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I. INTRODUCTION 

In two earlier papers [l, 21 we have derived various conditions that must 
be satisfied by a curve if it is to be a solution of a variational problem. In [l] 
we considered mainly the classical problem of Lagrange. In [2] we studied 
the problem of Mayer and investigated the conditions implied by the intro- 
duction of inequality constraints on either the shape of the solution curve 
(decision variable constraints) or the region in which it could lie (state 
variable constraints). In this paper we shall discuss the numerical solution 
of variational problems of both the conventional and inequality-constrained 
types. We shall outline briefly what, until recently, has been the usual 
approach. Then we shall consider a gradient technique that has proved very 
successful in practice. This approach is known to a few practitioners of the 
numerical art such as Kelley [3] and Bryson [4]. Our derivation, using essen- 
tially the same concepts and techniques of dynamic programming that we 
employed in ref. 1 and 2, is both new and simple. We conclude this paper 
with a discussion of the numerical solution of a variant of the classical 
brachistochrone problem where a state variable inequality constraint has 
been introduced but for which the analytic solution is still known. 

We shall assume that the reader is familiar with such dynamic program- 
ming terms as “state variable,” “decision variable,” “optimal return func- 
tion,” etc., that were introduced in our two previous papers and also with 
the different Lagrange multiplier relationships that hold on and off the 
boundary, as derived in [2]. 

II. THE CONVENTIONAL APPROACH 

Analysis of variational problems invariably leads to sets of simultaneous 
nonlinear differential equations (the Euler equations and the kinematic 
equations of the problem). Almost invariably one is faced with the problem 
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of finding a solution satisfying mixed boundary conditions-some variables 
(usually state variables) being known initially and others (usually a mixture 
of state variables and Lagrange multipliers) being known at the final point. 

The usual approach, see for example [5], involves a process of guessing 
the unknown initial values of the Lagrange multipliers and numerically 
integrating the set of nonlinear differential equations. When the final values 
of the variables are not as specified, the guessed initial values are adjusted 
with the aim of correcting the wrong final values. If all goes well, each incor- 
rect guess contributes information about the effects of initial multipliers 
on the final values and the process converges to the solution. 

One can think of this process as one involving a successive approximation 
to the problem, since at each step one determines the optimal solution to an 
unwanted problem-a solution with the wrong final values for states and 
multipliers. The solutions do represent optimal trajectories to the final 
state variables that they yield. Optimistically we suggest the name “successive 
approximation to the problem” for this technique, in the hope that its “con- 
ventional” title is transient and will die out in time. This name also has the 
merit of accentuating the contrast with the approach we shall advocate below 
and call “successive approximation to the solution.” 

Experience, rather than mathematical analysis, seems to condemn the 
problem-approximation approach. Many attempts in a variety of problem 
areas have uncovered unsuspected numerical instabilities which lead to great 
sensitivity to initial value changes and have stymied convergence. Minute 
changes in the initial value of guessed multipliers lead to wildly fluctuating 
solution curves, and successive improvement of the solution rapidly gives 
way to successive, but not often successful, modification of the procedure. 
At best, the technique must be classified as art rather than science, and one 
readily turns to a computational algorithm that avoids the instabilities that 
stem from the simultaneous integration of the physical equations and the 
Euler equations. 

III. THE CONSTRAINED PROBLEM 

If one considers constrained state variable problems of the type discussed 
in [2], one is confronted by conditions necessary for optimality specified not 
only at the beginning and end of the solution curve but also at intermediate 
points where the solution joins or leaves a boundary. 

Consequently, one is faced with the problem of guessing many multipliers 
that yield a curve satisfying many conditions specified at various points of the 
trajectory. But the manner in which these numbers must be guessed makes 
matters even worse. One would have to discover experimentally first of all 
the subset of initial multipliers that leads to curves that satisfy the corner 
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conditions at the point of intersection of optimal curve and boundary. Then 
one would have to search this subset for that set of initial multipliers that, 
in conjunction with more unknowns guessed at the point of departure from 
the boundary, satisfied the final conditions of the problem. 

This procedure would then yield a relative extremal, if such exists, con- 
sisting of a free interior curve, a portion of the boundary, and then a free 
curve. If the optimal curve contained several different segments of the 
boundary the process would be even more complex. This hierarchical guessing 
game is clearly unplayable in an unstable environment of equations that 
stymies numerical solution of even unconstrained problems. 

Consequently, we discard the concept of successive approximation to the 
problem and turn to a technique of successive approximation to the solution. 

IV. A GENERAL PROBLEM 

To make precise what will follow, let us now state a particular variational 
problem. We shall try to steer a course between triviality and complete 
generality. The reader will immediately realize that the technique we shall 
present can be generalized in many ways. 

Suppose that we wish to minimize a function 

of the state variables yl, --, yn and time t at some unspecified future time T, 
where T is the first time that a certain “stopping relation” 

NYl, ***9 yn, t> = 0 

is satisfied. The y’s are determined by their given initial values 

and the difference equations 

Y& + 4 = y&) + &(Yl, *-*, yn, t, 4 Ll i = 1, -*a, n (4.4) 

where z(t) is the decision variable to be chosen optimally. 
That is, we wish to choose the sequence of numbers (zk} where xk = z(Kd) 

such that the state variables yi developed with time so that we encounter 
the stopping relation $ = 0 with minimum 4. 

This is a problem of the Mayer type. We have taken the kinematic equa- 
tions (4.4) to be difference, rather than differential, equations since digital 
computers operate discretely anyway. Minimum time problems can be 
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considered to be special cases of the above problem where + = t. Also, 
if the final time T is required explicitly to equal TF, then 4 = t - TF = 0 
is the stopping condition. The important case where auxiliary conditions 
Bj = 0 are required at the endpoint (hence # = 0 is just one of several final 
conditions) will be considered subsequently. Finally, to avoid treating t as a 
special variable in what is to follow we shall, with no loss of generality, let 

and 
Y -t n+1 - (4.5) 

B - 1. n+1 - (4.6) 

V. SUCCESSIVE APPROXIMATION TO THE SOLUTION 

Our program for solution is the following. We shall guess a presumably 
nonoptimal decision sequence {zk}. By simple reasoning we shall derive a set 
of recurrence relations that can be used to evaluate the effect of a small 
change in the decision sequence. We shall then use this information about the 
effect of decision changes to generate a new, improved, sequence of decisions. 
We then evaluate the effect of changes in the new sequence and continue this 
iterative process until no further improvement is possible. 

Each successive solution we obtain will be feasible for the problem, but 
not optimal. This is in contrast with the conventional approach which 
generates a sequence of optimal, but not feasible, curves. 

We begin by guessing a presumably nonoptimal sequence of decisions 
{+} where xk = z(kd) and compute the curve generated by these decisions 
in conjunction with Eq. (4.3) and (4.4). 

We define the nonoptimal return function 

f(Yl, ***, yn+r) = The value of 4 at stopping condition Z/ = 0 
where we start in state yr, ***, yfl+r and use the 
guessed policy {z~}. (5.1) 

The function f is immediately seen to satisfy the recurrence relation 

f(rl, ‘**3 Yn+J =f(r1 + g,4 “‘7Yn+1 +gn+,q (5.2) 

where the g’s are evaluated using the guessed {z~} and associated trajectory. 
In order to discover the first order effect of a change in the decision variable 

at time t we seek to evaluate af/i?zlt w h ere this notation means af/& evaluated 
in terms of the state and decision variables at time t. 

By partial differentiation of (5.2) with respect to x we see that 

(5.3) 
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To evaluate this expression we see that we need to know af/Z~~,,+,. A 
recurrence relation for that quantity is obtained by partial differentiation 
with respect to yj of (5.2) 

Both Eq. (5.3) and (5.4) have obvious verbal interpretations. Equation (5.3) 
states that the rate of change of f with respect to x at time t equals the 
rate at which the state of the system at time t + d changes as z varies multi- 
plied by the rate at whichf changes as the state of the system changes at time 
t + d. Equation (5.4) adds the change inf due to the effect of a change in yc 
on the gi to the direct effect of the change in yi(t) on yi(t + d) to obtain the 
net change in f. 

Equation (5.4) is seen to be the discrete analogue of the Multiplier Rule 

d af n+l af ag. --= - 2 -2 
dt ayj i=l aYi aYj 

j = 1, *a’) ?z. + 1 (5.5) 

derived in [l]. If aflaz = 0 no improvement is possible and the nominal 
curve is optimal. This observation leads to the optimality condition 
derived in [l]. 

We now have two ordinary recurrence relations, (5.3) and (5.4), that permit 
us to evaluate the effect of a change in z at any time upon the final objective 
function 4. We determine the boundary conditions for the recurrence 
relations by observing that a change in a state variable at the final time T has 
two effects, the immediate change in $ and the change in 4 due to the change 
in the final time determined by 4 = 0. Applying this reasoning we have 

We have derived, by two simple differentiations, expressions evaluating 
the first order effect of a decision change at any time upon the final value of 4. 
These results can be thought of as “influence functions,” or adjoint equa- 
tions, and are usually derived from theorems concerning the representation of 
solutions of linear differential equations. 

The manner in which these results can be used most efficiently for the 
successive improvement of a nonoptimal solution is largely an experimental 
matter in the realm of numerical analysis. In the following section we shall 
present one seemingly very efficient way of using these results due to Bryson. 
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VI. THE MEANS OF IMPROVEMENT 

We postulate the rule 

&WV(~) = %ld(t) + ax(t) (6.1) 

for adjusting x and seek an expression for 6x. We start by adopting the reason- 
able policy (there are alternatives) of changing z at each time t proportionally 
to the quantity 

evaluated at time t. That is, where the potential payoff rate afi8z is greater 
we will act more decisively. Writing 

(6.2) 

where K is an as yet undetermined constant of proportionality, and 
recognizing that since we are considering only first order effects, the total 
change in + is the sum of the changes during each time interval, 

(6.3) 

where LI+ is the change in the final value of 9 due to the changes of Sz(t) 
in z(t) at all times 0 < t <_ T. The summand in the expression for A$ is 
easily computable along a given trajectory by means of the recurrence 
relations (5.3) and (5.4). 

If we desire an improvement of @ in the value of 4, we choose 

K= a 
(6.4) 

and use, for the next iteration, the new decision function given by 

I~~I,,, %I,1 @ 
&m(t) = %ld(t) + (6.5) 
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We would be well advised to seek only a modest improvement K+ at 
each successive iteration since our analysis is first order and only accurate 
for small changes. 

Let us now introduce some notation and recapitulate results before 
deriving successive approximation techniques for more complicated pro- 
blems. We shall write here and throughout hUz(4) for afiayi, remembering 
that h,l($~) can be interpreted as the effect of a change in yi on the value of + 

at the final time. For CT:; (afiay,) (agil&) we write A,(+). In this notation 
the technique of successive improvement is 

(1) Guess z(t). 
(2) Integrate the equations of motion (4.4). 
(3) Evaluate X,i(+) at the final time T by means of (5.6). 
(4) Determine A,<($) along the nominal trajectory by backwards recursion 

of (5.4) and simultaneously compute A,(+) and CT(X,(+))2d from (5.3). 
(5) Determine z,,~ for a specified small @ by (6.5). 
(6) Return to step (2). 

Suppose now that an additional relationship 

qy1, ***, Yn+d = 0 (6.6) 

must be satisfied at the stopping time. The same arguments as in the prece- 
ding paragraphs allow us to compute the influence of a change in z on the 
final value of 0 by means of the formulas 

&j(e) 1 = 1% C&(e) I,,) ($$I,) 1 d + h,(e) It+A j = 1, *a., n + 1 
t i=l 

(6.7) 

) (* / ) W3) 
t+A t 

(6.9) 

We now let 6s take the form 

sz = ~,w4 + K,w) (6.10) 

and conclude, from linearity, that 

dl$ = 2 A,($) d 62 
t=o 

(6.11) 

(6.12) 
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If the nominal trajectory, due to either numerical roundoff, nonlinearity, or 
difficulties in finding an initial feasible trajectory, does not satisfy the auxiliary 
condition (6.6), we choose zd as minus the deviation for the desired final 
condition. If the nominal trajectory is feasible, A3 is taken to be zero. 

We now solve the simultaneous linear equations 

&i = [$ A,(+] Kl + [$ U+) hzW]K, (6.13) 
t=0 1=0 

for Kl and K, to be used in Eq. (6.10) t o achieve an improvement T+ in the 
objective function and a correction 470 in the final value of the subsidiary 
condition. 

The above device can be used to include any reasonable number of auxi- 
liary final conditions. 

In an unpublished paper, Bryson has extended the above technique so that 
one can ask for the maximum improvement in the objective function given a 
specified value for 

E (W2 t=o 

and has also developed techniques that prevent one from asking for incom- 
patible changes in the objective and auxiliary conditions. The analysis, 
however, is beyond the scope of this discussion. 

VII. INEQUALITY CONSTRAINTS 

Having fixed the basic ideas of numerical solution, let us see what modifica- 
tions are necessary if the problem involves state variable inequality constraints. 

For concreteness let us assume that the solution is known to have the struc- 
ture: 

(1) An interior curve of free variation connects the specified initial point 
to the boundary given by equality in the constraint. 

(2) A boundary segment where, it is assumed, no variation is permitted. 
(3) A curve of free variation leading from the boundary to the partially 

specified final point. 
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When we speak of a nominal initial trajectory we shall mean 

(1) A guessed decision sequence yielding a curve from the initial point to 
the boundary satisfying any continuity conditions that may be stipulated at 
the point of intersection (see [2]). 

(2) A guessed time at which the nominal curve is to leave the boundary. 
(3) A guessed decision sequence that yields a curve from the boundary 

to the final point. (By the argument of Section VI it is seen that all final 
conditions need not be satisfied by the nominal curve.) 

It should ne noted that since the decision variable interior to the boundary 
is specified as a function of t, in subsequent analysis a change in t implies a 
change in z and also a change in the point where the curve leaves the bound- 

ary* 
After guessing a trajectory we perform an analysis upon it in the manner 

of the previous sections. As discussed in [2], along the boundary segment we 
have a reduced set of multipliers and different equations for their time deriva- 
tives. When performing the backwards recursion of (5.3) and (5.4), there are 
always sufficient conditions to reclaim the full set of multipliers along the 
segment connecting the initial point to the boundary. Also, our analysis 
gives us sufficient information to determine the effect of a change in the 
time off the boundary on the final objective. Hence we use the method of the 
above sections to adjust the decision sequences for the free parts of the curve 
and some new analysis presented below to adjust the time off the boundary. 
When a trajectory is found with no further improvement possible from either 
source, we have at least a relative extremum for the problem. 

In the following section we shall note the equations necessary for the solu- 
tion of a particular problem. Then we shall discuss the numerical solution 
of that problem. 

VIII. THE BOUNDED BRACHISTOCHRONE PROBLEM 

The classical brachistochrone problem, the study of which gave consider- 
able impetus to the development of the calculus of variations in the eighteenth 
century, is stated: 

Find that path down which a particle, under the influence of gravity alone, 
would slide in order to reach a final destination in minimum time. 

We shall augment the traditional problem by specifying that the solution 
path should remain in a particular region of space. 

The analytic solution to the unconstrained problem is a cycloid. It can 
be shown that for a problem constrained by a sloping straight line the solution 
consists of the cycloid through the initial point and tangent to the line, a 
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segment of the boundary line, and a cycloid through the final point and 
tangent to the boundary. If the final value of x, x,, is specified but the final y 
value is not, the second cycloid will be tangent to the boundary and per- 
pendicular to the line x = 3,. It is this problem we shall consider numerically, 
using the analytic solution only for the evaluation of the accuracy of our 
numerical solution. 

Mathematically, we wish to determine the decision function 

Y(t) 
such that, given 

x(0) = x0 v(0) = v’o 

Y(O) =yo x(T) = Xf (8.2) 

and 

y(t) 2 ax(t) + b 

for all t, and the kinematic equations 

k = v cos y 

Jo = v sin y 

d = - g sin y, 

the final time, T, is minimum. 
In our previous notation 

Yl = x iZ=y 

Y2 =Y g, = v cos y 

Y3 = v g, = v sin y 

Y4 = t g, = -gsiny 

P-3) 

(8.4) 

g4 = 1 

t$=t 

*=x-xf=o. (8.5) 

Graphically, we have the situation as given in Fig. 1 and wish to connect 
A and the line x = x, with the curve of minimum descent time. 

We guess a curve of the form ABCD (see Fig. 2). 

FIG. 1 FIG. 2 
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Along the segment CD we have the multiplier equations 

A* =o 2 

A; = 0 

A;, = - Ax cos y -- A!, sin y 
W-5) 

A; = hzv sin y 9 - hlJv cos y y + Azg cos y p = - A,+ 

A, = - A,v sin y + h,v cos y - h,g cos y 

where the h’s are the influence functions on the time at the endpoint. 
At the endpoint we have, by (5.6), 

h,(T) = --L 
v  cos y  

X,(T) = 0 
(8.7) 

h,(T) = 0 

h,(T) = 1. 

These are the initial conditions for the backwards iteration of (5.3) and (5.4). 
At the corner C we have 

A: = A, + ah, 

A:, = A, (8.8) 

where x, v, and t are taken as independent state variables along the boundary. 
(See [2] where the starred-multiplier notation is introduced). The equation 
for h: requires some explanation since it is new. Along the boundary a 
change in time t implies a change in the location of the corner C, since it is 
specified in terms of time, and no other change. If t is increased by amount dt, 
all other state variables being held fixed, the corner C will occur dt sooner. 
The result of such a change is a smaller x and ‘u at the corner. The effect of 
this change is evaluated to obtain h: in (8.8). The symbol tilbdy means * 
evaluated in terms of the y on the boundary, not the y on the free curve just 
past the boundary. Later we shall use the expression klfree with the obvious 
interpretation. The multiplier X, is discontinuous across C because a “change 
in t” implies a different effect on either side of C. On CD it implies a change 
in decision choice, while on BC it results in a different corner followed by an 
unchanged segment CD. 
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Along BC 

ii; = 0 

xt = - xi cos y (8.9) 

A’E =o 

At B, 

(8.10) 

The last equation is a statement that relation (5.2) must hold and allows us 
to recover h, to initiate the backwards solution along AB. 

Along AB we have the same differential equations, (8.6), as along CD. 
This gives us all necessary equations to compute X, along AB and CD and 

h: at C (this is the effect of changing the location of the corner that we 
noted earlier was needed). Now y is varied according to the rules of Section VI, 
and C is varied according to the sign and magnitude of hz. 

When, after several iterations, h, is zero and h: is one a relative extremal 
has been found. The reader can verify that, when this occurs, all the necessary 
conditions of [2] are satisfied. 

IX. NUMERICAL SOLUTION 

Before presenting numerical results, let us discuss some computational 
aspects of this problem. 

As the optimal solution is approached, the improvement @ that can be 
sought naturally must be reduced. If too large a ~~ is specified, the resulting 
trajectory will overshoot the optimal one and may be worse, not better, than 
the “improved” old one. Consequently, it is useful to store the old decision 
sequence (z,la} in the computer memory, even after {z,,,} has been com- 
puted. Then, if the resulting new trajectory is inferior, & is reduced to, say, 
ii&2 and a new {z,,,} is computed from {zOrd}. Convergence can be con- 
sidered attained when the @ asked for, and not achieved due to overshoot, 
is smaller than some prespecified E. 

It is possible that a longer decision sequence will be required for some 
segment of a new trajectory than was for the old. If this occurs, for K greater 
than the old final K value there is no xK available to be modified. Some provi- 
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sion must be made for this case. Letting zK+i = zK, i.e., fixing z at its old 
final value, works satisfactorily. 

Note should be made of the last equation of set (8.10). It the free curve is 
tangent to the boundary this equation is automatically satisfied and contri- 
butes nothing to the determination of the missing multiplier X,. However h, 
can be determined by considering the limit as yrree -+ mdy of the equation 
set. This yields the result 

h 
Y 

= (Azg cos y + h’,v sin y) cos y 
V 

(9.1) 

for the segment AB, a result verified by the numerical computation. Care 
must be exercised to assure that (8.10) applies for nontangent initial tra- 
jectories, but that (9.1) is used as the corrected curve approaches tangency. 

All of these possible pitfalls are mentioned to forewarn the reader that, 
while unconstrained problems can now be considered routine, constrained 
problems still raise many problems and must be handled with care. 

The bounded brachistochrone problem was programmed for an IBM 7090 
computer using the following initial and final conditions 

x0 = 0 vo = 1 

YO = 6 x, = 6 (9.2) 

and the boundary 

y&-+x+5. (9.3) 

The initial guessed decision sequence was 

y = - 0.785 rad 

until the boundary is reached, 

t = 0.7 set 

when the boundary is left, and 

y = 0 rad 

(9.4) 

(9.5) 

(9.6) 

to the end-line x = 6. 
The time off the boundary was modified only after the procedure had 

converged to the optimal solution for the given corner (i.e., h, = 0). Then 
the computation was allowed to converge again for the new corner which 
was then modified etc., until both the curve and corner were optimal. 

The new C-corner position, after two corners had been tried and corres- 
ponding h:‘s evaluated, was found automatically by linear extrapolation 
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which determined the corner position such that Xf’s would have its optimal 
value, 1. A corner value of 1 implies stationarity since it means that changing 
the time by At on the boundary changes the final time by At, with no further 
modification of final time due to the change in the corner position. 

In Fig.3 weshowthe initial nonoptimal solution.Descent required0.7766sec. 

FIG. 3. The initial nonoptimal solution 

FIG. 4. Improved solutions 

After 15 iterations the curve was almost optimal for the given corner C. 
This curve is shown in solid line in Fig, 4. Descent time was 0.7445 set, 
and X: equalled 0.963. 

The corner was then modified on the basis of A: to occur at t = 0.594 sec. 
The dotted line in Fig. 4 shows the optimal curve for this corner position, 
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attained on the 31st iteration, with descent time of 0.7422 set and hT = 0.993. 
After a total of 50 iterations and 4 corner modifications requiring 10 min 

of computer time, the computed optimal curve looked like the solid line in 
Fig. 5, with descent time of 0.7420 set, and with XF = 0.999. 

Finally, Fig. 6 shows the & functions corresponding to the initial curve 
and the computed optimal curve. Recall that h, is only defined off the 
boundary, and that X, = 0 implies optimality, for a specified corner C. 

The true optimal solution obtained analytically is shown by a dotted line 
in Fig. 5. The convergence of the numerical solution was hampered by the 
extreme flatness of the optimal time curve in the neighborhood of its mini- 

Y 

61 

FIG. 5. Optimal solution 

FIG. 6. Improvement criterion, A, 
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mum, as can be verified by comparing the time for the solid line curve shown 
in Fig. 4 to the time attained 35 iterations later, an improvement of just 0.3 “/o . 
Difficulties were also introduced by the tangency of the optimal curve. Since, 
within reason, the shape of the descent curve makes little difference in the 
time of descent, very accurate integration and a small integration step size 
(t = 0.001 set) were required. While the solution curve is not quite as accu- 
rate as one might hope, the descent time is essentially minimal. 
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