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Abstract

In this work we study a class of secant-like iterations for solving nonlinear equations
in Banach spaces. We consider a condition for divided differences which generalizes the
usual ones, i.e., Lipschitz and Hélder continuous conditions. A semilocal convergence
result is obtained for nondifferentiable operators. For that, we use a technique based on
a new system of recurrence relations to obtain domains of existence and uniqueness of the
solution. Finally, we apply our results to the numerical solution of several examples.
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1. Introduction

Many scientific and engineering problems can be brought in the form of a
nonlinear equation

H(x) =0, 1)
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where H is a nonlinear operator defined on a convex sul§dedf a Banach
spaceX with values in a Banach spadé Newton’s method [6] is the most

used iteration to solve (1) as a consequence of its computational efficiency, even
though sometimes less speed of convergence is reached. But this method needs
the existence of the first Frechet derivative of the operatolf we are concerned

with approximating a solution* of the equation

H(x)=F(x)+ G(x)=0, 2

whereF,G:2 C X — Y, F is a differentiable operator an@ is a continuous
operator but nondifferentiable, the Newton method cannot be applied.

The study of this situation has been considered by several authors, for example,
in [1] and [8] it is considered a modification of Newton’s method given by

Xn41=Xp — (F’(x,,))il(F(x,,) +G(xp)), x0€£2,n>0. 3)
In [3], the author considers the iteration
Xnp1 =2 — (AG) " H(FOm) + G),  x0€ 2, n >0, (4)

whereA(x,) denotes a linear operator which is an approximation of the Fréchet
derivative of F evaluated at = x,,.

There are several studies (see [2,5,7]) where it is considered the secant method,
i.e., A(xp) = [xn—-1, xy; H] is, in (4), a first order divided difference @ on
the pointsx,_1, x, € £2. This method is defined as a iteration which uses new
information at two points, therefore is a multipoint method [4].

In the present paper, we propose the following uniparametric family of
multipoint iterations:

X_1,X0 € §2,
: Yn = )"xn + (1_ )")xn—ls A€ [07 1]5 (5)
Xp+1=Xn — [Yn, Xn; H]_lH(x,,),

which can be considered as a combination of the secant methed0j and
Newton’s one{ = 1).

We analyse, under mild assumptions, the semilocal convergence of (5) to a
unique solutionx* of (2).

To finish, we study two important applications. Firstly, we obtain a semilocal
convergence result under mild conditions and we apply this result to a boundary
value problem where the first order divided difference associated to its discretiza-
tion is not Holder continuous. Secondly, we consider a hondifferentiable system
of nonlinear equations and compare (5) with (3) and (4).

2. Preliminaries

It is well known that the classical secant method is superlinear convergent
with R-order (1 + +/5)/2 (see [5]). The secant-like methods given in (5) can
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Fig. 1. Secant-like methods.

be considered as generalized secant method since they only use operator values.
In the real case, for (5), it is clear that the closgrandy, are, the higher the
speed of the convergence is (see Fig. 1).

Moreover, observe that (5) is reduced to the secant methad=f0 and to
Newton’s method if. = 1, sincex,, = y, and[yy, x,; H] = H'(x,).

The use of the secant method is interesting since the calculation of the first
derivative H' is not required and the convergence of the successive substitutions
method is improved, although it is slower than Newton’s one. For this, we
consider iteration (5), whose speed of convergence is closed to the one of
Newton’s method when is near 1.

Now, we present some definitions and results that are necessary later.

Let us denote by (X, Y) the space of bounded linear operators frgno Y.

An operatorx, y; H] € L(X,Y) is called a divided difference of first order for
the operato#/ on the pointsc andy (x # y) if the following equality holds:

[x,y; Hl(x —y) = H(x) — H(y). (6)

Definition 2.1. We say that the Fréchet-derivatifé is (¢, p)-Holder continuous
over the domain? if for somec > 0, p € [0, 1],
|F') = F»f <clle=ylIP, x,ye.
We then denoté”’'(-) € Ho(c, p).
Definition 2.2. Let £2 be a convex open subsetX¥fand we suppose that for each

pair of distinct pointsc, y € £2, there exists a first order divided differencefof
at these points. If there exists a nonnegative congtanth that

Itx, y; F1—[v, w; F1| <k(llx —vll” + Iy —wl|”), pel0,1], (7
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forall x, y, v, w € 2 with x # y andv # w, we say thatF has a Holder contin-
uous divided difference of2. If p =1, we say tha¥' has a Lipschitz continuous
divided difference on2.

In the previous case, it is known [2] that the Fréchet derivativE ekists ins2
and satisfies

[x,x; F]=F'(x), xe€S52, (8)

andF’(-) € Ho (2k, p).
In this paper, we relax this requirement and we only assume that the divided
differencelx, y; H] satisfies
H[XayaF]—[UaW,F]”<w(||x_v||v||y—w||), X,y,U,U)EQ, (9)

wherew: Ry x Ry — R, is a continuous nondecreasing function in their com-
ponents.
In the following lemma we will prove that (9) satisfies (8)if0, 0) =0

Lemma 2.3. Let £2 be a convex open subsetXdfand suppose that, for each pair
of pointsx, y € £2, there exists a first order divided differenoe y; Fle L(X,Y)
satisfying(9) andw (0, 0) = 0. Then(8) is true.

Proof. Let {x,} € £ be so that lim_~x, = x. Let us consider4, =
[xn, x; Fle L(X,Y) and it is verified that
IAn = Amll = || [xn, x3 F1 =[x, x5 F1|| < @(llxn — xm 11, 0).
Since {x,} is convergent, it is evi~dent thdqtd,} is a Cauchy sequence, and
therefore there exists lim,c A, = A € L(X,Y). So, we can defingr, x; F]=
A =lim, o0 A,. Let us check that = F'(x):
| F(x+ Ax) — F(x) — [x, x; F1(Ax)|
= |[[x 4+ Ax, x; F1(Ax) — [x, x; F1(Ax)||
= H([x—}—Ax x; Fl—1[x,x; F] )(Ax)H
< |llx + Ax, x; F1—[x, x5 F1|[ | (A0)|| < o(l1 Ax]l, 0) | Ax]l.

Then,
i JFG+ A0 — F@) — [, x; FI(AD)|
| 4x]=0 | Ax]
S Am (]l Ax |, 0) = »(0,0) = O

Itis easy to see that condition (9) generalizes condition (7), by only considering
w(uy, u2) =k +ub).
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3. A semilocal convergenceresult

If the operatorH is nondifferentiable, we cannot apply Newton’s method to
approximate the solutions df (x) = 0. However, the last is possible if divided
differences are used. Therefore, the conditigf, 0) = 0 will not required.

So, let us assume that

(1) lx—1—xoll =,
(I1) there existsLo® = [yo, xo; H]~* such that|Lo || < 8,
() ILo™ H (xo)ll <,
(IV) llx, y; H] = [v, w; H]ll < o(llx —vll, |y —wl), x,y,v,w € £, where
o:Ry x Ry — Ry is a continuous nondecreasing function in its two ar-
guments.

Now we can already give a semilocal convergence result.

Theorem 3.1. Under conditions()—(IV), we assume that, for every pair of
distinct pointsx, y € £2, there exists a first order divided differenpe y; H] €
L(X,Y). We denote by = max{fw((1— Ma, n), Bo((1— A)n, n)} and assume
that the equation

m
”(l_1—ﬁw(u+(1—x)a,u)>_”=o (10)

has at least one positive zero. LRtbe the minimum positive one. If

m

poR+A=neR) <1 M=q— g o <1

and B(xo, R) C £2, then the sequende,,}, given by(5), is well defined, remains
in B(xo, R) and converges to the unique solutiarf of Eq.(2) in B(xo, R).

Proof. To simplify the notation, we denote,,, x,,; H] = L,. Firstly, we prove,
by mathematical induction, that the sequence given in (5) is well defined; namely,
iterative procedure (5) makes sense if, at each step, the opéyatay,; H] is
invertible and the point, 1 liesin 2.

From the initial hypotheses, it follows that is well defined andx; — xo|| <
n < R. Thereforexy € B(xg, R) C £2.

Now, using (V) and assuming thatis nondecreasing, we obtain

11— Lo*La| < Lo |IiLo — L1l < || Lo @ (lly1 — yoll. lx1 — xoll)
< |LgHw(rlixr — xoll + (1 = 1) [lxo — x—1ll, [lx1 — xoll)
<Bo(An+ 1L —Na,n) <Bo(R+(1—Na, R) <1,
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and, by the Banach Iemmﬁ[1 exists and

B
1-Bwo(R+(1—MNa,R)’

By (5) and (6), we get
H (x1) = H (x0) — [x0, x1; H](x0 — x1) = (Lo — [x0, x1; H])(x0 — x1).
Then, by (IV), we have

lZTt) <

| H(x1)| < | [x0. x13 H] = Lo| lx1 — xol
< o(llxo = yoll, llxz — xoll) lx1 — xoll
<o((1—Ma, 7)llx1 —xoll < @(R + (1 — M, R)[lx1 — xol,

and, consequently, the iteratgis well defined. Moreover,

1 m
lx2 — xall < LT | H x| < T Ba® I A=1a B llx1 — xoll

= M|lx1 — xoll <n.
On the other hand, if we take into account tlRais a solution of (10), then
llx2 — xoll < [lx2 — x1ll + [lx2 — xoll
SM+Dlx1—xol <M +1Dn <R
andxs € B(xg, R).
Then, by induction om, the following items can be shown far> 1:
(in) 3Lt = [yn, xs; H1~* such that

p
1-Bw(R+A—Na,R)’

(iin) lxn41 — xpll < Mlixp — xp—2ll < M"|lx1 — x0ll < 1.

|t <

Assuming that the linear operatats are invertible and ;11 € B(xo, R) C £2
forall j=1,...,n— 1, we obtain

11— Lo*La| < | Lo Lo — Ll < Bo(lyn — yoll, llxn — xoll)
< Bo(llyn — xoll + Ilxo — yoll. llxa — xoll)
<Bo(R+(1—Ma, R) <1

and
B B
Iz <

1-Bwo(R+(1—MNa,R)’
From the definition of the first divided difference and (5), we can obtain
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H (xn) = H(xp—-1) — [Xn—1, xn; H](xp—1— xn)
= (Ly—1 — [xn—1, %3 H1) LY H (xp-1)
= (Ln—l — [Xn-1, Xu; H]) (xn—1— Xp)-

Taking norms in the above equality and (1V), we obtain

” H (xp) H < ” [Xn—1,Xn; H] — Lp— l” 0 — xn—1ll
<o ((1 Mxn—1 — xn—=2l, llxp — xn— 1||)||xn — Xp—1]|
<o((@ =10, n)llxn — xu-1ll.

Thus,

Jswer — sl < 2] )| <

m
Xn — Xpn—
1— Bw(R+ (1— Ma, R) [l n—1ll
=M|xp — xp—1ll < M"||x1 — x0ll <.

Consequently, from (10) and (ii), it follows

llXn 41 — xoll

<xprr — xall + lxn — xp—all + -+ - + [[x2 — xall + [lx12 — xoll

n+1
i|||xl — xoll

SM'+M"y 41 — <l ==
(M" + + -+ 1llx1 — xoll [1—M

1
REE A
S0,x,+1 € B(xo, R) and the induction is complete.
Secondly, we prove thdt, } is a Cauchy sequence. Hoe= 1 we obtain
lxn+& — Xl
< Xk — Xnpk—all + I Xn4k—1 — Xnpr—2ll + -+ X2 — x4l
SIM 4 ME 2 g — xall

l_Mku I
X, — X <
1—M n+1 n 1—M

M"||x1 — xoll.

N

Therefore{x,} is a Cauchy sequence and converges'te B(xg, R).
Finally, we see that* is a zero ofH. Since

||H(xn)H < (U((l =M, TI)||Xn — xp—1lls

and|x, — x,_1]]| — 0 asn — oo, we obtainH (x*) =0

To show the unigueness, we assume that there exists a second solution
y* € B(xo, R) and consider the operatdr = [y*, x*; H]. SinceA(y* — x*) =
H(y*) — H(x™), if operatorA is invertible then* = y*. Indeed,
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|LotA—1]
< Lo 1A = Loll < | Lo || | ly*, x*; H] — [yo, x0; H||

< Bo(ly* = yoll. IIx* — xoll) < Bo(lly* — xoll + llx0 — yoll. [Ix* — xoll)
<Bo(R+(1—Ma, R) <1

and the operatoA 1 exists. O

Remark. Note that the operatdf is differentiable when the divided differences
are Lipschitz or(k, p)-Hoélder continuous. But, under condition (IV} is dif-
ferentiable ifw(0,0) = 0. Therefore, ifw(0, 0) £ 0, Theorem 3.1 is true for
nondifferentiable operators.

4. Applications

We present two types of applications. The first one is theoretical and
practical for differentiable operators, where it is proved the convergence for
divided differences that are not Lipschitz and Hdélder continuous. Moreover, this
applicationsis not usually studied by other authors. The second one is practical for
nondifferentiable operators and we compare the methods presented in the paper
with other ones given by several authors.

In the first example a differentiable operator is considered, Hes F,

G(x) = 0. We remark that the semilocal convergence conditions required are
mild.

4.1. Example 1

Now we apply the semilocal convergence result given above to the following
boundary value problem:

(11)

x4+ xHP 4 x2=0, pel0,1],
x(0)=x(1)=0.

To solve this problem by finite differences, we start drawing the usual grid line
with the grid points; = ik, whereh = 1/n andn is an appropriate integer. Note
thatxg andx, are given by the boundary conditions, they= 0 = x,,. We first
approximate the second derivativé&(r) by

X6y~ [x(t +h) — 2x(t) + x(t — h)] /h?,
x"(t) = (xig1 — 2xi +xi_1)/h?, i=1,2,....n—1
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Substituting this expression into the differential equation, we have the following
system of nonlinear equations:
2x1 — h2x] TP — h%x2 — xp =0,
—Xi_1+2x; — hle-lﬂ’ - hz)ci2 —xi31=0 =23, ....n-2, (12)
1
—Xp—2 4+ 2xp_1 — h2x TP — 122 =0

We therefore have an operatét: R"~1 — R"~1 such thatF(x) = L(x) —
h2 f(x), where

t
fx)= (x%ﬂ’ +xf,x21+p +x2, ...,xiff +x2_1)
and
2 -1 0 0
-1 2 -1 0
L=] 0 -1 2 0
0 0 0 2
Thus
xf 0 0
0 xg 0
F'(x)=L—h?(1+ p) ) .
0 0 x’f_l
x1 O 0
0 xo 0
—2n? ;
0O 0 ... x,1

Let x € R"~1 and choose the norrx| = maxigi<n—1|x;|. The corresponding
normonA e R"~1 x R"-1js

In—

n—1
All= max aijl.
IAl = me 1-le i
]:

It is known (see [7]) thaF has a divided difference at the pointsy € R" 1,
which is defined by the matrix, whose entries are

[x,y; Flij= (Fi (X1, .oy Xj YjgLs o os Yn—1)

iy
— Fi(X1, .. Xj—1, Yjr ooy Yn1)).

Consequently,
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[x,y; F1=L

H4p I4+p, 2 2

s T o R s Y 0 0
X1—y1 L L

+p_ 1tp 2 2
0 Yo TV XY 0
—h? x2=)2
Hp_ I+p 2 2
0 0 xnfl_)/nfl-'—xnfl_ynfl
An—1"Yn-1

In this case, we have that, y; F] = fol F'(x +t(y — x))dt. So we study the
value|| F’(x) — F’(v)| to obtain a bound foli[x, y; F] — [v, w; F]|.

Forallx, v e R" Ywith |x;| > 0, |v;| >0(G =1,2,...,n—1), and taking into
account the max-norm it follows

H F'(x) — F'(v) H = Hdiag{h2(1+ p)(vip - xip) + 2h2%(v; — xi)}H

= 1<ringz';\;lx_lyhz(le p)(vf = xP) + 2r?(v; — xi)|

< (1—}-p)h2 max |vf —xip| +2h° max |vi — x;
1<ig<n—-1 1<ign—-1

p
<(1+p)h2[ max |v,-—xi|] +2R2| — x|
1<i<n—1

= 1+ p)h?|lv — x|I” + 2h®|jv — x|
Therefore

[x, y; F1—[v, w; F|

1
< /H F'(x+1(y—x)) = F'(u+1(w—v))|dt
0
1
<h2/(<1+p>||<1—r)(x S —
0
+2|1-Dx —v)+1(y —w))dr
1
<KL+ p)/((l— DP llx = vl|? + 1Py — w?) dt
0

1
+2h2/(<1— Ollx — vl +1lly — wll) dr
0

=h?(llx =l + lly = wl” + llx = vl + lly — wl).

From (1V), we consider the function (u1, uz) = h2(u} + ub + u1 + u).



M.A. Hernandez, M.J. Rubio / J. Math. Anal. Appl. 275 (2002) 821-834 831

Now we apply the secant method to approximate the solutiaf(e = 0. If
n =10, then (12) gives nine equations. Since a solution of (11) would vanish at
the end points and be positive in the interior, a reasonable choice of the initial
approximation seems to be 10sin This approximation gives us the following
vectory_1:

3.0901699437494
5.87785252292473}
8.090169943749471
9.51056516295136
y—1 = ]10.00000000000000] .
9.51056516295136
8.090169943749471
5.877852522924731
3.09016994374947

Chooseyg by settingyo(#;) = y_1(t;) —107°,i =1, 2, ..., 9, and using iteration
(5) (. = 0), after two iterations, we obtaiyy andyo:

2.453176290658909 2.404324055268407\
4.81270410158260} 4.713971539035271
6.8481873135861 6.700339496293392%
8.25299736774195] 8.066765882171131
y1=| 875737771678512] and y,=| 8.556329565792526| .
8.25299736774195 8.066765882171131
6.8481873135861 6.7003394962933924
4.81270410158260} 4.713971539035271
2.453176290658901:) 2.404324055268407

Taking x_1 = y1 and xo = y2, we obtaina = 0.201048,8 = 15319, n =
0.0346555. In this case, the solution of Eqg. (10) given in Theorem 3.1 has
a minimum positive solutionR = 0.041100361. BesidesBw(x + R, R) =
0.14983< 1 andR = 0.156808< 1.

Therefore, the hypotheses of Theorem 3.1 are fulfilled and a unique solution
of Eq. (2) exists inB(xg, R).

We obtain the vectat* as the solution of system (12), after nine iterations:

2.3946407947867
4.69488237121600]
6.67297754693475]
8.033409358893319
+* = | 852079142370478%
8.03340935889331¢
6.67297754693475
4694882371216

2.394640794786745
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Fig. 2.x* and the approximate solutiort .

If x* is now interpolated, its approximatioff to the solution of (11) with
p =1/2is the one appearing in Fig. 2.

Note that, in this example, the convergence cannot be guaranteed from classical
studies [2,7], where divided differences are Lipschitéomp)-Hdlder continuous,
whereas we can do it by the technique presented in this paper.

4.2. Example 2

Consider the nondifferentiable system of equations
32y +y2—1+[x—1/=0
’ 13
{x4+xy3—1+|y|:0. (13)

We therefore have an operatéf: R? — R? such thatH = (H1, Ho). For
x =(x1,x2) € R2, we takeH1(x1, x2) = 3)6%)62 +x§ — 14 |x1—1], H2(x1,x2) =
xf + )cljcé3 — 1+ |xg|.

Forv, w € R?, we take[v, w; H] € L(R?, R?) as

_ Hi(vy, w2) — Hi(wg, wa)

[v,w; H]j1= ,
v — w1
H;(v1,v2) — Hj(v1, w
[, w: H]ip = i(v1, v2) i (v1 2)’ _1.2
V2 — w2

Now we apply several methods to solve (13). See Table 1 for method (3) with
xo0 = (1, 0). Note that the approximated solution used is

x* = (0.894655373334686D.3278265117462974

For the secant method with_1 = (5, 5) andxg = (1, 0), see Table 2; for method
(5) with A = 0.5, x_1 = (5,5) andxp = (1, 0), see Table 3; for method (5) with
A=0.99,x_1 = (5,5) andxg = (1, 0), see Table 4.
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Table 1
n Y ) lx* = xull
1 1 0.3333333333333333 (5345x 101
2 0.9065502183406114  0.3540029112081513.61264x 102
3 0.8853284006634119  0.3380272763613319.02008x 102
4 0.891329556832800 0.3266139765935657.32882x 103
5  0.8952388154638436  0.3264068528436253.41367x 1073
6 0.8951546713726346  0.3277303340450432.99208x 10~4
7 0.8946737434711373  0.3279791543720321.52833x 10~4
8  0.8945980089774475  0.3278650593487548.64644x 10>
9  0.894643228355865 0.3278150392082856.2145x 10~°
10 0.8946599936156449  0.3278198892648906.63B48x 10~°
11  0.8946576401953287  0.3278267282085600.26686x 106

=
TN

0.8946552195650909  0.3278273518268564.30@18x 10~/

34 0.8946553733346867  0.3278265217462975.55B12x 10-17

Table 2

n X 3 Jor* —

1 0989800874210782  0126274890723652 B5199x 1071
2 09218147654932871 B079399161522621 ?21594x 102
3 0900073765669214  B25927010697792  51839x 1073
4 08949398516241052 BR77254373962255 @4478x 104
5  0.8946584205860127 B278253635007827 (4725x 10~°
6 0.8946553750774177 BR278265210518334 14273x 1072
7  0.8946553733346976 B278265217462931 (18802x 1014
8 0.8946553733346867 B278265217462976 @6533x 1016
9  0.8946553733346867 B278265217462975 11022x 1016
Table 3

n X 3 Jor* —

1 09829778065072182 @B44753285929756 @3351x 1071
2 09191516755790264 B114163466921295 £4963x 102
3 0.8976925362896486 B267124870002544 @3037x 1073
4 0.8947380642577267 B277957962677528 B6909x 10>
5 0.8946556314301652 B278264207451973 23095x 10~/
6 0.8946553733563231 B278265217375175 P6364x 1011
7  0.8946553733346867 B278265217462975 565112x 1017

Therefore the methods included in (5) improve the results given by other au-
thors. Moreover, if the value of the parameleis increased, better approxima-
tions are obtained.
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Table 4

n oY 2 Ile* =

1 09228095274055251 BR269365280425139 @1542x 102

2 08959888360193688 8276958684879607 33346x 10~3

3 0.8946591561955859 BR78259055081464 B3286x 106

4 0.894655373452723  B278265217196517 18036x 1010

5  0.8946553733346867 BR278265217462975 11022x 1016

6 08946553733346867 B278265217462975 §5112x 10~17
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