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Abstract-For variational problems of the form 

we propose a dual method which decouples the difficulties relative to the functionals f and g from the 
possible ill-conditioning effects of the linear operator A. 

The approach is based on the use of an Augmented Lagrangian functional and leads to an efficient and 
simply implementable algorithm. We study also the finite element approximation of such problems, 
compatible with the use of our algorithm. The method is finally applied to solve several problems of 
continuum mechanics. 

I. INTRODUCTION 

Many problems, in Physics, Mechanics, and Mathematical Economics, can be formulated as the 
following variational problem: 

(9”) $f,{f(Av)+g(v)J. 

V and Y are twd Hilbert spaces, endowed with the norm topology; A is a continuous linear 
operator from V into Y; f and g are convex functions defined respectively on Y and V, and 

taking their values in (-z, +m]. This formulation, first used by Rockafellar[l] to extend Fenchel’s 
duality theory, includes, in particular, the ordinary problems of convex programming. We call v * 
the solution of (9), when it exists. Let 

A natural approach to solve (9) consists in searching directly for the minimum of 4(v) over 
V. If 4 is differentiable iterative techniques based on the use of its gradient are available to 
construct a sequence of points in V, converging to v *. But the speed of convergence is slow if the 
operator A is ill-conditioned [2]. 

This difficulty may disappear if we use the following device: in a first time, we introduce the 
additional variable y E Y, linked to the original variable v E V by the constraint Av - y = 0, and 
consider the constrained problem (yC) on V x Y, obviously equivalent to (9): 

(PC) Inf{f(y)+g(v)l(v,~)E Vx Y,Av-Y =O>. 

We then eliminate the artificial constraint, just introduced, by a dual approach to solve (PC). 
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In the following, (. , .) and ((. , .)) denote the scalar product on respectively Y and V, while I.1 
and II.11 are the corresponding norms. V’ and Y’ are the dual spaces of V and Y. We denote the 
duality between V and V’ by (. , .), while we identify Y’ to Y. 

The classical dual approach to (PC) consists in introducing a Lagrange multiplier A E Y’ 
corresponding to the constraint and the Lagrangian functional ye, defined on (V x Y) x Y’ with 
values in (-to, +x] 

Duality theory [3, l] tells us that, if there exists a saddle point (c’*, y*; A *) of 2 on 
(V x Y) + Y’,i- then (u *, y *) is solution of (PC). In this case, we have also the equality between 

Inf {Sup Z(a, y; A )}, 
(u.yEVxY h@ZY’ 

where we recognize the primal problem (PC), and 

(9) Sup I Inf d%(v, y; A)], 
hEY. Cr.y,E”xY 

which constitutes the dual problem. 
In order to guarantee the existence of a unique solution to the inner minimization problem in 

(9) under the same hypotheses that insure the existence and uniqueness of a solution of (9), it is 
convenient, as originally proposed by Glowinski and Marrocco[4], to define the dual problem 
with the Augmented Lagrangian, introduced by Hestenes [5] and Powell [6], is obtained by adding 
to the standard Lagrangian S!(u, y ; A), expressed in (1.1) a term, depending on a positive 
parameter r, penalizing for the violation of the constraint; in our case 

~~e,(v,y;A)=f(y)+g(v)+(A,Av - y)+;iAu -yI’. (1.2) 

This formulation presents also the advantage over the ordinary penalty function (which 
corresponds to the case where A is maintained equal to 0) that a minimizing sequence {u,} for (9) 
can be generated without making r -++=, thus avoiding the well-known ill-conditioning of 
ordinary penalty methods. For any arbitrary fixed Y > 0, if (tl*, y*: A*) is a saddle point of 
Z(v, y; A), then v* is solution of (9). 

In practice, we must solve a sequence of unconstrained minimization problems 

Inf C”.Y)E”XY %(u, y ; A”), (1.3) 

where the multipliers A” form a maximizing sequence of the dual fuctional 

d,(A) = Inf R(v, y;A). 
Cc.y,E”xy 

(1.4) 

Let (Us+‘, y”“) be the solution of (1.3). The concave functional d, is differentiable and its 
gradient is given by 

Vd,(A”) = Au”” - y”“. 

We can use the gradient method to maximize d,(A) by generating the multipliers A” according to 
the iteration 

A “+’ = A” + /,(AU”+ _ y”+‘). (1.5) 

A subsequence of {A”} converges to A*, provided that the stepsize p is chosen 0 < p < 2r [lo]. 

t(u*, y* A *) is a saddle point of 6p iff 
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This dual algorithm due to Uzawa[7], is mentioned in the pioneering paper of Hestenes with 
p = r, and is used in [8] to solve the non-linear Dirichlet’s problem. The convergence results for 

convex programming problems, in finite dimensional spaces, have been extended, by 
Rockafellar[9] and Bertsekas[lO, 111, to the case where the minimization in (1.3) is performed 
approximately at each cycle and is only asymptotically exact. 

An alternative formulation of the dual function (1.4), provided by Fortin[l2], consists in 
writing 

It is then possible to explicit the problem in p with the proximation operator of Y relatively to 
f [13]. The resulting problem is still non-linear in u and As, and is of the same type as the original 
problem (9). This approach is particularly interesting when f is a support function of a closed 
convex set of Y, since the non-differentiable unconstrained problem (9) is replaced by a 
differentiable sup-inf problem. A classical dual method has been presented earlier for the same 
type of situation in[14, 151. See also[l6] for an approach similar to[12]. 

We present, in this paper, a modification of Uzawa’s algorithm, hinted in[4], and 
experimented in[8], without proof of convergence. 

In this modification, the minimization in (1.3) is neither performed exactly nor subject to a 
termination criterion like in [ 10,9]. This proposal is based on the observation that problem (1.3) 
involves a problem of minimization in u coupled with a problem in y by the term - r(y, Au). An 
approximate solution (2’” +I, y “‘I) to (1.3) is therefore provided by the following algorithm: 

Given t”‘, y”. A”: 

select vn+’ , solution of J,nfv g(v) +~/IAa)1’+ (h” - ry”, Ac) ; 
I I 

(1.6) 

select y”+‘, solutionof J,nf, 
I 
f(y)+~liy1~‘-(h” + rAu”+‘, y) ; (1.7) 

which we complete by iteration (1.5) for the multiplier A”“. 
The algorithm is interesting for computation only if problems (1.6) and (1.7) are relatively easy 

to solve. If g(.) is a linear functional or a quadratic form, (1.6) becomes a quadratic problem. In 
the finite dimensional case, it can be solved by direct methods of matrix inversion, which are less 

sensitive to the ill-conditioning efect of A than gradient methods. We observe also that (1.7) is a 
non-linear problem in y which is not sensitive at all to the ill-conditioning of A. We have thus 
achieved a decoupling of f and A which constitutes a serious improvement upon (9). 

We have applied our algorithm to several problems of continuum mechanics, namely the 
minimal hypersurfaces problem, the problem of visco-plastic flow in a cylindrical pipe, and two 
problems of elasto-plasticity: torsion and equilibrium. All these problems are of the special form 
(9) where g(.) is a linear functional, and to which we shall restrict our analysis in the following. In 
5.1, for example, V is taken as the Sobolev space HA(a) (see [17]), where R is a regular open 
subset of RN (N = 1,2 or 3). Y is taken as [L’(fi)]” and A is the gradient operator. Finally, the 
convex function f can be represented by an integral over R. 

Although our algorithm can be applied to problem (9) in this functional framework, numerical 
computations must, in practice, be performed in finite dimensional spaces. We thus construct 
internal approximations Vh C V and Y,, C Y of finite dimension[l8] via a finite element 
method [19]. We introduce a regular triangulation yj-, of fl in a finite number of “triangles” T of 
size sh. Vh is chosen, for instance, as a space of continuous functions which are piecewise 
polynomial. Since we are not able, in general, to caiculate exactly the integral defining f, we must 
use a formula for numerical integration with a certain number of integration nodes. Naturally, the 
approximation At, of the operator A is defined by: the values taken by AU,, at each integration 
node. We thus choose for Y,, a space of piecewise constant functions of dimension ,v = N times 
the number of integration nodes. We establish that the solution v*,, of the approximate problem 
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converges towards v * as h + 0, if the numerical integration is precise enough. Using our dual 

algorithm to solve (??J,), we benefit of a powerful decomposition property, [8], since each iteration 
consists in a quadratic problem (1.6) in V, and SIT non-linear problems (1.7) in RN independent of 
each other. The iteration (1.5) can also be performed component by component. 

The article is organized as follows: in Section 2, after a brief review of duality theory, we 
study the properties of the augmented Lagrangian, and, in particular, the existence and 
uniqueness of a saddle point. In Section 3, we state a dual algorithm to compute such a saddle 
point, and we establish its convergence. In Section 4, we turn to the approximation of infinite 
dimensional problems. A convergence result is given and applied to a finite element 
approximation compatible with our dual approach. We use this approximation for several 
problems of continuum mechanics, stated in Section 5, and apply our algorithm. Numerical 
results are reported in Section 6, and compared with direct methods of solution. 

2,CONVEXITYPROPERTIESANDTHEAUGMENTEDLAGRANGIAN 

Duality theory and saddle-points 
Duality theory has recently received an elegant formulation [ 1,201, based on the consideration 

of a family of perturbed problems (9’0)associated to a problem (9): JIF+(v). We consider a 
general bifunction @: V x Y + (--a, +m] such that 

@(V> 0) = 4(v) 

and the problem depending on a perturbation p E Y 

In this framework, we define a Lagrangian function A 
by the relation 

V x Y’ -+ [-m, + 001 associated to (9) 

We must immediatly observe that this is different from the classical Lagrangian function defined 
for constrained minimization problem like (g’,), since this function A is directly associated to the 
unconstrained problem (9). A depends, however, on the choice of the perturbation bifunction a. 

We can verify that 

Sup A(v; h) = @(v, 0); 

hence the problem 

Inf Sup A(v ; h) 
UEVhEY’ 

is nothing else than problem (9) and is independent of @. Parallel to the duality theory for convex 
programming in terms of mini-max, we define a dual problem to (9’) 

(9) Sup Inf A(v ; A). 
hEY’ “E” 

From now on, let 

(g) $f,Cf(Av)-(b, v)} with b E V’. 

We assume that f is the sum of two lower semi-continuous convex functions f, and fi from Y into 

(-M,+ml, 

f=f,t-f2 (2.2) 

.f, is C’.Gateaux-diferentiable and its gradient fi is weakly continuous on finite dimensional 
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subspaces of V and strongly monotone: i.e. there exists y >O such that 

vy,z E YCfXy)-f;(z), y -2)a y/y --2/f 

. the interior in Y of dom fZ is non empty. 

We assume moreover that 
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(2.3) 

(2.4) 

.the operator A’A is an isomorphism from V onto V’; i.e. there exists a >O such that 

The strict convexity of f”A follows. 
We consider the specific perturbation bifunction 

~(~,p)=f(Av+~)-(b,v). 

The dual problem is defined by 

SUP Inf {-(b, v) + Inf [f(Av + p) - (A, p)]} = Sup Inf u(y) + (A, Au - y) - (b, u)}, (2.6) 
,\EY’ “E” PEY hEY’ C”.VE”XY 

after the change of the variable y = Au + p. Inside the brackets, we recognize the expression (1.1) 
of the standard Lagrangian functional X( v, y ; A) corresponding to the constrained problem (P& ). 
We have thus established the equivalence between the choice of the perturbation bifunction @ 
and the introduction of the artificial variable y in problem (PC). 

We study, now, the existence of solutions to (9) and (9). 

PROPOSITION 2.1 Under (2.3), (2.5), there exists a unique sohkon v* to (9). 
Proof.ThereexistsVoE V suchthatf2(Avo) = (f~oA)(uo) < +m,otherwise(P)hasnomeaning. 
Let now z = Au0 and 4(t) =fl(z + t(y -z)) for y E Y; using (2.3) and the equality 

+(l)=$~(O)+JA$‘(t)dt, we deduce 

fI(Y)~.fl(z)+Cf;(z),Y -z)+;lY --z12. (2.7) 

.” I^ ,\ .* 
Since f2 is a proper convex function, even It (L.4) if not satisfied, it has a continuous afiine iower 
bound: 
there exists yZ E Y and p E IR such that: 

fdY)a(Y2,Y)+P VY E y (2.8) 

Then, applying (2.5), we deduce the coercivity of (9): (4(u)-+ + CO if I/d\++ a), and then, the 
existence of ti*[20]. Uniqueness follows from strict convexity of f0A.I 

We now prove the existence of a saddle point of 5!‘(v, y; A). We recall first that the subgradient 
of a function &J : V -+ (- x, + a] at a point u E V is the set (possibly empty) 

Q(u)={p E V’IVV E v 4(v)-+(u)a(Y,v -u)1. (2.9) 

THEOREM 2.1. Any saddle point (v*, y*; A*) of X(v, y; A) over (V X Y) X Y’ satisfies: 

v* is cSolution of (SF’), y* = Av* and A* E af(Av*) with A’A* = b.l 
Conversely, if (2.3), (2.4), (2.5), (2.10) hold, there exists at least one such saddle point. 

(2.10) 

Proof. We first assume that (v*, y*; A*) is a saddle point of 

i.e. which satisfies 
~P(~),Y;A)=~(Y)+(A,A~-Y)-(~,~), 

6P(2,*,y*;A)~c!F(~*,y*;A*) VA E Y' (2.11) 
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$O(U*,y*;h*)~~(U,y;A*) vv,y E vx Y. 

(2.11) implies immediately y* = Au*. Let n = v* in (2.10). We get 

f(y)-f(Au*)a(h*, y -Au*) Vy E Y, 

hence the necessary condition 

A * E @(Au *). 

Let y = Av in (2.12). We get, this time, 

(2.12) 

(2.13) 

f(Av)-(h, v)sf(Au*)-(b, v*) \Jv E V, 

which shows that U* must be solution of (9). It can also be written 

which means that 

f(Av)-f(Av*)a(h, v -v*), 

b E a(foA)(v*). (2.14) 

We now prove that such a triple (v *, y “; A *) exists. Proposition 2.1 concludes to the existence 
of n * since (2.3), (2.5) hold. The qualification hypothesis (2.4) guarantees that there exists a point 
of Y where f is finite and continuous. Then ([20] ch. 1, PR 5.7) 

a(foA)(v)=A’af(Aa) VU E V; 

Therefore (2.14) shows that ~?f(Aa*) is non empty; we can find a A* E f(Av*) such that 

A’A” = b. 

since A’ is an operator onto Y’ by (2.5). We verify easily that (v*, y*; A*) is actually a saddle 
. -I <I)- point 01 X.I 
Remark 1. Since f, is Gateaux-differentiable and because of the qualification hypothesis on 

f2, we have ([20], ch. 1, PR 5.6) 

af = af, + af2. 

We can therefore replace the condition A E af(Au) by 

A*-f:(Av*)E af2(An*).m (2.15) 

Remark 2. In the general case where the convex function g(.) is not restricted to be a linear 
functional, we can prove the existence of a saddle point of the Lagrangian h(v, A) and hence of 

Z(u, y ; A) under the stronger qualification hypothesis: there exists v0 E dom g such that 
Au0 E int dom f. ([20], ch. 3)m 

The augmented Langrangian 
Although (9) has been shown to have a solution A *, the inner minimization problem in (2.6) 

may not have a bounded solution for every A E Y’. For this reason, we switch to the augmented 
Lagrangian. Like the standard Lagrangian was arising from the consideration of a particular 
perturbation bifunction, we can derive the augmented Lagrangian from the class of 
perturbations defined by [34,121 
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the dual problem 

\.(li:A)=!~I{~(o,p)+~lpl’-(h.p)}; 

Sup Inf A,(v; A) 
hEY’ VE” 

can be written, after the change of variable y = Av + p 
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(2.17) 

(2.18) 

(G!&) Sup Inf ~;*,,~,IIFYII{/(y)-(b~~)+(A.A~-~)+~~A~-~Iz)~ 

which agrees with a(~, y; A) of (1.2). 
The virtues of the augmented Lagrangian result from the following properties. 
THEOREM 2.2. If r > 0, any saddle point of the augmented Lagrangian .9YF is saddle point of the 

standard Lagrangian 5? and conversely. 
(Hence, if (2.3), (2.4), (2.5) hold, according to Theorem 2.1, there exists a saddle point (v*, y*; 

A*) of Z). 
Proof. By definition (1.2) Z differs from 5!? by a non-negative term; hence 

with equality if y = Av. 
If (v*, y *; A *) is saddle point of 2, we have y * = Au*. Therefore 

and (v *, y *; A *) is also a saddle point of 5!% Conversely, if (v”, y *; A *) is a saddle point of 5% 

y* = Au*, then: 

Thus, returning to the definition (1.2) of 5%: 

(2.20) 

Choosing, first, L’ = U* in (2.20) we get, since y* = Au*: 

f(y)-f(y*)+(A*, y*-.v,+fly -y*(*30 vy E Y; (2.21) 

For any z E Y, we take y = Bz + (1 - 0)~ * with 0 E IO, 1[ in (2.21). We get, using the convexity of 

f: 

~(f(z)-f(y*))-~(A*,z-y*)+$92~z-y*j2~0; (2.22) 

Dividing by 8, and making 0 -+O, we get: 

f(Y*)-(A*,Y*)~ff(Y)-(A*,Y) VY E y. 

On the other hand, choosing y = y* in (2.20), we get, since y* = Au*: 

;lA(v-v*)I’+(A*,A(v-v*))-(b,v-v*)Hl VvEV; (2.24) 

(2.23) 
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In the same way, taking u = Bw + (1 - B)v* in (2.24) with 0 E IO, I[, we get, as 0 + 0: 

(A*,Av*)-(b, L’*)G(A*,Aw)-(b, w) VW E V; (2.25) 

Finally, adding (2.23) and (2.25) we obtain the desired result: 

the other inequality being 0bvious.m 
The augmented Lagrangian is useful to evaluate the dual functional: 

d,(h) = Inf X(u, y; h) (2.26) 
,L,yE”xY 

THEOREM 2.3. Under (2.3), (2.9, for every A E Y’, there exists a unique solution (vh, y,,) to the 
minimization problem in (2.24). 

Proof. From (2.9, (2.7) and (2.8), we see that LCe,(a, y; h)++ x if u or y ++m, so that the 
problem (2.26) is coercive. Then, it has a solution for any hEY’. 

Uniqueness follows from the strict convexity of 9Zr, for r > 0.1 

Description 

3. A DUAL ALGORITHM 

From now on, we assume that the hypotheses (2.2) to (2.5) hold. To solve (6%) we can 
maximize the differentiable function d,.(A) using a gradient algorithm. This forms the basis for 
Uzawa’s algorithm[7]: 

Uzawa’s Algorithm 
Let A0 E Y. By induction A” being given 
Step 1 Find v*+‘, y”” minimizing on V x Y 

%(v, y; A”) = f(y) - (b, v) + (A”, Av -y) +; JAv - ~1’. 

Step 2 Make 
A n+‘=h”+p(Av”+‘-y”+‘).~ 

(3.1) 

Because of the convexity off, the problem in Step 1 is equivalent to the variational inequality: 

f(y)-f(y”+‘)+(A”+rAv”+‘, AU -(y -y”+‘))-(b, u)?=O VU E V, vy E y; 

which decomposes itself into a variational equation in V 

r(Avn+‘, Au) = (ry”” -h”,Av)-(b,v) VU E V, (3.2) 

and a variational inequality in Y, equivalent to 

(f;(y”“),y -y”+‘)+f2(y)-f2(yn+‘)+(ryni’-rA~n+’-An,y -y”+‘)~0 Vy E Y, (3.3) 

since fl is Gateaux-differentiable. These two problems are coupled to each other by the terms 

(Y “+I, Au) in (3.2) and (Avn+‘, y - y"") in (3.3). A simple way to decouple these problems 
consists in replacing, for instance, y”” by y” in (3.2). The resulting system is much simpler to 

solveandprovidesanapproximationtotheminimizationinStep 1. Westatethenewalgorithm: 

A modified dual algorithm 
Let (y’, A’) E Y x Y’. By induction (y”, A”) being given 

Step 1: Find v”+’ such that: 

(3.4) 

r(Av”+‘, Av) = (ry” - A “, Av) - (b, v) Vv E V. (3.5) 
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Step 2: Find y”” such that: 
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(f:(y”“),y-y”“)+fz(y)-fz(y”+‘)+(ry”+’-A”-rAv””,y-y”“)~O V~EY. (3.6) 

Step 3: Make 

A “+’ = A ” + p (Av”+’ - y"+'). n (3.7) 

Remark 1. (3.5) is the variational formulation of the linear system 

rA’Av”+’ = rA’y” - A’A” -b, 

which is invertible by (2.5). At each iteration, Step 1 consists of the resolution of this system for a 
different second member. I 

Remark 2. (3.6) is a non-linear variational problem in y independent of A. An interesting 
decomposition occurs if Y is finite dimensional and can be viewed as the product of k spaces Yi 
such that f separates itself in 

k 

f(y) = z, A(yi), with Y = (Y,, . . . . , ~4; 

(3.6) is then equivalent to k variational problems 

(f’li(y;+l), yi _ Yin+l)+fZ,(yi)-fii(yr+‘)+(ryi”+‘- sin, yi - yin+‘)zO 
VYi E Yi 

where s,” is the component on Y, of sn = A” + rAv”+‘.m 

Convergence 
According to Theorem 2.2, there exists a saddle point (u *, y *; A *) satisfying (2.8). It verifies 

also 

r(Av*,Av)=(ry*-A*,Av)-(b,v) VVEV, (3.8) 

(fi(y*),y-y*)+fz(y)-f2(y*)+(ry*-A*-rAv*,y-Y*)~0 VYEY (3.9) 

y*= Au”. (3.10) 

Subtracting (3.8) from (3.5) yields: 

r(A(v”“- v*),Av)=(r(y”-y*)-(A”-A*),Av) VvEV. (3.11) 

We introduce the projection operator P from Y onto the range of A, R(A). Since R(A) is closed, 
we have Y = R(A)$R(A)‘. Given any y E Y, Py is the unique element of R(A) such that 

(Py,Av)=(y,Av) VvEV. 

This allows to wiite (3.11) under the explicit form 

A(v”+‘- v*)=P(y”-y*)-;P(A”-A*). (3.12) 

Adding (3.9) with y = y”” to (3.6) with y = y*, we get 

(f~(y”“)-f~(y*),y”“-y*)+(r(y”“-y*)-(A”-A*)-rA(v”“-v*),y”“-y*)~O 

where the terms in fi(y”“) and fi(y*) have cancelled out. Using the expression (3.12) of 
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A(v”+‘- c*). we obtain 

(f{(y”“) -f’l(y*),y”+’ - y”) + r/y”” - y”lZ 

d r(y” - y*, P(y”“_ y*))+(A”-A”,(Z-P)(y”“_y*)) (3.13) 

where Z is the identity operator on Y. A majorant for the first term is given by Schwartz’ 

inequality: 

(y” - y”, p(y”+‘- y*)) = (P(y” - y*), P(y”” - y*))+P(y” -y*)\*+(P(y”+‘- y*)lZ}. (3.14) 

We deduce from (3.7), (3.10), (3.12) 

A n+‘_A*=An -A*-P y”+‘- y*-P(y”-y*)++P(h”-A*)]. 

The projection of the equality of R(A) and R(A)’ yields 

P(h”” - P(A”-A*)-pP(y”+‘-y”), 

(I-P)(A”+‘- A*)=(Z-P)(A”-A*)-p(Z-P)(y”+‘-y”) 

(3.15) 

(3.16) 

and squaring the norm of both members of (3.16) 

l(Z - P)(h”” - A*)l* = I(Z - P)(A” - A*)l*+ p*l(Z - P)(y”+‘- y*)I’ 

-2p(A” -A*,(Z-P)(y”+‘-y”)). (3.17) 

We now use the strong monotonicity of f: (2.3) to obtain 

(f:(y”+‘) -.f:(y*),y”+’ - y*) 2 yly”” - y*1*; (3.18) 

Combining (3.14), (3.17), (3.18) with (3.13) gives 

-y*)~‘++$(Z-P)(A” -A*)/‘. (3.19) 

Adding up (3.19) for II = 0, 1,. . , N: 

+P(y”-y*)~‘+$(Z-P)(A’-A*)/*. 

This shows that for any choice of p such that 0 < p s 2r, and for any N, the series 

$01Y”+‘r*12 

remains bounded and so, converges; therefore 

$rlly” -y*1*=0 

(3.20) 

which proves the strong convergence of {y “} to y* in Y. 
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Squaring the norm of (3.15) and setting 0 = (p/r), we get 

21 

IP(h “+I - h*)~Z=(l-B)Z~P(A”-A*)~*+ p’lP(y”+‘-y”)/2-2p(l-B)(P(A” -A*),P(y”+‘-y”)). 
(3.21) 

We use Schwartz’ inequality under the form 

(P(A” -A*),P(y”+‘- y”))~~[clP(A”-A*)l”+f~P(y”+‘-y”)l’) 

where E is an arbitrary small positive number: (3.21) gives 

lP(A”+’ - A*)/‘~((~-~)*+~E~I-~~)~P(A” -A*)l’+ (p’+jl-B~~)~P(y”‘l-y”)~Z. (3.22) 

Consider the sequence of positive scalars u, defined by 

u,,+, = au,, + bw, (3.23) 

with 0 G a < 1, b > 0, w, > 0 and I: w, < +m. It is easy to verify that for any Ar, E u, < +m and 
fl=” n=O 

u, -0. We observe that the sequence 

W” = lP(y”” - y”)j2 

satisfies the previous condition since 

which has been shown to be bounded. We choose b = [p’+ /l - til(pl~)] and p such that 

(3.24) 

It is easy to check that, if uo= IP(A”- A*)/‘, IP(A” - h*)l’~ II, for every n and IP(A” - A*)I+O. 
Since E is arbitrary, the inequality (3.24) is satisfied for all 0 < p < 2r. 

(3.12) allows us to conclude that (A(v”+‘- v*)( +O and, applying (2.9, we see that 
IIV”-tl- v*11+0. 

We have thus established that the sequence {v”}, constructed by algorithm (3.4), converges 
strongly to v* in V. However, we have only proved that lP(A” - A *)/ -0; we can deduce from 
(3.20) that I(1 - P)(A” - A*)( remains bounded. In fact A* may not be unique. 

THEOREM 3.1. For every stepsize p such that O-C p < 2r, the sequence {(v”, y”)}, 
constructed by algorithm (3.4), converges strongly in V x Y to (v”, Av*) where v* is the unique 
solution of (p). The sequence {A”} remains bounded in Y.I 

Remark 1. Assuming only the monotonicity of fr instead of (2.3), we obtain a modification of 
(3.20): 

$ I(r-P)(y”+‘-y*)~‘+~lP(y”+‘-y*)l’+~l(~-~)(~”+~-A*)~’ 
n 0 

thus, for all 0 < p < 2r, the sequence {y”} generated by algorithm (3.4) remains bounded. 
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To prove theorem 3.1, it is therefore enough to assume the strong monotonicity of fr on every 
bounded set of Y.m 

Remark 2. Convergence of the algorithm can be shown for p = r under the weaker 
hypothesis on f,: suppose that for all C positive, there exists a family of forcing functions 6~: 
R+-+ R’ strictly monotone increasing with SC(O) = 0 such that 

(f:(y)-fl(z),y-z)a&(ly-zl) t/y,z~Y with ly(~C and IzIsC. (3.25) 

We can still prove that y” + y *; for p = r. (3.12) and (3.15) give immediately the convergence 
of vn +v*. 

This assumption is satisfied in the important case where Y is finite dimensional and f, strictly 
convex [21]. n 

Remark 3. For a differentiable problem (fz = 0), we have the existence and uniqueness of X*. 
Moreover A n -+ A *. I 

4. APPROXIMATION VIA FINITE ELEMENTS 

It is in practice convenient to approximate the infinite dimensional problem (9) by a finite 
dimensional one. 

Let V,, C V be a family of internal approximation of V: 

Vu E V, there exists vh E V,, such that vh + v when h + 0 

(In fact, it is sufficient to check it for a dense subset of V). 
In the same way, we shall approximate Y by Y,, C Y. 
Since A (v,,) may not be included in Y,,, we must approximate A by a continuous linear 

operator A,,: V,, -+ Y,,. We assume that A,, satisfies: 

(i) ~u’l/v~/l s lAhvh / G MIIc~II Vvh E Vh ; 
(ii) If vh -v weakly in V, then Ahvh-Av weakly in Y; 

(iii) If u,, + v strongly in V, then Ahvh + Av strongly Y; 

(iv) lAhvh - Avhl+O when IIvh/ISCandh-+O. 

(4.1) 

We restrict, from now on, our analysis to the simplified case where 

(4.2) 

f2 must be compatible with the approximation in the following sense: 

vv E V, 3vh E Vh with v,, -+ v andfZ(Ahvh)-+fZ(Av) (4.3) 

we verify that the hypothesis (2.3) is satisfied in this case. According to proposition (2.1), there 
exists a unique solution v* of (9). 

We approximate (P) by the following problem: 

(,qh) Inf {f(Ahvh) - (b, vh)l 
c,, E v,> 

We now establish the convergence of the approximation in the following sense: 

THEOREM 4.1 Under the hypothesis (4.1), (4.2), (4.3), there is a unique solution v*h to (9%) 
which converges to the solution v* of (9): 

Vet + v* in Vh strongly. 



A dual algorithm for the solution of non-linear variational problems 29 

Proof. (4.1) (i) shows the existence and uniqueness of vt. Moreover UE satisfies the 
variational inequality (equivalent to (%)) 

(A,af,A,t(~,, - v~))+fZ(AhUh)-fZ(AhVR)~(b, 01, - vt) Vvh E I’,,. (4.4) 

for vh = 0, we obtain 

IAG $1’ s fz(Ahv 1) - f*(O) + (b, u *h). (4.5) 

Applying (2.8) and (4.1) (i) to (4.9, we deduce that 

hence I/U t/l G C. 
Thus, we can extract, from vX, a subsequence (which we still call vX) converging weakly to 

w E V, as h + 0. From (4.1) (ii) and (4.4) we have, choosing, for any u E V, vh E V,, as in (4.3): 

IAwI*+.L(Aw)~liminf lAh~X/*+fZ(Ahtd) 
h-0 

(4.7) 

cfz(Au)+(Aw,Av)+(b, w -u) Vu E V 

which shows that w = v* solution of (9). Thus, vX- 3* . t m V weakly (without extraction of any 
subsequence). In fact, it converges strongly: by (4.1) (i) 

allUa-v*I~I~(v~-v*)I~IAv?:-Ah~Xl+lAh~X-Av*l (4.8) 

(4.1) (iv) implies that the first term tends to zero. On the other hand, (4.4) implies that, for any 
v E V with vh + v in V strongly: 

Since f~ is convex l.s.c., we know that f2(Av*) G lim inf fZ(Ahu z) and choosing vh as in (4.3), we 
have: 

Then, taking the lim sup of both members in (4.9), we get: 

limsupx,, s(Au*, Av)+fi(Av)-f2(Au*)-(b, u - v*)-IAv*I~. (4.10) 

Choosing v = I,?*, we get: 

Xh-tO (4.11) 

which, by (4.8) implies the strong convergence of v X toward f*. n 
Remark 1. If fi has finite values, it is continuous (see [20]). Then, applying (4.1) (iv), we see 

that (4.3) ho1ds.I 
2. Suppose that f2 = SK, the indicator function of some closed convex set K C Y: 

SK(Y) = 
I 

Oif y EK 
+ ~0 otherwise 

(4.12) 

Let us define K, and Kh: 

Ko={u E VIAV EK}, 

K,,= {n E VhlAd_h, E K}; 

(4.13) 

(4.14) 
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Hypothesis (4.3) can be formulated as in[181: 

Vu E Ko,3v,, E Khsuchthatvh -+vinVstrongly.m (4.15) 

Remark 3. One could think of approximating problem (9) by 

Inf f lAhvh 1’ + fZ(Bhvh) - (b, vr,) 
U,I EVh 

where Ah and B,, are two approximations of A, satisfying (4.1). We see that, in order to apply the 

penalty-duality algorithm (3.4), it is necessary that A,, = BF,. Thus, when fi is the indicator 
function of some convex K of Y corresponding to a convex Ka of V as in (4.13), the choice of Ah 
automatically determines Kh by (4.14), and we have 

Finite element approximation 
We consider now a open set s2 in RN and specify 

and 

(4.16) 

where the coefficients ai, are smooth functions. 
We introduce a triangulation ?,, of R consisting of a finite family of “triangles” T CR, 

sufficiently regular, and of size less or equal to the positive parameter h [22]. Let PI denote the 
space of polynomials of degree less or equal to k and define the following spaces: V, is the space 
of continuous functions on fi which are equal to polynomials of Pk on each triangle of 9hh, G is the 
space of vectorial functions, continuous on each triangle of %,, and Zh CCh is the space of 
vectorial functions, the restriction of which belongs to (PL,)” on each triangle of yh, 

v, = { Vh E C”(i=L)l L’~ IT E P, for all T E Fh}, (4.17) 

ch= n (C”(T))“, 
I‘E.i,, 

Zh = {Zh E YI zh IT E (P, JN for all T E Fk1. 

We notice that A(Vh) CC,,. But C,, is not finite dimensional. If the functions a;j are constant, 
A (V,,) c Z,,, and the approximation defined by (V,,, Z,,, A) is convergent, according to theorem 
4.1. If the aij are not constant, A( V,,) EZ,, ; we now need an approximation formula for the 

numerical integration of 

Such a formula is also necessary in any case, if the function fi is defined by an integral over a. 
This formula is defined by L integration nodes ci, on a reference element f of ,yh ; then, for 

any triangle T E y,,, we consider the affine mapping J, on R, transforming F into T. To the 
reference nodes br correspond on T the integration nodes uT.[ = J7(Lil). We thus approximate the 
integral Jn 4(x)dx by 

We suppose that the formula is exact for the polynomials of PI,, k’ 20. The use of this 



A dual algorithm for the solution of non-linear variational problems 31 

integration formula can be interpreted as the introduction of an approximate scalar product (.,.)h 

on C,, defined in the following way: for any y,, y2 E Ch 

Since k’ 2 0, the formula is exact for the constant functions 

i 6, = meas (Q; 
,=I 

we can partition ? into fe, 1 = 1, . . . , L such that 

b -i, = ?, 6, E -i;, measure (TO = 6,. 

(4.18) 

We extend this partitioning on every triangle T of T,,, defining 

T,=&(T,). 1=1,..., L. 

We are now able to define 

Yh = {Yh E YI yh(T,E(Po)Nfor/=l,...,LandallTE~~}. (4.19) 

Even though Y, !Z C,, we can easily extend the scalar product (.,.),, on Y,, and moreover 

vy,, yz E Yh (Yl, YZh = (Yl> Yd 

We now construct the mapping ph: C, + Y,,, defined for any zh E C,, by the restrictions of 

ph(zh) to each T,: 

VZ,EC,, p,(~~)~~,=z~(a~.,)forI=l,...~LandallTE~~. 

We obviously have 

Vyh, Zh E Ch (yh, &)h = (ph (yh ), ph (zh 1). 

We finally define 

A,, =ph”A, 

Which is an operator from vh (4.17) into Yh(4’19), such that 

(4.20) 

(4.21) 

f/v,,, W,, E vh (AU,,, AWh)t, = (Ah% Ah%). (4.22) 

We now show the convergence of this approximation in the sense of theorem 4.1. This results 
from the following proposition: 

us 

PROPOSITION 4.1. If k’ > 2k - 3, the operator A,,, defined in (4.21) sutisfies (4.1) and provides 

with a converging approximation. 

Proof. Following Ntdelec[231, we show that: 

l/AvZl’h- ~AvXI*\ s C,hk’-~‘Zk-“llv~ll*, (4.23) 

and, for all zh E .& 

I(AvX,Z~)~ -(Av& ,?,,)I G Czhk’~“k~~7’llvh/11ZhI. (4.24) 

Then, if k’ > 2k - 3, (4.23) implies (4. I) (i) for h sufficiently small. 
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To prove (4.1) (ii), suppose that vh -v, we want to prove that (Ahuh, y) + (Au, y) Vy E Y. But y 
being given, since F,, is a regular family of triangulations, we can choose a particular zh E Z,, 
such that .zh is constant on each T E .!ih and zh -+ y in Y strongly. (In fact, zh E Yh too). Since 
& = ph(Zh), (A&,, &) = (h,, ih),,. Then, We Can Write: 

I(At& Y) - (Av, Y)/ s ItA huh, y - zh)( + I(h,, Zh)h -(A%, Zh)/ + I(AVh, zh) -(Au, Y)i. 

Since oh- v, lAhvh / is bounded and the first term tends to zero. It is the same for the second term 

applying (4.24), and for the third one, since A is continuous; (4.1) (ii) is then established. 
Taking into account (4.23), (4.1) (iii) and (iv) follow immediate1y.a 

S.APPLICATIONTO SOMEPROBLEMSINCONTINUUMMECHANICS 

In the following, Cl is a regular open bounded set of RN of boundary I-. (N = 1, 2, 3). 

5.1 Bingham fluids 
We consider, following Mossolov-Miasnikov[24] and Duvaut-Lions[251, the flow of a 

visco-plastic fluid in a cylindrical pipe of cross section R. Let u denote the component of the 
velocity of the fluid parallel to the axis, and b be the pressure drop per unit length of the pipe. The 
problem is to find the function u(x) E K’(Q) minimizing 

i IX lgrad 2: (‘dx + g lZ Igrad v Idx - l1 bv dx (5.1) 

where v is the viscosity of the material in the fluid regions and g is the plasticity threshold. 
This is a non-differentiable problem of the form (C?), where V = J%‘(n), Y = (L’(a))*, 

A = grad, f,(y) = (v/2) In ly(x)(*d x and f*(y) = g Jrr\y(x)ldx. We check that (2.2) to (2.5) hold. 
The algorithm. Algorithm (3.4) can be made explicit as follows: 

By induction, y”, A” being given 

Step 1: Find v”+’ solution of 
1 

-“t? 
“+’ + div (ry” - X”) = b on R 

v /r=O 
Step 2: Find y”” solution of the variational inequality 

(v+,,In y”+‘(y-y”” n )dx + g 1 (lul - ly”+‘lNx 

3 
I 

(A” + r grad v”“)(y - y”+‘)dx Vy E [L’(Q)]’ 
n 

Step 3: Make 
A ““=A”+p(gradv”‘‘-y”“).~ 

In fact, (5.3) is equivalent to 

(V + r)y”+‘- s” E af2(y”“) a.e. in 0, 

where sn =h”+rgradv”“. Since almost everywhere: 

gY ify#O 

afd Y) = IYI 
gB2(O; l>t if y = 0 

(5.3) can be solved explicitly; 

“+I 

Y =&Max (O.l-fi)a.e. 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

The algorithm reduces to a sequence of Dirichlet problems (5.2), accompanied by the updating 

t&(0, l)={z E R*llz s 1). 
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formulae (5.7), (5.4) for y’**’ and A”“. Since (2.2) to (2.5) hold, the sequence {u,,}, constructed by 
this algorithm, converges to the unique solution v* of (5.1). 

Approximation. We approximate (9) by (y,,) as described in Section 4. Since Y,, is a space of 
piecewise constant functions, formulae (5.5) to (5.7) are still valid, and the algorithm applied to 
problem (OS,,) still consists of iterations formed by (5.2) (5.7), (5.4). Proposition 4.1 shows that, if 
k’>2k-3, uZ+c* as h-0. 

5.2. Minimul hypersurfuces problem 

We want to minimize the area of an hypersurface supported by a given contour in R~+‘. Given 
R CRN and a function g defined on I (the contour being {(x, y) E I x Rly = g(x)}), the problem is 
to find a solution u to: 

-\/( 1 + /grad v I’) dx. (5.8) 

With a slight modification due to the presence of the non-homogeneous boundary condition, this 

can be formalized as a problem (9’) with V = W,‘,‘(Cn), Y = [L’(fi)lN, A = grad, f,(y) = 
J&(1 + ly(x)l’)dx, fz0, b =O. 

We see that V and Y are non-reflexive Banach spaces, and we cannot apply the theory we 
have developed so far. We refer to [20] for the study of the existence of solutions or generalized 
solutions to (5.8). 

Approximation. Formulated in a finite dimensional space V,,, these difficulties disappear: f; is 
strongly monotone, there exists a unique bounded solution VX to (p,,) and the algorithm (3.4) is 
convergent. We use to this purpose an approximation of the problem in the functional 
framework, by piecewise linear finite elements. We refer to [251 for further details and for 
convergence results on the approximation. 

Algorithm. Algorithm (3.4) can be made explict as previously. We ,notice that Step 2 
decomposes itself into ,t’ variational inequalities in y,“+’ where y,“” is the component of y”” on 
the ith element T,. Each of these problems is equivalent to 

where s” is, as before, given by s” = A” + r grad u’~’ . This system of X equations in N variables 
can be reduced to a system of X equations in one variable 0 ~0 

This non-linear equation can be solved efficiently by Newton’s method. Finally, the algorithm is 
as follows: 

Choose y”. A”. By induction, y”, A” being gioen 
Step I: Find v”+’ solution irl V,, of the non-homogeneous Dirichlet problem 

_ rAv”+’ + div(ry” ~ X”) = 0 on Q 
V”+‘l,. = g 

Step 2: For I = I, . , L und for T E r,,, solve the non-linear equution 

with a” = (h” + r grad v”“)l,, 
and set y”+‘lT, = 8. a”. 

Iff”/ 

(5.9) 

Step 3: Make 
A “” = ~“+p(Av”+‘-y”+‘)~~ 
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5.3. Elasto-plastic torsion of a cylindrical bar 
We consider a cylindrical pipe of section 0. We are led to the following minimization 

problem [25]: 

bvdx (5.10) 

where K. is the closed convex set: 

K. = {u E X,‘(,‘(n)l Igrad u I G 1 a.e.>, (5.11) 

Let Y = (LZ(fl))N; V = H”‘(n); A = grad and 

K = {y E (L2(fi))N( IyI d 1 a.e.>. (5.12) 

We see that, if SK is the indicator function of K (see (4.12)), (5.10) can be written; 

Infil (gradvl’dx+&(gradv)-(b,v). 
UEY I1 

(5.13) 

It is a particular case of (9) with f,(yk, = $y~’ and fZ = &. We check that (2.3) and (2.5) hold, but 

K being empty in Y, fi is not continuous in any point, and (2.4) is not satisfied. 
We approximate (5.10) by finite elements, and to prove convergence, we must check that 

(4.14) holds. This is performed in [18] for the particular case of piecewise linear finite elements 

(k = 1). 
We then use algorithm (3.4) to solve the approximate problem (PPh). It converges to the unique 

solution of (5.10). Step 1 is again a Dirichlet problem while step 2 is 

(l+r)(y”“,z-y”“)-(A”+rAv”“,z-Y”“)s~ VzEK (4.12) 

which can be solved explicitly in Yh: in each integration node, we have; 

Y ni’ = (A” + rAv”“) min 
i 
&, ,A” + riUn+,i 

RN 
(4.13) 

5.4. Elasto-plastic displacement problem 
Hencky’s law results in displacement problem[25,26], which is, again, a particular case of (9) 

with 

.V={VE(H’(R))~(~ =0 on a part I, of I} 

.Y = {eii E L2(fl)ji,j = 1,. , Nleij = eii) 

with the scalar product (e, 7): i JI1 T,,eii dx 
i_j _ I 

.A = E “Strain operator”, where, by definition, 

(5.14) 

.Finally fi = 0, and f, is defined in the following way. (We suppose for the sake of simplicity 
that the matrix of the elasticity coefficients is equal to identity; otherwise, see[26]) 

f,(e) = sup (T, e) -4 /T(’ (5.15) 

where K is the plasticity convex set 

K = {T E Y/%(T) 4 0 a.e.} (5.16) 

and B is a convex function on RN(Nc’)‘* called plasticity criterion (it may be Von Misbs, or 

Tresca Criterion). 



A dual algorithm for the solution of non-linear variational problems 35 

It can be checked that f, is differentiable and its gradient is f:(e) = P,(e). Hypothesis (2.3) 
does not hold. In fact, f, is not even strictly convex. 

We refer to[27] where approximation by piecewise linear finite elements has been studied, 
and convergence has been proved using the dual problem (Stress problem) which is coercive. 
Algorithm (3.4) can again be used to solve the approximate problem. Step 2 of the algorithm can 
be solved explicitly, element by element, and the algorithm is then reduced to the solution of a 
sequence of elastic problems (linear systems, the matrix of which is fixed). The method is 
particularly performing in this case, as we can see in the numerical results, for which we refer 
to[27], because the elasticity matrix is ill-conditioned. 

5.5. Non-linear Dirichlet problem [4] 
This is the following problem: find u E W,‘,‘(fI) such that 

(5.17) 

Once again, algorithm (3.4) can be applied, with A = grad and f(y) = hJOlyl” dx: this has been 
performed by GlowinsktMarrocco[28], to which we refer for details and numerical results. 

6. NUMERICAL RESULTS 

Let E = (l/r) in the following 

6.1. Mossolov problem 
We treat a 2-dimensional example, the exact solution of which is known [ 181; R is the disk 

We used a triangulation with 512 triangles and 225 internal nodes (Fig. 1) corresponding to 
piecewise linear finite elements. 

The exact solution is constant on a disk of radius R/2 and its value is 0.25. The value of the 
approximate solution is 0.2506? 5 . 10m5. With e = 1 and p = 1, this value is reached already at the 
second iteration of the algorithm. 

However, the convergence of the algorithm is much slower with respect to the multiplier A (in 
fact, it is not proved). This can be seen on the quantity 1~“” - Av”+‘l which tends to zero quite 

slowly (Tables 1 and 2). 
Little improvements can be obtained by a variation of p (Table 1). The choice of E is more 

important, even though it is easy: taking E < 1 accelerates slightly the convergence in A, but gives 

Fig. 1. Triangulation chosen for the unit disk [18] (512 nodes, 225 internal nodes). (dard regions are plastic). 
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Table 1. Influence of p on the speed of convergence. E = 1, 225 independent variables. (I) Norm chosen for 
the stopping test (2) n: number of performed iterations (3) U: value of the solution at the center of the disk (4) 

n *: number of iterations necessary for the convergence of U 

0.33 0.7 5 0.467 

0.66 0.1 5 C.2725 

______-_-_..__________--.._--_-____.____________..__~_ 1 0.03 5 0.2506 

1.1 0.0022 10 0.2506 7 

1.2 0.0020 10 0.2505 8 

1.3 0.0018 10 0.2505 9 

1.33 0.05 S 0.2574 

1.66 0.5 5 0.4093 

I I I I I 

Table 2. Influence of e on the speed of convergence. p = (l/c). (Columns as for Table 1) 

reverse effect on CL (This can be seen on Table 2, where rt * is the number of iterations from which 

V ” = 0.2506? 5 . lo-‘). Conversely, when E > 1, both convergence in A and u are 

slower. 
A good compromise seems E = 1 and p = 1. For this value, the computing time is 2 set on IBM 

370/168. Comparison with duality methods [18] or direct non-differentiable methods of Davidon 
type[29,30] shows the efficiency of the algorithm (5.2), (5.3), (5.4). For quadratic approximations 
with numerical integrations, it would be interesting to compare with Bristeau[31]. 

6.2. Minimal surface problem 
We treat, as[32], a 2-dimensional example where R is the circular crown bounded by two 

concentrical circles T, and IYz, of radius 1 and 4 (Fig. 2). We take g = 0 on l2 and g = C (constant) 
on r,. As noted by [32], for C 5 2.07, the solution has some vertical parts and is no more in W’,’ 

(a). 
We used, first, a regular triangulation with 192 triangles and 72 internal nodes. Then, dividing 

each triangle in 4 triangles, we got a new triangulation with 768 triangles and 336 variables (Fig. 3). 
At last, as the solution is irregular near r,, we also used a triangulation, isomorphic to the 

previous one, but refined around r, (Fig. 4). 

Fig. 2. Domain for the minimal surface problem. 
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Fig. 3. Normal triangulation. 768 triangles, 336 variables. 

Fig. 4. Refined triangulation. 768 triangles, 336 variables 

The stopping test, chosen for the algorithm, is 

For cy = 10m6 and 72 variables, the variation of the number of iterations (n) with respect to E is 
small (Fig. 5). 

For E = 1.8, little improvements can be obtained by a variation of p (Table 3). 
For 336 variables, the number of iterations increases within reasonable proportions for the 

regular triangulation, but more for the refined one (Table 4). 
The computing time is 6 set, for 72 variables, and 20 set, for 336 variables (IBM 370/168), 

which is reasonable compared to more classical methods like non linear successive over 
relaxation [32] or non-linear conjugate gradient [28]. 

For another finite element approximation, see Jouron [33]. 

6.3. Elasto -plastic torsion 
We treat, for the sake of simplicity, a one-dimensional example: Q = [0, l] and a discretization 

by piecewise linear finite elements on a regular mesh, the step of which is h. 
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Fig. 5. Variation of n (number of iterations) with respect to E. a = IO-“, 72 variables. 

Table 3. Variation of n with respect to p (Y = IO-‘, 72 variables for E = 1.8 

Table 4. Results with 336 variables 

type of the 

triangulation 

i 
refined 

2- 

Y ' 

05p 

0 

E 

1.8 

2 

2.2 ______ 

2.2 

1.8 

2.2 

2.2 

- 
C 

2 

2 

2 __-_ 

3 

2 

2 

3 

En 

10-7 

lo-' 

lo-' _--__----__ 

2.10-S 

2.10-4 

3.10-v 

lo-' 

n 

43 

39 

36 112") __---_-- ___ 

66 

46 

26 

140 (45") 

Fig. 6. Radial section of the solution (minimal surface) 1. 72 variables. 2. 336 variables (normal triangulation) 
3. 336 (refined triangulation) 4. exact[32]. 
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When b = constant, we have an exact solution which is parabolic on the elastic zone 
I$-;, $+i[ and linear elsewhere on a. 

Numerical results show that for b = 10, starting from y0 = 0 and ho = 0, the best choice for E 
is the biggest one, limited, however, by the appearance of round-off errors when E is to big (Table 
5). For p, a good choice seems to be p = (l/e) (Table 6). 

In that case, results are quite independent on b, even when b ~2, which corresponds to a 
quadratic problem. 

A theorical study of the speed of convergence would show that starting from A” = 0, it is 
better to take E very big, this resulting from the fact that ho - A * is eigenvector of ‘4 (A’A)-‘A’. 

On the contrary, if we start from A0 = (1, 1, . . , l), when b is small (quadratic problem), a 
good choice is E = 1 (Table 7). 

Table5 Choiceof E fortheelasto-plastictorsionwith h = (l/20), b = 10andh” = 0 

Table 6. Choice of p with h = (l/10), b = 2, A” = 0, E = 20 

P n % UC;) (lJex=O. 25) 

0.5 10 0.2 0.26 

0.9 10 10-7 0.25 

________._________.____lorl____. 1 8 0.25 --__-___-__ 

1.1 10 10-7 0.25 

1.8 10 12 -0.35 

2 10 90.9 -4.29 

Table7. ChoiceofcwhenA”=(l,l . . . . l).h =(l/lO),b =2 

E n En 

low" 10 Cv.very slow 

0.7 10 1.6 lo-' 

1 10 9. lo-' 

10 3 10 7.5 no Cv. 
10 I2 10 7.5 

CONCLUSION 

From the numerical point of view, we can summarize the properties of the penalty-duality 
algorithm. 

It is very easy to implement, the main part of the algorithm being common to every problem 
and consisting of the solution of a linear system, the matrix of which can be factorized once for 
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all, at the beginning. The only change, from one problem to another, is relative to step 2 of the 
algorithm, which consists in solving N non-linear equations, generally in one variable. 

To select p and E, the best is to choose p = (I/E). and to try E = I or 2 at the beginning then, 
other values of E may be tried. 

It is better to start from y0 = 0 and A” = 0. at least at the beginning. 
The algorithm has revealed to be very efficient, and the comparison with other classical 

methods[l8,30] shows that it is particularly useful when the matrix A’A is ill-conditioned. 
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