrease in the accuracy of estimating the
compressive strength of concrete. This might be due
to the fact that adding A/C, W/T, and W/C to raw
data would lead to the duplication of information
which would result in the reduction of the accuracy
of predicting the 28 days compressive strength of
concrete.

(8) Increase in the number of independent variables
would result in an increase in the accuracy of the
model.
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