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Resolution of Composite Fuzzy Relation Equations 
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Facultd de Mddecine, Marseille, France 

This paper provides a methodology for solution of certain basic fuzzy rela- 
tional equations, with fuzzy sets defined as mappings from sets into complete 
Brouwerian lattices, covering a large class of types of fuzzy sets. 

1. INTRODUCTION 

Zadeh (1965) characterizes a fuzzy set (class) A in a nonempty  set X by a 
membership (characteristic)functionfa which associates with each point  x in X 
a real number  in the interval [0, 1], with the value offA(x ) represent ing the 
grade of membership of x in A. 

Goguen (1967) generalizes the concept of fuzzy sets, defining them in 
terms of maps from a nonempty set to a suitable partially ordered set (poset), 
the most interesting results arising when posets are lattices; with Boolean 
lattices, Brown (1971) shows that Zadeh's  basic results carry over to this case. 

Using the ordinary symbol ~ for the partial  order relation on a poset 
L, let us now recall some useful definitions of lattice theory (Birkhoff, 1967). 

DEFINITION 1. A lattice is a poset L any two of whose elements x and y 
have a greatest lower bound (g.l.b.) or meet denoted by x ^ y, and a least 
upper bound (1.u.b.) or join denoted by  x v y.  

DEFINITION 2. A lattice L is complete when each of its subsets  X has a 
1.u.b., denoted by sup X or V X,  and a g.l.b., denoted by  i n f X  or  A 2(, i nL .  

DEFINITION 3. By a greatest element of a poset L, we mean an element 
b e L  such that x ~ b for all x EL, the least element o i L  being defined dually. 

DEFINITION 4. A Brouwerian lattice is a lattice L in which, for any given 
elements a and b, the set of all x e L  such that  a ^ x -~< b contains a greatest 
element, denoted a ~ b, the relative pseudocomplement of a in b. 
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In  this work, fuzzy sets will be defined as mappings from sets into complete 
Brouwerian lattices covering a large class of types of fuzzy sets as indicated 
in the following section. 

Certain basic fuzzy relational equations being next defined, we give a 
fundamental theorem for existence and determination of solutions. 

We then relate the obtained results to similar results involving nonfuzzy 
relations of which the fundamental theorem is shown to be a generalization. 

2. Fuzzy SETS AND FUZZY RELATIONS 

DEFINITION 5. I f  L is a fixed complete Brouwerian lattice, and E is a 
nonempty set, a fuzzy set A of E is a function A : E-+L. The class of all 
the fuzzy sets of E is denoted by ~°(E). 

Let  us remember some theorems on complete Brouwerian lattices (Birkhoff, 
1967). 

A complete lattice is Brouwerian iff the meet operation is completely 
distributive on joins, so that a ^ (V xi) = V(a ^ x~) for any set {xi} and 
for any a. 

I t  is a corollary that any U-ring of sets (i.e., a family of sets closed under 
finite intersection and arbitrary union) is a complete Brouwerian lattice. 
Hence, the open sets of any topological space form a complete Brouwerian 
lattice. 

The  congruence relations on any lattice form a complete Brouwerian 
lattice. 

The  ideals of any distributive lattice form a complete Brouwerian lattice. 
Birkhoff's list is enlarged by a theorem presented by De Luca and Termini 

(1972), to the effect that ~q(E) in Definition 5 above is a complete Brouwerian 
lattice. 

I f  in Definition 5 above, L is taken to be the dosed interval [13, 1] of the 
real line, L is then a complete lattice in which x ^ y is simply the smaller and 
x v y the larger of x and y. 

For any given elements a and b in L = [0, 1], define c = a c~ b by c = 1 
if a ~ b and c = b if a > b, then c is the relative pseudocomplement of a 
in b, so that L is a Brouwerian lattice. 

Fuzzy sets according to Definition 5 are then Zadeh's membership 
functions, so that the results of this paper apply to Zadeh's fuzzy sets 
definition. 

However, any Boolean lattice is easily verified to be a Brouwerian lattice 
with a ~ b defined as a '  v b, where a '  denotes the complement of a. 
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In addition to the Boolean structure, we will need completeness of the 
lattice in order to be able to define the composition of fuzzy relations. 

I f L  is the Boolean lattice consisting of only the points 0 and 1, then a fuzzy 
set according to Definition 5 is just the characteristic function defining a 
subset of a set E. 

DEFINITION 6. The fuzzy set A e ~ ( E )  is contained in the fuzzy set 
B e ~ ( E )  (written _//C B) whenever A(x) <~ B(x) for all x ~ E. 

DEFINITION 7. The fuzzy sets A and B E ~ ( E )  are equal (written A = B) 
whenever A C B and B _C A, i.e., A(x) = B(x) for all x e E. 

DEFINITION 8. A fuzzy  relation between two nonempty sets X and Y is a 
fuzzy set R of X X Y, i.e., an element of 5¢(X × Y). As usual R((x, y)) is 
written R(x, y) for all (x, y) E X × Y. 

According to Definitions 6 and 7, if R and S ~ ~5,¢(X X Y) are two fuzzy 
relations, we have 

R C C_ S, iff R(x, y) ~ S(x, y) for all (x, y) e X × Y. (1) 

R = S, iff R(x, y) = S(x, y) for all (x, y) e X × Y. (2) 

DEFINITION 9. Let R a 5q(X × Y) be a fuzzy relation, the fuzzy relation 
R-I;  the inverse or transpose of R, is defined by 

R -1605-¢(YX X) and R-l (y ,x )  = R ( x , y )  for all (y,x)  e Y  x X .  (3) 

DEFINITION 10. Let Q a ~°(X x Y) and R e ~ ( Y  × Z) be two fuzzy 
relations; we define T = R oQ, TE~LP(X N Z), the o-composite fuzzy  
relation of R and Q, by 

(Ro Q)(x, z) = V [Q(x, y) ^ R(y,  z)], where y ~ Y, 
y 

for all (x, z) ~ X × Z. (4) 

When L is a complete Boolean lattice, (4) stands for a Boolean matrix product. 
I t  is easy to verify that 

if R 1 and R 2 ~ ~a(y × Z) and if R 1 C Rz, then 

R loQ_CR 2oQ, whereQe~*a(X X Y). (5) 
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DEFINITION 11. Let  Qe~q~(X × Y) and RE~-q~(Y × Z) be two fuzzy 
relations, we define T = Q ® R, T e ~q~(X × Z), the ®-composite fuzzy 
relation of Q and R, by 

(Q ® R)(x, z) = A [Q(x, y) ~ R(y, z)] where y E Y, 
Y 

for all (x, z) E X X Z. (6) 

Comment on Definition 11. According to Definition 4, the a operation 
in L defines the relative pseudocomplement of Q(x, y) in R(y, z), for each 
y e Y .  

Let  us now point out some useful properties of the ~ operation which 
allow us to derive some theorems in the next section. 

With a, b EL, c ~- a a b is the greatest element in L such that a A c ~ b. 
In  fact, 

aA (aab)~<b.  (7) 

With a, b, d eL, it is easy to verify that 

a~(b  v d) > /a  ab (or > / a a d ) ,  (8) 

a ~ ( a  ^ b) >~ b. (9) 

3. RESOLUTION OF COMPOSITE F u z z y  RELATION EQUATIONS 

THEOREM 1. For every pair of fuzzy relations Q e ~ ( X  x Y) and R e ~¢ 
(Y × Z), we have 

R _c Q-1 ® (Ro Q). (10) 

Proof. Let  U - - - - Q - l ®  (R o Q ) E 2 a ( Y  x z ) .  F rom (3), (4), and (6), 
we have 

~:(y, z) = A [O(x, y) ~ (Ro 9)(x, ~)], 

t 

t # y  

x E X ,  y e  Y, z e Z ,  
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From (8) we have 

U(y, z) > A [Q(*, y) ~ (Q(x, y) ^ R(y, z))]. 
91 

From (9) we have 

U(y, z) >~ R(y, z). 

THEOREM 2. For every pair of fuzzy  relations Q ~ ~ ( X  × Y) and R e 5~ 
(Y × Z), we have 

Q c_ (R ® (R o Q)-q-~. 

The  proof is analogous to the proof of Theorem 1. 

THEOREM 3. For every pair of fuzzy  relations 
T ~ ~ ( X  x Z), we have 

(Q-~ ® T)oQ_C T. 

Proof. Let  S = (Q-1 ® T) o O e .~q'(X × Z). 

S(x, z) = 

S(~, z) = 

s(~, z) = 

S(x, z) <~ 

From (7) we have 

S(x, z) <~ T(x, z). 

THEOREM 4. For every pair of fuzzy  relations 
T e ~ ( X  × Z), we have 

R o (R ® T-l) -1 C_ T. 

The  proof is analogous to the proof of Theorem 3. 

(11) 

Q ~ 5¢(X X Y)  and 

(12) 

V [Q(x, y) A (Q-1 ® T)(y,  z)], x ~ X, y ~ Y, z E Z; 
21 

V [Q(x, y) A (Q(x, y) o~ T(x, z))]. 
Y 

R e £P(Y X Z) and 

(13) 
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We can now state two fundamental theorems. 

THEOREM 5. Let Q ~ 5~(X × Y)  and T E ~ ( X  X Z) be two fuzzy 
relations, ~ be the set of fuzzy relations R ~ 5F(Y × Z) such that R o Q = T; 
then 

. f  = {fuzzy R a 5?(Y × Z)  I R o Q = T} =/= ;~, iff, 

Q-i ® T e 5~; then it is the greatest element in $Y. (14) 

Pro@ We prove only the nontrivial implication. 5~ =/= ;~, so let R 6 5~, 
we have R o Q = T. From (10) in Theorem 1, we have 

R C Q- i  ® T, i.e., R _C/) deno t ing / )  = Q- i  ® T. 

I f  we prove that / ) e  ~e, then /) will be the greatest element in 5~. Since 
R_C/), from (5) we have RoQC_/ )oQ,  i.e., TC_/)oQ; but from (12) in 
Theorem 3, we h a v e / )  o Q _c T, hence , / )  o Q -~ 11, i .e . , / )  e 5~. 

THEOR~ 6. Let R ~ cS(Y × Z) and T ~ ~ ( X  × Z) be two fuzzy relations, 
be the set of fuzzy relations Q a ~ ( X  × Y)  such that R o Q -= T; then 

1~ = { fuzzyQ e ~ ( X  x Y)  I R oQ = r}  va ;$, iff 

(R ® T-~) -1 e R; then it is the greatest element in R. (15) 

The  proof is analogous to the proof of Theorem 5, using (11) in Theorem 2 
and (13) in Theorem 4. 

Comment on the Fundamental Theorems 5 and 6. From (3) and (4) it is 
easy to verify that (Ro Q)- i  = Q - i o  R- i ,  hence, R o Q = T, iff Q - i o  R - i  = 
T -1. From (14), Q - I ® T • & r ,  iff f @  ;~, but ( Q - I ® T )  o Q - =  T, iff 
Q-1 o (Q-1 ® T) - i  = T- i .  I f  we now change Q- i  into R and T - i  into T, we 

obtain (15). 
This  comment  still holds to get (13) from (12), and (11) from (10). In  fact, 

we can choose either Theorem 5 or Theorem 6 as a unique fundamental 
theorem and deduce the other one as a corollary. 

We mention also the following weaker theorems which are easy to handle. 

THEOREM 7. Let Q e~q~(X × Y)  and T 6 £P(X X Z ) b e  two fuzzy 
relations, if  ~ = {fuzzy R e 5~(Y × Z) [ R o Q = T} v~ ;g, then T(x, z) <~ 
V Q(x, y) for all (x, z) E X x Z. 
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Pro@ Let us assume ~e @ ~ and let R e f .  

T(x, z) ~- (Ro Q)(x, z) = V [Q(x, y) ^ R(y, z)], 
Y 

where y ~ Y, for all (x, z) ~ X × Z; but  for all y c Y, Q(x, y) ^ R(y, z) 
Q(x, y), then, T(x, z) <~ V Q(x, y) for all (x, z) c X × Z. 

THEOREM 8. Let R ~ ~q~(Y X Z) and T e ~ ( X  X Z) be two fuzzy 
relations, if ~ -~ {fuzzy Q e 5¢(X × Y)  I R o Q = T} 4: ~ ,  then T(x, z) <~ 
V R(y, z) for all (x, z) ~ X X Z. 

The proof is analogous to the proof of Theorem 7. 

EXAMPLES. Let X : {Xl, x2, x~}, Y : {Yl, 72, Y3, Y4}, Z : {•1, z2 ,z3} 
and let us consider two fuzzy relations R ~ ~o~ca(Y X Z) and Q ~ ~ ( X  x Y) 

where L = [0, 1]. 

Yl Y2 Y3 Y4 z l  zz z3 

xl 0.2 0 0.8 1 yl 0.3 0.5 0.2 

Q = x 2  

X3 

0.4 0.3 0 0.7 , y2 0.8 1 0 
R = 

0.5 0.9 0.2 0 Y3 0.7 0 0.5 

Y4 0.6 0.3 1 

From the o-composition (4) we have T = R o Q, T E ~.q~(X × Z). 

Zl Z2 ~3 

xl 0.7 0.3 1 

T =  x2 0.6 0.4 0.7 . 

x3 0.8 0.9 0.2 

Let us now assume that Q and T are two given fuzzy relations, Q ~ ~a 
( x  × Y) and T ~ S¢(X × Z);  we can ask if £r ea ~ .  We already know the 

answer, but  the purpose is to apply (14). 
We can point out that the property given in Theorem 7 is easily verified. 
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Recal l ing  tha t  when  L = [0, 1], for a and  b eL, c = ac~b = 1 if a ~< b 
and  c = a ~ b = b if a > b, and  using (3) and  (6), we f o r m / ~  = Q-1 ® T. 

X l  X2 X3 Z1 2" 2 Z 3 

yl  0.2 0.4 0.5 Yl 1 1 0.2 

yz 0 0.3 0.9 Y2 0.8 1 0.2 
Q - l =  , R = Q - I ® T =  

Y3 0.8 0 0.2 Y3 0.7 0.3 1 

Y4 1 0.7 0 Y4 0.6 0.3 1 

x~ 0.7 0.3 1 

.~,,Q = ( Q - I ~ ) T ) o Q  = x 2  0.6 0.4 0.7 

xa 0.8 0.9 0.2 

= T a n d  w e  h a v e  R _C/~. 

L e t  us  po in t  out  a more  sophis t ica ted  example  (Sanehez,  1974). L e t  X, Y, 
and Z be the set of  posi t ive real numbers ,  and  we define two fuzzy relat ions,  
Q e ~ ( X  × Y) and Re~L,~(Y × Z), w h e r e L  = [0, 1], b y  

Q(x, y )  = e x p [ - - k ( x  - -  y)~] for all (x, y)  ~ X × Y and 

R(y, z) = e x p [ - - k ( y  - -  z) 2] for all (y,  g) e Y × Z, where  k >~ 1. 

~) and  R m a y  be in te rp re ted  as " is  near  f rom."  
T h e  o-composi t ion  of  R and Q gives T = R o ~ ,  T ~ L~'(X × Z )  def ined 

by  

T(x, z) = e x p [ - - K ( x  - -  z) 2] for all (x, z)  e X × Z, where  K = k/4. 

Suppose  now tha t  O and T are given, and  app ly  (14). W e  f i n d / {  = Q-1 ® iV, 
/~ e £( ' (Y x Z )  defined by  

f~(y, z) = exp[--kz2/4] if y ~ z/2 

and 

/ ) (y ,  z) = e x p [ - - k ( y  - -  z) ~] if  y ~ z/2. 

W e  h a v e / ~  o Q = T and R _C/~. 
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4. REMARKS ON THE RESOLUTION OF RELATIONAL EQUATIONS 

Resolution of a Dual Composite Fuzzy Relation Equation 

In Definition 5 the fixed lattice L is choosen to be Brouwerian in order to 
solve o-composite fuzzy relation equations according to Definition 10. To 
solve a dual composite fuzzy relation equation we need the lattice L to be 
dually Brouwerian. This means that for any given elements a and b, the set 
of all x e L  such that a v x >/b  contains a least element, denoted a E b. 

In  this case we would define a fuzzy set A of a nonempty set E to be a 
function A : E--+L, where L is a fixed complete dually Brouwerian lattice, 
and denote f i fE )  the class of all the fuzzy sets of E. 

Let Q E ~ ( X  × Y) and R E~-(Y × Z) be two fuzzy relations; we define 
T = R A Q, T E ~ ( X  x Z), the A-composite fuzzy relation of R and Q by 

(R A Q)(x, z) = A [Q(x, y) v R(y, z)] where y E Y, 
y 

for all (x,z) E X x  Z. 

Denoting © the dual composition of the @-composition, ifQ e ~- (X x Y) 
and R E 5 ( Y  X Z) are two fuzzy relations, we define T = Q @ R, T E 
(X X Z), by 

(Q © R)(x, z) = V [Q(x, y) e R(y, z)], where y ~ Y, 
y 

for all (x,z) E X x Z .  

With analogous proofs to proofs in the latter section one can verify the 
following fundamental theorem. 

Let Q ~ ( X  × Y) and T E ~ ( X x  Z) be two fuzzy relations, d be 
the set of fuzzy relations R E ~ ( Y  x Z) such that R A Q = T; then, 

d = { f u z z y R e J ( Y × Z )  I R A Q =  T}@ £ ,  iff 

]~ = Q-1 @ T E ~ .  I t  is then the least element in ~ .  

As a corollary one can deduce the following theorem. 
Let R ~ o~(y  X Z) and T e o~(X x Z) be two fuzzy relations, ~ be the 

set of fuzzy relations Q a ~ - ( x  x Y) such that R A Q _~ T; then, 

= { f u z z y Q a f f ( X x  Y) I R A Q ~ -  T} @ ~ ,  iff 

(R @ T-l)  -1 e ~ .  It  is then the least element in ~ .  

WhenL -~ [0,1], with a, b a L ,  c = a e b ~ b i f a - < b  a n d c = a e b = 0  
i f a ~ b .  
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Results when L is a Fixed Complete Boolean Lattice 

With Brown's definition of fuzzy sets, when L is a complete Boolean lattice 
(therefore, a complete Brouwerian lattice) with a, b ~ L, denoting the comple- 
ment of an element a by a',  c = a a b = a '  v b. 

In  a complete Boolean lattice, the de Morgan laws hold; hence, for all 
(y , z )  e Y × Z, 

(9  -1 ® T)(y, z) = A [9(  x, y) ~ T(x, z)] 
ge 

= A [ 9 %  y) v T(x, 
X 

= (9 -1o  T ' ) '  (y, z). 

Q-1 ~ T = ( 9  - l o  T ' ) '  for (14) in Theorem 5. We can also deduce 
(R ® T-l)  -1 = [(R o (T-I) ' ) ' ]  -1 = [(R o (T')-1)-1] ' = ( T ' o  R-l)  '. 
(R ® T- l )  -1 = (T '  o R- l )  ' for (15) in Theorem 6. 

Remembering that the o-composition stands for the usual Boolean matrix 
product, matrix equation solutions hold with (9 -1o  T')' and (T'o R-l) ' in 
the two fundamental theorems, as previously indicated by many authors 
(for example, Sanchez, 1972). 

5. CONCLUSION 

Zadeh's introduction and investigation of fuzzy sets since 1965, provided 
a means of mathematically describing situations which give rise to objects 
with "grades of membership" in sets, thus opening a large field of research. 

We feel that the resolution of composite fuzzy relation equations could give 
interesting results in transportation problems and in belief systems. We plan 
to investigate medical aspects of fuzzy relations at some future time. 
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