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Abstract In this paper we report on combined Dufour and Soret effects on the heat and mass

transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and

heat generation. The effects of partial slip on the velocity at the boundary, convective thermal

boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration

boundary condition are investigated. The model equations are solved using the spectral relaxation

method. The results indicate that the fluid flow, temperature and concentration profiles are signif-

icantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the

velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temper-

ature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase

in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increas-

ing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation

parameter increases the temperature profile. A validation of the work is presented by comparing

the current results with existing literature.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The concept of nanofluids was introduced by Choi [1] where he

proposed the suspension of nanoparticles in a base fluid such
as water, oil, and ethylene glycol. Buongiorno [2] attempted
to explain the increase in the thermal conductivity of such
fluids and developed a model that took into account the parti-
cle Brownian motion and thermophoresis.

Noghrehabadi et al. [3] investigated the effects of the slip
boundary condition on the heat transfer characteristics for a
stretching sheet subjected to convective heat transfer in the
presence of nanoparticles. They found that the flow velocity

and the surface shear stress on the stretching sheet are strongly
influenced by the slip parameter with a decrease in the momen-
tum boundary layer thickness and increase in thermal bound-

ary layer thickness. Khan and Pop [4] studied the problem of
laminar fluid flow which results from a stretching of a flat sur-
face in a nanofluid. They analyzed the development of the
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steady boundary layer flow, heat transfer and nanoparticle
volume fraction over a stretching surface in the nanofluid.
They observed that the reduced Nusselt number decreased

while the reduced Sherwood number increased with the param-
eters considered in the study. They further obtained linear
regression estimations in terms of Brownian and thermophore-

sis parameters for both the reduced Nusselt and Sherwood
numbers. Nadeem et al. [5] studied two-dimensional boundary
layer flow and heat transfer in steady incompressible Oldroyd-

B nanofluid due to a stretching sheet. They showed that an
increase in the Brownian motion parameter reduced the local
Nusselt number while the local Sherwood number increased.
Makinde et al. [6] studied the combined effects of buoyancy

force, convective heating, Brownian motion, thermophoresis
and a magnetic field on stagnation point flow and heat transfer
due to a nanofluid flow from a stretching/shrinking sheet

under the assumption that the magnetic Reynolds number
was small. Their results showed that dual solutions exist for
the shrinking case and an increase in the buoyancy force

reduced both the skin friction coefficient and the local Sher-
wood number while the local Nusselt number increased. Har-
oun et al. [7] studied the heat and mass transfer in

magnetohydrodynamic mixed convection flow of a nanofluid
over an unsteady stretching/shrinking sheet. The flow consid-
ered was subject to a heat source and viscous dissipation. Soret
and Dufour effects were assumed to be significant. They

further assumed that the nanoparticle volume fraction at the
wall could be actively controlled. The resulting fluid model
equations were solved using the spectral relaxation method,

an accurate technique for solving nonlinear boundary value
problems. Recently, Haroun et al. [8] investigated magnetohy-
drodynamic nanofluid flow past an impulsively stretching

surface with a chemical reaction and an applied magnetic field
using the spectral relaxation method.

Casson fluid is classified as a non-Newtonian fluid due to its

rheological characteristics in relation to the shear stress–strain
relationship. It behaves like an elastic solid at low shear strain
and above a critical stress value, it behaves like a Newtonian
fluid. A Casson fluid can best be described as a shear thinning

liquid with infinite viscosity at zero shear rate, and zero viscos-
ity at an infinite rate of shear. Some common examples of
liquids that exhibit Casson fluid characteristics include tomato

sauce, honey, soup, orange juice and human blood.
Mustafa et al. [9] used the homotopy analysis method of

solution to study the boundary layer flow of a Casson fluid

near the stagnation-point on a stretching surface and presented
results for the limiting case when the Casson parameter tends
to infinity. Mustafa et al. [10] studied the momentum and ther-
mal boundary layer development in a Casson fluid flow over a

semi-infinite flat plate when both the ambient fluid and the flat
plate are impulsively set in motion at the same time and the
temperature of the flat plate is suddenly raised from that of

the surrounding fluid. They derived parabolic partial
differential equations which were solved analytically using
the homotopy analysis method. Nandy [11] investigated the

hydromagnetic boundary layer flow and heat transfer in a
non-Newtonian Casson fluid with a stagnation point over a
stretching surface in the presence of velocity and thermal

slip boundary condition and the results indicated that the flow
and temperature fields were greatly affected by the slip
parameters on the velocity and thermal boundary conditions
respectively. Makanda et al. [12] considered two-dimensional
flow and diffusion of a chemically reactive species in Casson
fluid from an unsteady stretching surface in the presence of
magnetic field. It was generally noted that increasing the mag-

netic and permeability parameters reduced the velocity pro-
files, the coefficient of heat transfer and the concentration
profiles while the skin friction increased. Bhattacharyya [13]

considered two-dimensional magnetohydrodynamic stagna-
tion point flow of an electrically conducting Casson fluid and
heat transfer due to a stretching sheet under the effect of

thermal radiation. They pointed out that the velocity bound-
ary layer thickness for Casson fluid is larger than that of
Newtonian fluids due to the plasticity of the Casson fluid.
Mukhopadhyay et al. [14] studied Casson fluid flow over an

unsteady stretching surface by extending the earlier work of
Andersson et al. [15]. Hayat et al. [16] presented Soret and
Dufour effects on two-dimensional flow of a Casson fluid

induced by a stretching surface that is electrically conducting.
They used the homotopy analysis method to solve the nonlin-
ear system of ordinary differential equations. Nadeem [17]

studied magnetohydrodynamic three dimensional Casson fluid
flow past a porous linearly stretching sheet and they concluded
that due to viscosity effects, the Newtonian fluid has less

friction at the wall compared to the non-Newtonian fluid.
Bhattacharyya [18] obtained analytical solutions for magneto-
hydrodynamic boundary layer flow of Casson fluid over a
permeable stretching/shrinking sheet with wall mass transfer.

Nadeem et al. [19] investigated the magnetohydrodynamic
boundary layer flow of a Casson fluid over an exponentially
permeable shrinking sheet. Nadeem et al. [20] discussed

enhancement in the heat and mass transfer of a three dimen-
sional magnetohydrodynamic Casson nanofluid and adjusted
the hot fluid along the lower surface of the wall by introducing

a convective boundary condition. They showed that a Newto-
nian nanofluid produces low skin friction at the wall compared
to the Casson nanofluid and that there is low thermal conduc-

tivity for a higher Prandtl numbers. Mukhopadhyay [21]
examined the effects of thermal radiation on Casson fluid flow
and heat transfer over an unsteady stretching surface subjected
to suction/blowing and they concluded that the Prandtl num-

ber can be used to increase the rate of cooling in the Casson

fluid flow, temperature profile is intensified with increase in
the radiation parameter, while the Casson parameter reduced

the momentum boundary layer thickness and enhanced the
thermal boundary layer thickness. Raju et al. [22] analyzed
the flow, heat and mass transfer behavior of a Casson fluid

past an exponentially permeable stretching surface in the pres-
ence of thermal radiation, a magnetic field, viscous dissipation,
a heat source and chemical reaction, and they showed that
increasing the heat source parameter reduced the temperature

profiles in the boundary layer.
Recently, Kuznetsov and Nield [23] revisited their model on

the natural convective boundary layer flow of a nanofluid over

a vertical plate by including the effects of Brownian motion
and thermophoresis. For the new model they argued that the
nanofluid particle fraction at the boundary should be passively

rather than actively controlled in order for the model to be
physically realistic. This recent boundary condition provides
one of the motivations for the present research.

The study of unsteady flow of Casson nanofluid has not
been given much consideration so far. The aim of this paper
is to study the fluid flow, heat and mass transfer in a Casson
nanofluid, the Casson fluid being the base fluid. The



Table 2 Comparison of values of f00ð0Þ with those of existing

literature for various values of a when b ! 1.

a Present Mustafa

et al. [9]

Mahapatra and

Gupta [30]

Ishak et al.

[31]

0.01 �0.99782 �0.99802 – �0.9980

0.10 �0.96937 �0.96939 �0.9694 �0.9694

0.20 �0.918111 0.918107 0.9181 0.9181

0.50 �0.66726 �0.66735 �0.6673 �0.6673

2.00 2.01750 2.01757 2.0175 2.0175

3.00 4.72928 4.72964 4.7294 4.7294

Unsteady Casson nanofluid flow over a stretching sheet 1027
traditional Casson nanofluid model is revised to include the
effect of thermophoresis and Brownian motion. In this paper
we have studied the effects of various parameters (such as Soret,

Dufour, thermal radiation, heat generation and unsteadiness
parameters) on the fluid flow, heat and mass transfer profiles
with Navier slip and thermal convective boundary conditions.

The model equations are solved using the spectral relaxation
method proposed by Motsa [24]. The spectral relaxation method
has the characteristics of fast convergence and good accuracy as

shown in some recent studies (see [25,26]). We give qualitative
and quantitative comparisons with previously published work
to show that our results are accurate.
Table 3 Comparison of values for skin friction coefficient for

various values of b and M with those of Nadeem et al. [19]

when a ¼ 0.

b M Present Nadeem et al. [19]

1 0 1.00000 1.0042

5 �1.09544 �1.0954

1 �1.41421 �1.4142

1 10 �3.31662 �3.3165

5 �3.63318 �3.6331

1 �4.69042 �4.6904

1 100 �10.04987 �10.049

5 �11.00909 �11.0091

1 �14.21267 �14.2127
2. Governing equations and boundary conditions

Consider the unsteady two-dimensional laminar flow and heat
transfer of an incompressible Casson nanofluid past a stretch-
ing sheet with stretching velocity uðx; tÞ ¼ cx=ð1� ktÞ, where
c > 0; k P 0 are constants and t is time. The unsteady stretch-
ing surface has a uniform temperature and nanoparticle con-
centration Tw and Cw respectively. The temperature and

nanoparticle concentration far from the surface is T1 and
C1 respectively.

The rheological equation of state for an isotropic and

incompressible flow of a Casson fluid is expressed (see
[11,29]) as:

sij ¼
2 kc þ s0ffiffiffiffi

2p
p

� �
eij if p > pc

2 kc þ s0ffiffiffiffiffi
2pc

p
� �

eij if p < pc;

8><
>: ð1Þ

where

eij ¼ 1

2

@ui
@xj

þ @uj
@xi

� �
; ð2Þ

is the rate of strain tensor, sij is the component of stress tensor,

kc is the Casson coefficient of viscosity, p ¼ eijeij is the product

of the rate of strain tensor with itself, pc is the critical value of
the product of the rate of strain tensor with itself, s0 is the yield
stress of the fluid and ui are the velocity components. It is
assumed that both temperature and concentration at the sur-
face vary with distance and time from the origin, thus the tem-
perature Tw and concentration Cw at the surface are given by:

Twðx; tÞ ¼ T1 þ bx2

ð1� ktÞ2 ; Cwðx; tÞ ¼ C1 þ b1x
2

ð1� ktÞ2 ð3Þ

where b and b1 are constants. It should be noted that the

expressions uwðx; tÞ;Twðx; tÞ, and Cwðx; tÞ are valid only for

time t < k�1, but not when k ¼ 0.
Table 1 The values of f00ð0Þ for various values of unsteadiness
parameter A for Newtonian fluid.

A Present

results

Sharidan

et al. [28]

Chamka

et al. [29]

Mukhopadhyay

et al. [14]

0.8 �1.261043 �1.261042 �1.261512 �1.261479

1.2 �1.377725 �1.377722 �1.378052 �1.377850
The continuity, momentum, energy and concentration
equations of the unsteady incompressible Casson nanofluid

boundary layer flow are as follows (see [11]):

@u

@x
þ @v

@y
¼ 0; ð4Þ

@u

@t
þ u

@u

@x
þ v

@u

@y
¼ U

dU

dx
þ m 1þ 1

b

� �
@2u

@y2
þ rB2

0

q
ðU� uÞ; ð5Þ

@T

@t
þ u

@T

@x
þ v

@T

@y
¼ k0
qcp

@2u

@y2
þ m
cp

1þ 1

b

� �
@u

@y

� �2

þrB2
0

q
ðU� uÞ2

� 1

qcp

@qr
@y

þ Q0

qcp
ðT�T1Þþ s DB

@C

@y

@T

@y
þDT

T1

@T

@y

� �2
" #

þDmk0
cscp

@2C

@y2
; ð6Þ

@C

@t
þ u

@C

@x
þ v

@C

@y
¼ DB

@2C

@y2
þ DT

T1

@2T

@y2
þDmk0

Tm

@2T

@y2
; ð7Þ

where u and v are the velocity components along the x- and
y-directions, respectively, m is the kinematic Casson fluid
viscosity, q is the density of the fluid, r is the electrical conduc-
tivity, B0 is the uniform magnetic field along y-axis, cp is the

specific heat at constant pressure and b ¼ kc
ffiffiffiffiffiffiffi
2pc

p
=s0 is the

non-Newtonian Casson parameter. k0 is the thermal diffusiv-
ity, qr is the radiation heat flux, Q0 is the heat generation
constant, s ¼ ðqcÞp=ðqcÞf is the ratio of the heat capacity of

the nanoparticle material and the heat capacity of the fluid,
DB is the Brownian diffusion coefficient, DT is the



Table 4 Comparison of results for �f00ð0Þ with the slip factor

d.

d Present

results

Noghrehabadi

et al. [3]

Sahoo and Do [32]

0 1.000000 1.0 1.001154

0.1 0.872083 0.872082 0.871447

0.2 0.776377 0.776377 0.774933

0.3 0.701548 0.701548 0.699738

0.5 0.591195 0.591195 0.589195

1.0 0.430160 0.430160 0.428450

2.0 0.283979 0.283980 0.282893

3.0 0.214054 0.214055 0.213314

5.0 0.144714 0.144841 0.144430

10 0.080932 0.081243 0.081091

20 0.043569 0.043790 0.043748 0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7 A =   0
A = 0.3
A = 0.8

Figure 1 Effect of the unsteadiness parameter A on the velocity

profile f 0ðgÞ when d¼Bi¼0:5;Ec¼0:1;a¼0:1;NR¼Nb¼Nt¼0:5;

He¼0:3;Df¼0:5;b¼1:0;M¼0:5;Pr¼1:0;Sr¼1:0 and Sc¼1:0.
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thermophoretic diffusion coefficient, Dm is the mass diffusivity,

cs is the concentration susceptibility, and Tm is the mean
temperature.

The dimensional boundary conditions are:

u ¼ uwðx; tÞ þ uslipðx; tÞ; v ¼ 0; �k�
@T

@y
¼ hfðTw � TÞ;

DB

@C

@y
þ DT

T1

@T

@y
¼ 0 at y ¼ 0; ð8Þ

u ! Uðx; tÞ ¼ ax

1� kt
;
@u

@y
! 0; T ! T1;

C ! C1 as y ! 1; ð9Þ

where

uwðx; tÞ ¼ cx

1� kt
; uslipðx; tÞ ¼ Lm

@u

@y
and L ¼ Nð1� ktÞ12;

ð10Þ

is the slip velocity factor, k� ¼ k0ð1� ktÞ12 is the thermal con-
ductivity and hf is the convective heat transfer coefficient.
Table 5 Computed values of Skin friction coefficient, hea

A ¼ 0:8; Bi ¼ 0:5; Pr ¼ Sc ¼ 1; Nt ¼ 0:5; Nb ¼ 0:3; He ¼ 0:3; Ec ¼ 0

NR.

b M Df Sr NR

0.5

1.0 5.0 0.5 0.4 0.2

2.0

0.5

2.0 1.0 0.5 0.4 0.2

2.0

0.0

2.0 5.0 0.1 0.4 0.2

0.3

0.1

2.0 5.0 0.5 0.5 0.2

0.7

0.5

2.0 5.0 0.5 0.4 1.0

3.0
We introduce the stream function w defined in the usual
way in terms of the velocity components, a similarity variable
g and the following similarity transformations;

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c

mð1� ktÞ
r

; w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cm
ð1� ktÞ

r
xfðgÞ;

Tw ¼ T1 þ bx2

ð1� ktÞ2 hðgÞ; Cw ¼ C1 þ b1x
2

ð1� ktÞ2 /ðgÞ: ð11Þ

where fðgÞ; hðgÞ and /ðgÞ are the non-dimensional velocity,

temperature and concentration respectively. Substituting into
Eqs. (4)–(7), gives the non-dimensional equations;

1þ 1

b

� �
f 000 þ ff 00 � f 02 � A f 0 þ g

2
f 00

� �
þ a2 þMða� f 0Þ ¼ 0;

ð12Þ
t transfer coefficient and mass transfer coefficient when

:3; a ¼ 0:2 and d ¼ 0:1 for different values of b;M;Df;Sr and

ð1þ 1
bÞf 00ð0Þ �h0ð0Þ �/0ð0Þ

�3.23231 �0.31768 0.52947

�2.56075 �0.33313 0.55522

�2.16359 �0.34371 0.57284

�1.44319 �0.40475 0.67458

�1.54818 �0.39609 0.66014

�1.73352 �0.38055 0.63425

�2.16359 �0.31031 0.51718

�2.16359 �0.31658 0.52763

�2.16359 �0.33020 0.55034

�2.16359 �0.34587 0.57644

�2.16359 �0.34227 0.57044

�2.16359 �0.33490 0.55817

�2.16359 �0.33718 0.56197

�2.16359 �0.32389 0.53982

�2.16359 �0.28473 0.47456
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1

Pr
1þNRð Þh00 � A 2hþ g

2
h0

� �
� 2f 0hþ fh0 þHeh

þNth02 þNbh0/0 þ 1þ 1

b

� �
Ecf 002 þMEcða� f 0Þ2

þDf/00 ¼ 0; ð13Þ

/00 � Sc Að2/þ g
2
/0Þ þ 2f0/� f/0 � Srh00

h i
þ Nt

Nb
h00 ¼ 0; ð14Þ

subject to the boundary conditions

fð0Þ ¼ 0; f 0ð0Þ ¼ 1þ df 00ð0Þ; f 0ð1Þ ¼ a; f 00ð1Þ ¼ 0; ð15Þ
h0ð0Þ ¼ �Bið1� hð0ÞÞ; hð1Þ ¼ 0; ð16Þ
Nb/0ð0Þ þNth0ð0Þ ¼ 0; /ð1Þ ¼ 0; ð17Þ
where differentiation is with respect to g and A ¼ k=c is the

unsteadiness parameter, a ¼ a=c is the dimensionless velocity

ratio parameter, M ¼ rB2

c q is the magnetic parameter,

Pr ¼ mqcp=k0 is the Prandtl number, Sc ¼ m=DB is the Schmidt

number, He ¼ Q=cqcp is the heat generation parameter,

Nb ¼ sDBðCw � C1Þ=m is the Brownian motion parameter,
Nt ¼ sDTðTw � T1Þ=mT1 is the thermophoresis parameter,

Df ¼ Dmk0ðCw�C1Þ
cscpmðTw�T1Þ is the Dufour number, NR ¼ 16r�T31

3k�mqcpk0
is the

radiation parameter, Ec ¼ c2=bcp is the Eckert number,

Sr ¼ Dmk0ðTw�T1Þ
TmmðCw�C1Þ is the Soret number, d ¼ N

ffiffiffiffiffi
cm

p
is the dimen-

sionless velocity slip parameter and Bi ¼ ffiffiffiffiffiffiffi
m=c

p
hf=k0 is the

Biot number.

3. Method of solution

In this section, the spectral relaxation method (SRM) is used
to solve the nonlinear differential Eqs. (12)–(14). The SRM
algorithm (see [24–26]) first decouples the system of equations

and an iteration scheme is then developed from the decoupled
equations by evaluating linear terms at the current iteration
level rþ 1. To use this method, we first reduce the order of
the equations as follows;
0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7 β = 0.4
β = 0.6
β = 0.8
β =   1

Figure 2 Effect of the Casson parameter b on the velocity profile

f 0ðgÞ when d ¼ Bi ¼ 0:5; a ¼ 0:1;NR ¼ Nb ¼ Nt ¼ 0:5;He ¼ 0:3;

Df ¼ 0:5;Sr ¼ 1:0, M ¼ 0:5;Sc ¼ 1:0;Ec ¼ 1:0;Pr ¼ 1:0 and

A ¼ 0:8.
f0rþ1 ¼ gr; frþ1ð0Þ ¼ 0; ð18Þ

1þ 1

b

� �
g00rþ1 þ frþ1 � A

g
2

� �
g0rþ1 � ðAþMÞgrþ1

¼ g2r � a2 �Ma; ð19Þ

1

Pr
1þNRð Þh00rþ1 þ frþ1 � A

g
2
þNb/0

r

� �
h0rþ1 � 2grþ1hrþ1

� ð2A�HeÞhrþ1 ¼ �Nth02r � 1þ 1

b

� �
Ecg02rþ1

�MEcða� grþ1Þ2 �Df/00
r ; ð20Þ

/00
rþ1 þ Sc frþ1 � A

g
2

� �
/0

rþ1 � 2Scgrþ1/rþ1 � 2ASc/rþ1

¼ �ðSrScþNt=NbÞh00rþ1; ð21Þ
subject to

grþ1ð0Þ ¼ 1þ dg0rþ1ð0Þ; grþ1ð1Þ ¼ a; g0rþ1ð1Þ ¼ 0;

ð22Þ

h0rþ1ð0Þ ¼ �Bið1� hrþ1ð0ÞÞ; hrþ1ð1Þ ¼ 0;

Nb/0
rþ1ð0Þ þNth0rþ1ð0Þ ¼ 0;/rþ1ð1Þ ¼ 0: ð23Þ

Eqs. (18)–(22) are solved using the Chebyshev pseudo-spectral
method [24]. The unknown functions are defined by Chebyshev
interpolating polynomials with Gauss–Lobatto points defined

by

ni ¼ cos
pi
N
; i ¼ 0; 1; . . . ;N; �1 6 n � 1; ð24Þ

where N is the number of collocation points used. The semi-

infinite domain is approximated by the truncated domain
½0;L� for convenience of numerical computations. Using the
linear transformation g ¼ Lðnþ 1Þ=2, the interval [0;L] is
transformed into the interval ½�1; 1�, where L is a scaled

parameter used as the boundary condition value at infinity.
It is a large but finite number chosen to represent the behavior
of the flow properties when g is very large.
0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7
M =   0
M = 0.5
M =   1
M =   2

Figure 3 Effect of the magnetic parameter M on the velocity

profile f 0ðgÞ when d ¼ Bi ¼ 0:5; a ¼ 0:1;NR ¼ Nb ¼ Nt ¼ 0:5;

He ¼ 0:3;Ec ¼ 0:1;Df ¼ 0:5;Sr ¼ 1;Pr ¼ 1;Sc ¼ b ¼ 1:0 and

A ¼ 0:8.
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Figure 5 Effect of the Casson parameter b on the temperature

profile hðgÞ when a ¼ 0:1; d ¼ Bi ¼ 0:5;NR ¼ Nb ¼ Nt ¼ 0:5;
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Figure 6 Effect of the unsteadiness parameter A on the

temperature profile hðgÞ when d¼Bi¼ 0:5;NR ¼Nb¼Nt¼ 0:5;
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The differentiation matrix D used to approximate the
derivatives of the unknown variables is defined by:

df

dg
¼ RN

k¼0DikfðnkÞ ¼ Df; i ¼ 1; 2; . . . ;N; ð25Þ

where D ¼ 2D=L and f ¼ ½fðn0Þ; fðn1Þ; . . . ; fðnNÞ�T is the vector
function at the collocation points. Discretizing Eqs. (18)–(22)

using the spectral relaxation method, we obtain the following
matrix equations:

A1frþ1 ¼ B1; frþ1ðnNÞ ¼ 0; ð26Þ
A2grþ1 ¼ B2; grþ1ðnNÞ ¼ 1þ dg0rþ1ðnNÞ; grþ1ðn0Þ ¼ a;

g0rþ1ðn0Þ ¼ 0; ð27Þ
A3Hrþ1 ¼ B3; h0rþ1ðnNÞ ¼ �Bið1� hrþ1ðnNÞÞ;
hrþ1ðn0Þ ¼ 0; ð28Þ
A4Urþ1 ¼ B4; Nb/0

rþ1ðnNÞ þNth0rþ1ðnNÞ ¼ 0;

/rþ1ðn0Þ ¼ 0; ð29Þ
where

A1 ¼ D; B1 ¼ gr ð30Þ

A2 ¼ 1þ 1

b

� �
D2 þ diag frþ1 � A

g
2

h i
D� ðAþMÞI;

B2 ¼ g2r � a2 �Ma; ð31Þ
A3 ¼ 1

Pr
ð1þNRÞD2 þ diag frþ1 � A

g
2
þNbU0

r

h i
D

� 2diag grþ1

� �� ð2A�HeÞI; ð32Þ

B3 ¼ �Nth02r � 1þ 1

b

� �
Ecg02rþ1 �MEcða� grþ1Þ2 �DfU00

r ;

ð33Þ
A4 ¼ D2 þ Scdiag frþ1 � A

g
2

h i
D� 2Scdiag grþ1

� �� 2AScI;

ð34Þ
B4 ¼ �ðSrScþNt=NbÞH00

rþ1: ð35Þ
Here I is an ðNþ 1Þ � ðNþ 1Þ identity matrix, diag½� denotes a
diagonal matrix and f; g; H; and U are the values of functions
f; g; h and / respectively when evaluated at the collocation

points. The matrix systems (26)–(29) constitute the SRM
scheme in which the equations are solved iteratively starting
with suitable initial guesses f0ðgÞ; g0ðgÞ; h0ðgÞ and /0ðgÞ.

4. Results and discussion

In this study the governing equations were solved using the
spectral relaxation method. Extensive calculations were per-

formed to obtain the velocity, temperature, concentration pro-
files as well as the skin friction, the local Nusselt number and
the local Sherwood number for various physical parameters

values. Tables 1 to 4 give a comparison of the skin friction
coefficient with the previously published results. Table 1 shows
the skin friction coefficient for various values of the unsteadi-

ness parameter A for a Newtonian fluid (i.e., when b ! 1)
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Figure 8 Effect of the magnetic parameterM on the temperature

profile hðgÞ when d ¼ 0:5;Bi ¼ 0:5;NR ¼ Nb ¼ Nt ¼ 0:5;

He ¼ 0:3;Ec ¼ 0:1;Df ¼ 0:5;Sr ¼ 1:0;Pr ¼ 1:0;Sc ¼ 1:0; a ¼ 0:1;

b ¼ 1:0 and A ¼ 0:8.
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which is compared with previously published results [14,28,29]
when the other parameter values remain same. Table 2 dis-
plays the skin friction coefficient for various values of a when

b ! 1 which are compared with previously published results
[9,30,31] when the other parameter values remain unchanged.
Table 3 depicts the skin friction coefficient for various values

of b and M and compares these values with those of Nadeem
et al. [19] when a ¼ 0 and other parameters are remain
unchanged. Table 4 shows the skin friction coefficient for var-

ious values of d when compared with results in Noghrehabadi
et al. [3] and Sahoo and Do [32]. It is seen that a very good
agreement with the previously published results is achieved
thus validating the accuracy of the current numerical results.

Table 5 displays the computed values of the skin friction
coefficient, the heat transfer coefficient and the mass transfer
coefficient when A ¼ 0:8; Bi ¼ 0:5; Pr ¼ Sc ¼ 1; Nt ¼ 0:5;
Nb ¼ 0:3; He ¼ 0:3; Ec ¼ 0:3; a ¼ 0:2 and d ¼ 0:1, for differ-
ent values of b;M;Df;Sr and NR. We note that an increase
in b increases the skin-friction coefficient whereas increasing

M reduces the skin-friction coefficient. The local Nusselt num-
ber is reduced by increasing b and Df while the local Sherwood
number increases when b and Df are increased, whereas local

Nusselt number increases by increasing M but the opposite
trend is observed in case of the local Sherwood number. Again,
the local Nusselt number increases and local Sherwood num-
ber decreases when increasing the values of Sr and NR.

Fig. 1 shows the effect of the unsteadiness parameter on the
velocity profiles. Here, it is shown that increasing the unsteadi-
ness parameter reduces the velocity profiles. The velocity along

the sheet decreases with an increase in the unsteadiness param-
eter due to the accompanying reduction in the thickness of the
momentum boundary layer. Similar flow patterns for Casson

fluid can be found in the literature, for instance, see [14,21].
Fig. 2 shows the effect of the Casson parameter b on the

velocity profiles. We note that as b increases, the velocity

and the boundary layer thickness decrease. Hence, the magni-
tude of the velocity is greater in Casson fluid when compared
with viscous fluids. Nandy [11,18,21] investigated similar pat-
terns of fluid flow.
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Figure 7 Effect of the thermal radiation parameter NR on the

temperature profile hðgÞ when d ¼ 0:5;Bi ¼ 0:5;Nb ¼ Nt ¼ 0:5;

He ¼ 0:3;Ec ¼ 0:1;Df ¼ 0:5;Sr ¼ 1:0;M ¼ 0:5;Pr ¼ 1:0;Sc ¼ 1:0;

a ¼ 0:1;b ¼ 1:0 and A ¼ 0:8.
Fig. 3 shows the effect of the magnetic parameter M on

velocity profiles f0. The velocity profiles decrease with increas-

ing magnetic field parameter values leading to a reduction in
the velocity boundary layer thickness. The Lorentz force which
opposes the motion occurs due to the applied transverse mag-

netic field, and is responsible for reducing the fluid velocity.
Similar type of fluid flow patterns have been observed in
[11,18].

Fig. 4 shows that the velocity profiles are decreasing func-
tion of the slip parameter d. This implies that when slip occurs
(for non-zero values of d) the fluid velocity near the sheet is no
longer equal to the stretching sheet velocity. Increasing d
decreases the velocity because under the slip condition, the
pulling of the stretching sheet can be only partly transmitted
to the fluid. The boundary layer thickness also decreases as

the slip parameter d increases.
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Figure 9 Effect of the heat generation parameter He on the

temperature profile hðgÞ when a ¼ 0:1; d ¼ 0:5;Bi ¼ 0:5;

NR ¼ Nb ¼ Nt ¼ 0:5;Sr ¼ 1:0;Ec ¼ 0:1;Df ¼ 0:5;M ¼ 0:5;Pr ¼
1:0;Sc ¼ 1:0; b ¼ 1:0 and A ¼ 0:8.
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Figure 10 Effect of the Brownian motion parameter Nb on the

temperature profile hðgÞ when a ¼ 0:1; d ¼ Bi ¼ 0:5;NR ¼ 0:5;
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Fig. 5 shows that the temperature profiles decrease with
increasing the value of the Casson parameters b. Increasing
the Casson parameter, i.e., reducing the yield stress suppresses

the fluid velocity. The temperature curves in Fig. 5 show that
the rate of transport is considerably reduced by an increase
in b.

Fig. 6 shows that the temperature profiles decrease signifi-

cantly as the unsteadiness parameter increases. The rate of
heat transfer (from the sheet to the fluid) decreases with
increasing values of A. Less heat is transferred from the sheet

to the fluid when the unsteadiness parameter increases. For
this reason the temperature profiles hðgÞ decrease. Since the
fluid flow is caused solely by the stretching sheet and the sheet

surface temperature is higher than the free stream temperature,
the fluid velocity and temperature decrease as A increases. It is
important to note that the rate of cooling is much faster for

higher values of unsteadiness parameter. In the studies
[14,21] similar temperature profiles patterns were obtained.
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Figure 11 Effect of the Dufour number Df on the temperature

profile hðgÞ when a ¼ 0:1; d ¼ Bi ¼ 0:5;NR ¼ 0:5;Nt ¼ 0:5;He ¼
0:3;Ec ¼ 0:1;Nb ¼ 0:5;Sr ¼ 1:0;M ¼ 0:5;Pr ¼ 0:7;Sc ¼ 1:0; b ¼
1:0 and A ¼ 0:8.
Fig. 7 shows that the temperature profiles increase as ther-
mal radiation increases, and because the effect of NR is to
enhance heat transfer, the thermal boundary layer thickness
increases with thermal radiation.

Fig. 8 shows that magnetic field increases the temperature
profiles. Because of the application of transverse magnetic field
in an electrically conducting fluid. It is also noticed that the

thermal boundary layer thickness increases in the presence of
a magnetic field. Fig. 9 shows that increasing heat generation
parameter enhances the temperature profiles thereby increas-

ing the thermal boundary layer thickness. Fig. 10 shows that
temperature profiles increase with increasing the Brownian
motion parameter. Because of this increase in the temperature

profiles, there is also an enhancement in the thermal boundary
layer thickness.

Fig. 11 shows the effect of the Dufour number on the tem-
perature profiles. Increasing Df parameter leads to a decrease
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Figure 13 Effect of the unsteadiness parameter A on the

concentration profile /ðgÞ when a ¼ 0:1; d ¼ 0:5;Bi ¼ 0:5;NR ¼
Nb ¼ Nt ¼ 0:5;He ¼ 0:3;Ec ¼ 0:1;Df ¼ 0:5;M ¼ 0:5;Pr ¼ 1:0;

Sc ¼ Sr ¼ 1:0 and b ¼ 1:0.
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Figure 14 Effect of the Soret number Sr on the concentration

profile /ðgÞ when a ¼ 0:1; d ¼ 0:5;Bi ¼ 0:5;NR ¼ Nb ¼ Nt ¼ 0:5;
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and A ¼ 0:8.
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Figure 16 Effect of the thermophoresis parameter Nt on the

concentration profile /ðgÞ when a ¼ 0:1; d ¼ Bi ¼ 0:5;NR ¼
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in the temperature profiles. Dufour effect is the heat transfer

induced by volume fraction gradients and significant because
of the density difference in the flow regime. Thus the figure
shows the effect of the concentration gradient on the thermal

energy flux in the flow region. Since it is decreasing, it implies
that the effect of the composition gradient on temperature is
reduced and this leads to a cooling of the boundary layer

region, as explained in [33]. Effect of the thermophoresis is
given in Fig. 12. From the figure, it is observed that the tem-
perature profiles are decreased as the thermophoresis parame-

ter is increasing and due to this effect, the thermal boundary
layer thickness is also decreased. Fig. 13 shows that the con-
centration profiles decrease with increasing values of A. As
can be observed in Figs. 1, 6 and 13, increasing value of the

unsteadiness parameter A reduces the flow properties such as
velocity, temperature and concentration. When A values are
increased in the system, the boundary layer thicknesses are

reduced and this inhibits the development of transition from
laminar to turbulent flow. This shows that stretching of sur-
faces can be used as a flow stabilizing mechanism. Fig. 14

shows that the concentration boundary layer thickness
increases with Sr and consequently, leads to an increase in
the concentration profiles due to enhancement of the profiles
by the mass flux created by the temperature gradient. This sim-

ilar trend is observed with some other fluid types like microp-
olar fluids as pointed out in [33,34]. Fig. 15 shows that
increasing the values of the Brownian motion parameter first

causes a sharp decrease in the concentration profiles followed
by a slight increase. The concentration profiles decrease with
increasing Nb near the stretching sheet wall up to a certain

value of g but beyond this point, the opposite trend is
observed. Near the wall the concentration boundary layer
decreases with increasing Nb but away from the wall, we

observe the opposite trend. Fig. 16 shows the influence of
the thermophoresis parameter on the concentration profiles.
It is seen from this figure that the concentration profiles
increase with increasing Nt near the stretching sheet wall
up-to a certain value of g but beyond this point, the opposite

trend is observed. It means that concentration boundary layer
thickness increases up-to a certain value of g but beyond this
point it decreases. This is due to the revised nanoparticle con-

centration boundary condition.

5. Conclusion

In this paper, we have studied the combined effects of Soret
and Dufour numbers on the fluid flow, heat and mass transfer
of a Casson nanofluid over an unsteady stretching sheet in the

presence of thermal radiation and heat generation. The effects
of partial slip on the velocity boundary condition, convective
thermal boundary condition, Brownian and thermophoresis
diffusion coefficients on the concentration boundary condition
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are also analyzed here. The governing equations were solved
using the Spectral Relaxation Method. The study has shown,
inter alia, that by increasing the Casson, Dufour and unsteadi-

ness parameters, we reduce the fluid velocity, temperature and
concentration profiles. As would be expected, increasing ther-
mal radiation increases the temperature profiles and also the

Soret parameter increases the concentration profiles. As has
been shown previously in the literature for Newtonian fluids,
our findings are that for a Casson nanofluid as discussed in this

paper, increasing the intensity of the magnetic field has the
effect of reducing the fluid flow while enhancing the fluid tem-
perature. Additional conclusions that can be drawn from this
study are that;

� Increasing the velocity slip parameter reduces the velocity
profile.

� Increasing the heat generation parameter reduces the tem-
perature profile.
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