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Abstract In this work, the circumstances of eclipse for a circular satellites’ orbit are studied. The

time of passage of the ingress and egress points is calculated. Finally, the eclipse intervals of

satellites’ orbit are calculated. An application was done taken into account the effects of solar

radiation pressure and Earth’s oblateness on the orbital elements of circular orbit satellite.
ª 2015 Production and hosting by Elsevier B.V. on behalf of National Research Institute of Astronomy

and Geophysics.
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Figure 2 The Earth’s shadow with no penumbra (case of

artificial satellites).
1. Introduction

The problem of computing Earth satellite entry and exit posi-

tions through the Earth’s umbra and penumbra is a problem
dating from the earliest days of the space age, but it is still
of the most importance to many space projects for thermal

and power considerations. It is also important for optical
tracking of a satellite. To a lesser extent, the satellite external
torque history and the sensor systems are influenced by the

time the satellite spends in the Earth’s shadow. The specifica-
tion of the shadow intervals through the satellites’ orbit is a
very important study, owing to the following reasons:

1. The satellite heat balance.
2. Passive optical tracking.
3. Solar power source.

4. Orbital stability of satellites suffering from solar radiation
pressure.

The umbra is the conical total shadow projected from
the Earth on the side opposite to the Sun. In this region, the
intensity of the solar radiation is zero. The penumbra is the

partial shadow between the umbra and the full-light region.
In the penumbra, the light of the Sun is only partially cut off
by the Earth, and the intensity is between 0 and 1. All text-
books discussing the problem (e.g. Geyling and Westerman,

1971 and Escobal, 1985) even the recent work by Mullins
(1991), suggest the use of a quartic equation analytic solution.
Because the quartic is a result of squaring the equation of

interest, one must check all four solutions and discard the
spurious ones.

From the literature survey, it can be found that the shadow

state prediction model falls into two categories namely;
spherical Earth conical shadow model and cylindrical shadow
model, respectively. Vallado (2007) developed both shadow

models numerically using Newton–Raphson technique
involving the solution of quartic polynomial of the true
anomaly.

2. The Earth’s shadow

The Earth and Sun are nearly spherical bodies and the Sun is
about 100 times the Earth’s size. Therefore, the shadow of the

Earth is a cone with the centers of the Sun and Earth. As the
Figure 1 The shadow of the E
vertex is going away from the Sun, the shadow is divided into
two main parts as follows Fig. 1:

1. The umbra of the shadow which extends about 138,900 km.
2. The penumbra of the shadow in which the sunlight is

partially excluded.

These two parts are shown clearly when one studies the
eclipse of the Moon. To study the satellite’s eclipse it is more

convenient to assume that:

1. The Earth’s shadow is circular cylinder with a diameter

equal to the mean diameter of the Earth (Fig. 2).
2. The shadow has no penumbra.
3. The atmospheric refractions are neglected.

4. The synodic and sidereal periods are identical, owing to the
small period of satellite.

2.1. Conditions of eclipse

To study the conditions of artificial satellite eclipse, Fig. 2 illus-
trates the projection of the Earth’s shadow on the orbital plane

of an satellite which is an ellipse with semi-minor axis

b ¼ r� ð1Þ

and semi-major axis

a ¼ r�cosec i�; ð2Þ
Umbra

Penumbra

arth and its two main parts.
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Figure 3 Geocentric angle between Sun and Satellite.

Figure 4 The shadow area, the angle of ingress, and the angle of

egress.
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where i� defines the inclination of the Sun onto the orbital

plane of the satellite. It is known that the equation of an ellipse
is given by

r2 ¼ b2

1� e2ðcos hÞ2
; ð3Þ

where

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
a

: ð4Þ

and h Geocentric angle measured in the orbit plane between
the satellite and the conjunction point.

Eq. (4) illustrates the size of the ellipse. Substituting Eqs. (1)

and (2) into Eq. (4), with e ¼ eSH, and after some little
reduction, yields

eSH ¼ cos i�: ð5Þ

where (SH = shadow).
Then Eq. (3) can be written as

r2 ¼ r2�

1� ðcos i�Þ2ðcos hÞ2
: ð6Þ

The satellite enters or leaves the shadow when r ¼ rSH, then
from Eq. (6) the term cos h can be obtained, so

cos h ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð r�

rSH
Þ2

cos i�

s
: ð7Þ

For the value of 90
�
< h < 270

�
, yields cos h to be negative,

then the limits of the eclipse are obtained from the above

Eq. (7), then when h ¼ 180
�
, this yields

r ¼ r�cosec i�: ð8Þ

From Eq. (8), if r < r�cosec i�, then an eclipse will occur, if

r > r�cosec i�, an eclipse will not occur.
Fig. 3 illustrates the relation between r and i�, and gives the

limits of eclipse (height in the (Fig. 3) instead of r).

3. Eclipse for circular orbit satellite

The duration angle of eclipse for a circular orbit satellite hE

can be obtained from

hE ¼ 2ð180� � hÞ; ð9Þ

where h is obtained from Eq. (7).
From Fig. 4, within the eclipse duration, a satellite enters

the shadow at ð180� � hÞ, and leaves the shadow at

ð180� þ hÞ. Now the shadow interval can be obtained from

tSH ¼
hE

360
� P; ð10Þ

where P is the period of the satellite, Stoddard (1961).
Fig. 5 shows the duration of eclipse for various altitudes

and various inclination of Sun (i�) to the plane of satellite
orbit. Notice that the range of duration of eclipse is between
32 min and 47 min.

3.1. Inclination of the Sun to the orbital plane

It is very important to obtain the inclination of the Sun (i�) to

the orbital plane. The most convenient in this application is the
right ascension and declination system of coordinates. The
inclination i of the orbit plane to the plane of equator where

0
�
< i < 90

�
, and the right ascension of the ascending node

of the orbital plane aX are only the required orbital elements.
From the spherical triangle ABS using the cosines law
(Fig. 6), then

sin i� ¼ cos i sin d� þ sin i cos d� sinðaX � a�Þ ð11Þ

If sin i� is negative, then i� must be the difference between

180
�
and i� obtained by Eq. (11).

4. Times of eclipse and geocentric elongation at any time for a

circular orbit

Since there is no certain point on the circular orbit to specify
the time of passage (in elliptical orbits this point is the perigee),
so, it is more suitable in this case that the time of passage of the
ascending node is considered as a reference. In Fig. 7 A is the
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Figure 5 Duration of eclipse for various altitudes and Sun

inclination (i�).

Figure 7 The distance hX between the conjunction point C and

the node X.
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north pole of the equator, B is the north pole of the orbital

plane, and S is the Sun. It is needed to find the distance hX

between the conjunction point C and the node X measured
in the satellite’s motion. From the spherical triangle ABS using
sines law

cos hX ¼
cos d� cosðaX � a�Þ

cos i�
: ð12Þ

and from the cosines law

sin hX ¼
cos i sin i� � sin d�

sin i cos i�
: ð13Þ

From Eqs. (12) and (13) hX can be obtained.
Figure 6 The angle betwee
In the circular orbits when the satellite passes through the
ascending node the time of passage is TX, then the time of

the conjunction passage TC is given by

TC ¼ TX �
hX

360
�

� �
P ð14Þ

or

TC ¼ TX þ
h� hX

360
�

� �
P ð14:1Þ

From Fig. 4, it is clear that the angle of ingress, the shadow hi

and the angle of exit the shadow he can be defined as

hi ¼ h; ð15Þ

he ¼ 360
� � hE: ð16Þ
Celestial 
Equator

Satellite 
   Orbit

n Sun and orbital plane.



Table 1 The data of Sun.

The speed of light 2:997929� 108 m s�1

The solar constant 1367 w m�2

Mean distance Earth–Sun 149:759� 109 m

A reflection coefficient of surface 0

Obliquity of sun 23:5�

Mean longitude of sun 179�

The angle of incident radiation 60�

Table 2 The data of the satellite.

Area of satellite surface 0:319019 m2

Mass of satellite 35:443 kg

Height 735:8 km

Right ascension of sun 57�:525
Declination of sun 20�:033
Right ascension of satellite 260�:72
Inclination 140�:0
Argument of perigee 62�:32
Radius 7104:1 km

Radius of earth 6368:3 km

Eccentricity 0:0

Period 99:54 min
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Figure 8 Effects of solar radiation pressure and oblateness on

the semi-major axis (Semi-major axis = radius in circular orbit).
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Figure 9 Effects of solar radiation pressure and oblateness on

the eccentricity.
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Using Eqs. (15) and (16) the time of ingress of the shadow
and the time of egress of the shadow are calculated as follows:

Ti ¼ TX þ
ðhi � hXÞ
360

� P ð17Þ

Te ¼ TX þ
ðhe � hXÞ
360

� P ð18Þ

This eclipse will repeat at integral multiples of the period.

5. Effects of solar radiation pressure and earth’s oblateness

5.1. Solar radiation pressure

It is known that the momentum can be exchanged during inter-
action with a solid surface. So, the light behaves like a medium

of material particles continuously emitted by the sun.
A satellite whose surface has a reflection coefficient a,

placed at a distance d from the sun and receiving the solar radi-
ation at an angle of incidence v will experience an acceleration

under the influence of solar radiation pressure, determined by

�p ¼ � b1

d2
�Rs ð19Þ

b1 ¼
A

m

U0

C
ð1þ aÞa2s cos2 v ð20Þ

where U0 is the solar constant, C is the speed of light, as is the

mean distance Earth–Sun, and �Rs is a unit vector in the direc-
tion Earth–Sun given, in a geocentric equatorial frame by

�Rs ¼ cosK�iþ cos e sinK�jþ sin e sinK�k ð21Þ

where K� is the true celestial longitude of the Sun and e is the
obliquity of the ecliptic. K� is expressed in terms of the orbital

elements as K� ¼ f� þ X�. Due to the Earth’s shadow, �R is a

distance continuous function of time, where the data of the
Sun are shown in Table 1.

5.2. The Earth’s oblateness

It is well known that the perturbing potential V depending on

time and the position of the satellite, including the asphericity
of the earth is given by

V ¼ � l
r
þ l

r

X1
n¼2

Jn
R

r

� �n

Pnðcos hÞ ð22Þ

where Pnðcos hÞ are the associated Legendre polynomial taken
up to J6 and cos h ¼ x3

r
, and r is the altitude of the satellite.

The first term in Eq. (22) represents the potential when the
Earth is a uniform sphere while remaining terms represent the
perturbations due to oblateness of the Earth up to Jn, which

are taken into account during the calculations.

6. Result and discussion

Now, a code of Mathematica was constructed to obtain the
effects of radiation pressure and oblateness of Earth, taken
into account the shadow intervals, on a satellite of circular

orbit, which is launched at 21 May 1958 (Stoddard, 1961).
The data of this satellite are shown in Table 2.



1 2 3 4 5 6
EA

1.5

1.0

0.5

0.5

1.0

1.5

w

Figure 12 Effects of solar radiation pressure and oblateness on

the argument perigee.
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the mean anomaly.
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Figure 10 Effects of solar radiation pressure and oblateness on

the inclination.
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The code consists of two parts: the first to obtain the
intervals of the shadow effect, i.e., when the satellite is in the

shadow of the Earth, and also to obtain the times of ingress
and egress of the shadow respectively.

The second part to obtain the effect of solar radiation

pressure by solving Lagrange’s planetary Equations in the
Gaussian form, and to obtain the effect of the Earth’s
oblateness by solving Lagrange’s planetary Equations numer-

ically respectively using the Runge–Kutta fourth order
method. The results for one revolution are obtained as follows:

TPH0 ¼ 1 h TPM0 ¼ 20:5 min

where (TPH0) is the zero time by hour and (TPM0) is the zero

time by minute.
h
 m
Time of ingress =
 1
 5.31781
Time of egress =
 1
 38.0014
It is clear that the duration of eclipse is about 32.7 min.
Figs. 8–13 illustrate the effects of radiation pressure and

oblateness of the earth on the orbital elements of a circular

satellite orbit taken into account the intervals of eclipse.

7. Conclusion

Since the shadow effects are very important during the motion
of the satellite around the Earth, it must be taken into account
when the perturbation problems are treated.
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