
Position Paper: Thoughts on Programming

with Proof Assistants

Adam Chlipala1

Computer Science Division
University of California, Berkeley

Berkeley, California, USA

Abstract

Today the reigning opinion about computer proof assistants based on constructive logic (even from some
of the developers of these tools!) is that, while they are very helpful for doing math, they are an absurdly
heavy-weight solution to use for practical programming. Yet the Curry-Howard isomorphism foundation of
proof assistants like Coq [1] gives them clear interpretations as programming environments.
My purpose in this position paper is to make the general claim that Coq is already quite useful today for
non-trivial certified programming tasks, as well as to highlight some reasons why you might want to consider
using it as a base for your next project in dependently-typed programming.

Keywords: Interactive theorem proving, dependent types

1 Introduction

Today the reigning opinion about computer proof assistants based on constructive

logic (even from some of the developers of these tools!) is that, while they are

very helpful for doing math, they are an absurdly heavy-weight solution to use for

practical programming. Yet the Curry-Howard isomorphism foundation of proof as-

sistants like Coq [1] gives them clear interpretations as programming environments.

My purpose in this position paper is to make the general claim that Coq is

already quite useful today for non-trivial certified programming tasks, as well as to

highlight some reasons why you might want to consider using it as a base for your

next project in dependently-typed programming.

In the last year, I’ve tried an experiment [3] of using Coq to develop dependently-

typed programs of non-trivial size. My application domain has been proof-carrying

code, and the idea of “certified program verifiers” in particular. Certified verifiers

1 Email: adamc@cs.berkeley.edu

Electronic Notes in Theoretical Computer Science 174 (2007) 17–21

1571-0661 © 2007 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.10.035
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82783193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:adamc@cs.berkeley.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

are essentially an optimization that replaces monolithic proofs of program correct-

ness with re-usable program verifiers that have themselves been proved sound. Al-

most entirely with Coq, I’ve implemented a memory safety verifier for x86 machine

code programs that use ML-style algebraic datatypes, with a proof of soundness

defined in terms of the real x86 machine code semantics.

The remainder of this paper is a summary of what I learned from the experience,

starting with a discussion of a short example of the style of code that I found to

be effective and concluding with summaries of traditional programming language

features that I ended up not missing and Coq features that turned out to be very

helpful.

2 Programming with Optional Proofs

Dependent types can be used with inductive type families in very intricate ways. A

ubiquitous example is the use of type families for terms of programming languages,

where the indices of the type family for a particular meta-language term determine

its object-language type. In my work, I’ve made do with a much more modest

subset of the power available in Coq’s type system.

I’ve stuck to dependent types with the flavor of refinement types, where addi-

tional logical predicates over values can be attached to standard types. This sort of

type naturally describes the result of, for instance, a complete type inference proce-

dure; for any input term, it returns a type known to describe that term. Of course,

in most interesting program verification, the properties that we want to check are

undecidable, so the type of a procedure like I just described must allow it a way to

fail.

The following example illustrates how such types can be used. It uses an even

simpler type family, that of optional proofs of a proposition. Let’s say that we are

writing a verifier that at some point must make sure that a natural number is even

before proceeding. Here’s Coq code for a function isEven to do this:

Definition isEven : forall (n : nat), [[even n]].

refine (fix isEven (n : nat) : [[even n]] :=

match n return [[even n]] with

| 0 => Yes

| 1 => No

| S (S n) => pf <- isEven n;

Yes

end); auto.

Defined.

The use of this particular form of the Definition command indicates that we

are constructing this program partially through interactive proof search. After the

first line, the type of the desired function is asserted as a proof goal, and the body

of the definition serves as a proof script to show how to “prove” it, Curry-Howard

style. Why not just write the code directly? For this toy example, that works out

A. Chlipala / Electronic Notes in Theoretical Computer Science 174 (2007) 17–2118

fine, but, for larger examples, the amount of explicit programming with proofs that

this entails is intractable. We would like to take advantage of Coq’s features as a

proof construction and automation tool as far as possible.

Correspondingly, we begin the body of the definition using the refine tactic,

which says “I have in mind the structure of the proof, but it has some holes left to

fill in.” In this case, the structure that we know is the computational part of the

function, or precisely the part we would write in a setting without formal proofs.

The form of the code that we provide gives rise to some remaining proof obligations,

and these are queued as subgoals to be handled interactively in usual Coq style.

Now we can turn to the particulars of the definition. The notation [[P]] denotes

the type of optional proofs of proposition P . The refine body makes a primitive

recursive definition with a fix expression, pattern matching on the natural number

argument n. The notations Yes and No have the obvious meanings, with only a

Yes answer registering a new proof obligation. The third, recursive case of the

function definition checks the evenness of another natural number before returning

its answer. Optional proofs are treated as a failure monad in standard Haskell

style, enabling the concise notation that I’ve used. If the recursive call fails, then

the current call fails with No; while, if the recursive call succeeds, the current call

succeeds with Yes, and the proof pf that is returned can be used in discharging the

proof obligation.

The auto tactic is chained onto the refine tactic with a semicolon, directing

Coq to attempt to solve automatically every proof obligation added for the function

body. For this simple code, all of the obligations are solvable in this way. In general,

the full power of Coq for both user-coded automation and for elaborately scripted

manual proof strategies can be used.

The example I’ve showed uses real Coq syntax, including some user-defined

extensions. These extensions are the [[P]], Yes, No, and monadic arrow notations.

Expanding these notations and taking into account the results of automated proof

search, we get internally an “explicit” definition like the following. One change is

that Yes has become the constructor PSome applied to an explicit proof term. The

auto tactic probably generates proof terms that aren’t as nice to read as those I’ve

used here.

Fixpoint isEven (n : nat) : Prop_option (even n) :=

match n return Prop_option (even n) with

| O => PSome even_O

| S O => PNone

| S (S n) => match isEven n with

| PNone => PNone

| PSome pf => PSome (even_SS pf)

end

end.

A. Chlipala / Electronic Notes in Theoretical Computer Science 174 (2007) 17–21 19

3 Pros and Cons of Programming with Coq

3.1 Missing Programming Language Features

Coq is lacking a number of standard programming language features, and several

recent language projects [4,6] focus on bringing these features to dependently-typed

programming.

Two big ones are imperativity and exceptions. I can only say anecdotally that I

haven’t missed either of these in the work I’ve described, and I’ll point unconvinced

readers to their local Haskell enthusiasts for further arguments. I found the failure

monad style that I just sketched to be very effective in taking over for one common

use of exceptions.

Then there is general recursion or the ability to write non-terminating programs

in general. Coq has no separation of logic and programming language, so termina-

tion of all terms is required for soundness. I can again mention anecdotally that

this only showed up once as a small inconvenience in my work, and Coq has good

support for enabling a wide variety of termination arguments.

In summary, there may be areas like “systems” programming where Coq’s pure,

total programming model is a bad fit, but I believe that it works smoothly in a

wide variety of application areas where you might want to bring dependent types

to bear. The extent of Coq’s programming support would probably surprise most

people who haven’t use it, as Coq includes a module system, a compilation toolchain

that leads to fast native code, and easy integration with normal OCaml code.

3.2 How Coq Supports Effective Programming with Dependent Types

Coq has a number of features designed primarily for “proving” rather than “pro-

gramming” that nonetheless turn out to be quite useful in dependently typed pro-

gramming.

• The core of Coq, the Calculus of Inductive Constructions, is very small. This

is desirable both because it provides a mathematically elegant and very general

solution, and because it brings the trustworthiness benefits of a small trusted

code base for a checker for Coq developments. The second point is important in

the context of proof-carrying code.

• Languages that separate programming constructs from proof constructs lose the

advantages of an idiom called “proof by reflection” [2]. The basic idea of proof

by reflection is that checking a proof involves running a program. For instance,

in Coq one legal kind of proof of a program’s correctness essentially says “Run

this certified program verifier and make sure it accepts the program.” The proof

checker runs the verifier using the same syntactic mechanisms it uses to check

proofs in general. It’s possible to regain some of these advantages in a language

with separate “programming” and “proving” levels by introducing a separate,

more pure programming language for use in proofs, but it’s nice to avoid this

complication.

• Coq’s tactic facility makes it easy to script custom decision procedures and use

A. Chlipala / Electronic Notes in Theoretical Computer Science 174 (2007) 17–2120

them to construct proofs arising as obligations in dependently-typed program-

ming.

• Coq has a nice ML-style module system for structuring proof developments, pro-

grams, and combinations of the two.

• Coq has been around for a while, so there are a lot of libraries, pre-written proof-

generating decision procedures, etc., available for it.

4 Conclusion

In the not-so-distant past, Coq was clunky to use and infeasible for real program-

ming. Today, it is mature and reasonable to use for carrying out non-trivial certified

programming projects. A number of key features designed originally for formalizing

math turn out to play roles in enabling effective dependently-typed programming.

Languages like Epigram [5] have very similar foundations to Coq but focus more

on programming than proving. The question of which to use seems to hinge on

whether “programming” or “proving” aspects dominate the complexity of a pro-

gram. Many applications in, for instance, high-level programming language seman-

tics involve proofs that closely follow syntax, so that Epigram’s features for depen-

dent pattern matching make it a good choice. On the other hand, I think that for

cases like reasoning about compilation from high-level languages to machine code,

some very large, non-syntax-directed proofs will inevitably be involved, so that the

biggest productivity gains are to be had by taking advantage of some serious proof

organization and automation machinery. It also seems a promising direction to

investigate the best ways of importing some of Coq’s more recent proof-oriented

features into more traditional programming settings.

References

[1] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer Verlag,
2004.

[2] Samuel Boutin. Using reflection to build efficient and certified decision procedures. In Theoretical
Aspects of Computer Software, pages 515–529, 1997.

[3] Adam Chlipala. Modular development of certified program verifiers with a proof assistant. In ICFP ’06:
Conference record of the 11th ACM SIGPLAN International Conference on Functional Programming,
September 2006. To appear.

[4] Chiyan Chen and Hongwei Xi. Combining programming with theorem proving. In ICFP ’05:
Proceedings of the tenth ACM SIGPLAN international conference on Functional programming, pages
66–77, 2005.

[5] Conor McBride and James McKinna. The view from the left. J. Funct. Program., 14(1):69–111, 2004.

[6] Edwin Westbrook, Aaron Stump, and Ian Wehrman. A language-based approach to functionally
correct imperative programming. In ICFP ’05: Proceedings of the tenth ACM SIGPLAN international
conference on Functional programming, pages 268–279, 2005.

A. Chlipala / Electronic Notes in Theoretical Computer Science 174 (2007) 17–21 21

	Introduction
	Programming with Optional Proofs
	Pros and Cons of Programming with Coq
	Missing Programming Language Features
	How Coq Supports Effective Programming with Dependent Types

	Conclusion
	References

