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a b s t r a c t

We develop a hierarchical entropy (HE) method to quantify the complexity of a time series
based on hierarchical decomposition and entropy analysis. The proposedmethod is applied
to the Gaussian white noise and the 1/f noise. We prove that the difference frequency
components of the Gaussian white noise with the same scale factor have the same value
of entropies, and the values decline as the scale factor increases. We also apply the HE
method to the 1/f noise, and prove mathematically that a lower frequency component of
a 1/f noise is also a 1/f noise and verify numerically that a higher frequency component of
a 1/f random vector is approximately equal to a Gaussian random vector. The theoretical
results are confirmed by numerical results. Moreover, we show that the HE method is an
efficientmethod to analyze heartbeat signals by applying it to the cardiac interbeat interval
time series of healthy young and elderly subjects, congestive heart failure (CHF) subjects
and atrial fibrillation (AF) subjects.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The complexity of a biological system is to measure its ‘‘meaningful structural richness’’, which exhibits relatively higher
regularity than the output of random phenomena, where the word ‘‘regularity’’ means the predictability of the meaningful
structure in the output. Understanding the complexity of a biological system is vitally important in both theory and practice.
The complex fluctuations exhibited by an output signal of a physiologic system often contain information of underlying
interacting mechanisms which regulate the system. Such mechanisms operate across multiple spatial and temporal scales.

Traditional entropy-based analysis methods, such as approximate entropy and sample entropy, evaluate the number of
appearances of repetitive patterns of a time series to quantify the degree of its regularity. Uncorrelated random signals
(white noise) are highly unpredictable but not structurally complex (see, [1]). However, since the traditional entropy
methods only consider the unpredictability of signals, they assign to these signals the highest entropy values. As a result,
the traditional entropymeasures growmonotonically with the degree of randomness.When applied to the physiologic time
series, traditional entropy-based methods may lead to misleading results. They may assign higher entropy values to certain
pathologic cardiac rhythms that generate erratic outputs than to healthy cardiac rhythms that are exquisitely regulated by
multiple interacting control mechanisms [1]. To overcome the shortcoming of the traditional entropy-based methods and
give more precise descriptions of the complexity of physiologic signals, the multiscale entropy (MSE) method was recently
introduced in [1] to analyze the complexity of the system. It considers not only the entropy of the original time series
but also that entropy of different scales of the time series, where a scale is generated by averaging its previous scale. It
incorporates the interrelationship of entropy and scale. Compared to traditional entropy methods, MSE has the advantages
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of being applicable to both physiologic and physical signals of finite length. Results of using the MSE analysis are consistent
with the consideration that both completely ordered and completely random signals are not complex [1–5]. In particular,
the MSEmethods show that correlated random signals (colored noise) are more complex than uncorrelated random signals
(white noise).

A generic feature of pathologic dynamics should reappear in different scales of the output signal, in contrast to the outputs
of randomphenomena,whichmay disappear in lower frequency components of a large scale. Each scale of a time series has a
lower frequency component which is generated by averaging the components in the previous scale and a higher frequency
component which is generated by taking the difference of two consecutive scales. The generic feature may be stored in
the lower frequency component or in the higher frequency component or in both. Hence, considering only low frequency
components of themultiple scales of a time series is not adequate. The entropy of the higher frequency components of a time
series should provide useful information in addition to that encoded in the lower frequency components. The hierarchical
entropy analysis proposed in this paper takes into consideration the entropy of the higher frequency components of a time
series.

This paper is organized in six sections. In Section 2, we recall the notions of sample entropy and multiscale entropy,
and introduce the hierarchical entropy method. Section 3 is devoted to the hierarchical entropy analysis of the Gaussian
white noise. We show that the hierarchical components of the real Gaussian random vector are all real Gaussian random
vectors. Based on this observation, results regarding the hierarchical entropy analysis of the Gaussian random vector are
obtained. These theoretical results are verified by a numerical example. We present in Section 4 the hierarchical entropy
analysis of the 1/f noise. We prove mathematically that a lower frequency component of a 1/f random vector is also a 1/f
random vector and verify numerically that a higher frequency component of a 1/f random vector is approximately equal to
a Gaussian random vector. In Section 5, we apply the hierarchical entropy method to analyze heartbeat signals. We show
that the hierarchical entropy analysis is an efficient method for analysis of physiological data. It provides additional useful
information which leads to improvement of the existing multiscale entropy method. We close the paper with a conclusion
section.

2. The hierarchical entropy method

We introduce in this section a hierarchical entropy method to quantify the complexity of a physiologic system. For this
purpose, we first review the notion of the sample entropy and the multiscale entropy.

The sample entropy was introduced in [6] to measure the ‘‘complexity’’ of a time series data set sampled from a
continuous process. It quantifies the degree of regularity of a system by evaluating the number of appearances of repetitive
patterns in its output time series. It is based on a theoretical sample entropy model which estimates the conditional
probability that two vectors that are close to each other for m components will remain close at the next component
(see, [6]). To describe the concept of the sample entropy, for an n ∈ N we define notations Zn := {0, 1, . . . , n − 1} and
Z+
n := {1, 2, . . . , n}. For a given time series x := (xj : j ∈ ZN) and m ∈ ZN , we let

um(j) := [x(j + k) : k ∈ Zm] for j ∈ ZN−m+1,

which are the pattern templates embedded in the time series x. We then construct a sequence

um := (um(j) : j ∈ ZN−m+1).

The positive integer m is the length of the pattern templates. The distance between two vectors um(ℓ) and um(j) is defined
by

d[um(ℓ), um(j)] := max{|x(ℓ + k) − x(j + k)| : k ∈ Zm}.

We are interested in computing the probability of vectors in the sequence um within a given distance from a fixed vector.
Specifically, for a given tolerance r > 0 and for a fixed ℓ ∈ ZN , we let Am

ℓ denote the number of vectors um(j) with j > ℓ
which satisfy the condition d[um(j), um(ℓ)] ≤ r . We select j > ℓ to avoid double counting the matched vectors or counting
um(ℓ) as a matched vector. We call the positive real number r the tolerance for accepting matches and the vector um(ℓ) the
template. The probability of vectors um(j) ∈ um that are within tolerance r of the vector um(ℓ) is then given by

Cm
ℓ (x, r) :=

Am
ℓ

N − m + 1
.

We then sum these probabilities for all ℓ ∈ ZN−m+1 to obtain

Cm(x, r) :=

−
ℓ∈ZN−m+1

Cm
ℓ (x, r).

The sample entropy of the time series x is now defined by

Sm(x, r) := − ln
Cm+1(x, r)
Cm(x, r)

. (2.1)
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The sample entropy Sm(x, r) measures the degree of randomness of the time series x with the tolerance r . Fast algorithms
for computing the sample entropy were presented in [7]. However, as noted in [8], there is no straightforward relationship
between the entropy-based regularity and complexity.

Themultiscale entropymethodwas introduced in [1] tomeasure the ‘‘complexity’’ of a time series aiming at overcoming
the shortcoming of traditional entropy methods such as the sample entropy. According to [2], the complexity of a biological
system should measure its ability to adapt and function in an ever-changing environment, a biological system operates
across multiple spatial and temporal scales and thus its complexity is also multiscaled. Moreover, a wide class of disease
states and aging reduce the adaptive capacity of the individual and degrade the information carried by output variables
(see, [2]). Based on these consideration, the multiscale entropy methodmeasures the complexity of the time series by using
the entropy of its lower frequency components of different scales. Specifically, for a given time series x := (xℓ : ℓ ∈ ZN),
we construct a sequence of time series yn := (y(n)

j : j ∈ ZNn), for 1 ≤ n ≤ N , by

y(n)
j :=

1
n

(j+1)n−1−
ℓ=jn

xℓ, j ∈ ZNn ,

where Nn :=
N

n


, with ⌊x⌋ being the largest integer not greater that x. Note that y1 = x and for n ≥ 2, these time series

present lower frequency components of the original time series in different scales. The multiscale entropy is then obtained
by calculating the sample entropy of each time series yn and it is the vector whose components are the sample entropies
Sm(yn, r). The multiscale entropy method takes into account the information contained in multiple scales of the original
time series and use a vector of scale-dependent entropies to describe the ‘‘complexity’’ of a time series. Since it illustrates
the variation of information redundancies appeared in multiple scales, the multiscale entropy method can describe the
‘‘complexity’’ of a time series moremeaningfully than traditional entropy-basedmethods. For example, traditional entropy-
based methods assign the highest values to white noise which is highly unpredictable. From a global point of view, white
noise has a simple description and does not contain any information. The multiscale entropy method can present very well
such a feature of white noise by using a vector of scale-dependent entropies. See [2] for more discussion of this point.

While the multiscale entropy method focuses on the lower frequency components of different scales of a time series,
it ignores the information in the higher frequency components which are the differences between two consecutive scales.
Moreover, the original time series cannot be reconstructed by using only its lower frequency components. For a time series,
information may be stored in a multiscale manner in its lower frequency components, or in its high frequency components
or in both lower and higher frequency components. The multiscale entropy measures the complexity very well for those
time series whose information is mainly stored in its lower frequency components. But it will miss the information stored
in a high frequency component. This observation leads us to introducing the hierarchical entropy method.

We now introduce the hierarchical entropy (HE) method. We define an averaging operator Q0 for the time series
s := (sj : j ∈ Z2n) of length 2n by

Q0(s) :=


s2j + s2j+1

2
: j ∈ Z2n−1


.

The time series Q0(s) with length 2n−1 is the low frequency component of s at scale 2. We also define a difference operator
Q1 for time series s by

Q1(s) :=


s2j − s2j+1

2
: j ∈ Z2n−1


,

and we call Q1(s) a difference frequency component of s. The time series Q1(s) with length 2n−1 is the high frequency
component of s at scale 2. Note that the original time series s can be reconstructed from Q0(s) and Q1(s). In fact, we have
that

s = ((Q0(s))j + (Q1(s))j, (Q0(s))j − (Q1(s))j : j ∈ Z2n−1)T .

As a result, the time series Q0(s) and Q1(s) constitute a two-scale analysis for the time series s.
The operators Qj for j ∈ Z2 have a matrix representation. Specifically, for j ∈ Z2, we observe that

Qj :=


1
2

(−1)j

2
0 0 · · · 0 0

0 0
1
2

(−1)j

2
· · · 0 0

0 0 0 0 · · ·
1
2

(−1)j

2


2n−1×2n

. (2.2)

Note that the matrix form of these operators depends on the length of the time series to which they apply. For notational
simplicity, we do not indicate their dependence on n since it can be understood from the context. The operator Q0 and Q1
correspond to the low and high pass filters of the Haar wavelet (cf., [9,10]), respectively.
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Fig. 1. Hierarchical decomposition of signal s with three scales.

a b

Scale factor

Fig. 2. HE analysis of simulative signal s.

To describe a multiscale analysis of the time series s, we need to repeatedly use these operators. Let N be a positive
integer. For an n ∈ Z+

N and [ℓ1, ℓ2, . . . , ℓn] ∈ Zn
2, the integer

e :=

n−
j=1

ℓj2n−j (2.3)

is nonnegative. On the other hand, when n ∈ Z+

N is fixed, given a nonnegative integer e, there is a unique vector
[ℓ1, ℓ2, . . . , ℓn] ∈ Zn

2 corresponding to it through Eq. (2.3). For n ∈ Z+

N and a nonnegative integer e, we define the hierarchical
components of a time series s ∈ R2N by

sn,e := Qℓn ◦ Qℓn−1 ◦ · · · ◦ Qℓ1(s). (2.4)

Note that for each n ∈ Z+

N , sn,0 is the low frequency component of the time series s in scale n + 1. For k ∈ Z+

N+1, we define
an index set Jk := {(n, e) : n ∈ Zk, e ∈ Z2n}. Let s0,0 := s. For a given k ∈ Z+

N+1, the signals sn,e, (n, e) ∈ Jk, consist of the
hierarchical decomposition of signal s in k scales.

We find it convenient to arrange the hierarchical components of a time series s in a tree diagram. In this tree, the original
time series s0,0 is the root node with the left child node s1,0 and the right child node s1,1, and for each (n, e) ∈ Jk−1, node
sn,e has the left child node sn+1,2e and the right child node sn+1,2e+1. We call this tree the hierarchical tree of s. In Fig. 1, we
illustrate the hierarchical decomposition of s in three scales.

The hierarchical decomposition of a time series can be viewed as a generalization of both the multiscale decomposition
developed in [2] and the Haar wavelet decomposition since these decompositions generate subtrees of the hierarchical tree.
It preserves the strength of themultiscale decompositionwith additional components of higher frequency in different scales.
The hierarchical decomposition, unlike thewavelet decompositionwhich has no redundant component, contains redundant
components. This allows us to catch the dynamical richness of the time series.

With a hierarchical tree sn,e, (n, e) ∈ Jk, in place, we compute the sample entropy of each component sn,e and use these
entropies to measure the complexity of the biological systemwhich has the time series s as its output variables. We call this
process the hierarchical entropy (HE) analysis.

To close this section, we demonstrate theHE analysis by a simulative time series. The time series s thatwe consider in this
example is shown in Fig. 2(a). The hierarchical entropy values of s are presented in Fig. 2(b). We observe from Fig. 2(b) that
the entropy values of s, s1,0, s2,0 and s3,0 decrease as the scale n increases. Although the entropy values of sn,e, for n = 2, 3, 4
and e ∈ Z+

2n−1 , are very small, in the subtree with root node s1,1, the entropy values of its nodes are significant. This shows
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that the components sn,e, n ∈ Z+

4 and e ∈ {2n−1, 2n−1
+ 1, . . . , 2n

− 1} contain significant information of the original time
series s, which might have been ignored if only the multiscale entropy analysis were computed.

3. Analysis of the Gaussian white noise

In this section, we analyze the Gaussian white noise by employing the hierarchical entropymethod. Both theoretical and
numerical results will be presented.

We begin with recalling two results about the Gaussian white noise. They are needed for the analysis presented in this
section. For a positive integer N , we suppose that x := [xj : j ∈ Z2N ] is a random vector taking values in R2N . When the
components xj, j ∈ Z2N , of x are independent and have the same Gaussian distribution, that is, they have the samemean and
standard deviation, we call x a real Gaussian random vector, a component of x a Gaussian random variable and an instance of
x the Gaussian white noise. In this section, we let g := [gj : j ∈ Z2N ] denote the real Gaussian random vector, with the mean
of gj being 0 and the standard derivation of gj being δ. Recall that the sample entropy estimates the conditional probability
that two vectors that are close to each other for m elements will remain close at the next element. In the case of Gaussian
random vector g, such a conditional probability equals to (see Appendix A of [2])

P(r) :=
1

2δ
√
2π

∫
+∞

−∞


erf

x + r
√
2δ


− erf


x − r
√
2δ


e−x2/2δ2dx, r ∈ R+,

where erf denotes the error function defined by

erf(x) :=
2

√
π

∫ x

0
e−t2dt, x ∈ R.

Thus, the theoretical value of the sample entropy of the Gaussian white noise, according to Appendix A of [2], is equal to

Sm(g, r) = − ln (P(r)) . (3.1)

Therefore, form ∈ Z+

2N−1
we obtain the sample entropy of the Gaussian white noise which is given by

Sm(g, r) = − ln


1

2δ
√
2π

∫
+∞

−∞


erf

x + r
√
2δ


− erf


x − r
√
2δ


e−x2/2δ2dx


. (3.2)

Theorem 10.5 in [11] states that a linear combination of two independent real Gaussian random variables is also a real
Gaussian random variable. To state this result precisely, we suppose that x and y are two real Gaussian random variables
with mean 0 and standard deviation δx and δy, respectively. For α, β ∈ R, αx + βy is a real Gaussian random variable with

mean 0 and standard deviation


α2δ2
x + β2δ2

y .

According to (2.4) the hierarchical decomposition of the real Gaussian random vector g is given for n ∈ Z+

N and
[j1, j2, . . . , jn] ∈ Zn

2, by

gn,e := Qjn ◦ Qjn−1 ◦ · · · ◦ Qj1(g),

where e is defined by (2.3) in terms of j1, j2, . . . , jn. We let g0,0 := g. By the definition of Qj, j ∈ Z and the second fact that
we just reviewed, we know that for each j ∈ Z, the components of g1,j are real Gaussian random variables with mean 0 and
standard deviation δ/

√
2. This implies that the random vectors g1,0 and g1,1 have the same statistical properties. Therefore,

for a given r ∈ R+ and a givenm ∈ Z+

2N−1
, we have that

Sm(g1,0, r) = Sm(g1,1, r).

On the other hand, since the standard deviation of g1,j is smaller than that of g, the instances of g1,j are more regular than
the instances of g. Thus, we would expect that

Sm(g1,j, r) < Sm(g, r).

The main purpose of this section is to present a general theorem that confirms the above conjecture. To this end, we first
present a lemma that ensures that each component gn,e of the hierarchical decomposition of g is also a real Gaussian random
vector. As usual, the mathematical expectation of a random variable x taking values in R is defined by

E(x) :=

∫
R
tp(t)dt,

where p(t) is the probability density function for the random variable x. It is known from Theorem 10.5 in [11] that the
components of a random vector x are independent if and only if E(xjxj′) = 0 for all j ≠ j′.

Lemma 3.1. If for a positive integer N, g := [gj : j ∈ Z2N ] denotes a real Gaussian random vector with mean 0 and standard
deviation δ, then for each (n, e) ∈ JN+1, gn,e is a real Gaussian random vectors with mean 0 and standard deviation δ/2

n
2 .
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Proof. We first show that for an arbitrary ℓ ∈ Z+

N , if xℓ := [xj : j ∈ Z2ℓ ] is a real Gaussian random vector with mean 0 and
standard deviation δℓ, then y := [yj : j ∈ Z2ℓ−1 ] with yj := αx2j + βx2j+1, for some α, β ∈ R (with α2

+ β2
= 1/2) is a real

Gaussian random vectors with mean 0 and standard deviation δℓ/
√
2. Since for each i ∈ Z2ℓ , xj is a real Gaussian random

variable with mean 0 and standard deviation δℓ, from Theorem 10.5 in [11] we know that yj is a real Gaussian random
variable with mean 0 and standard deviation δℓ/

√
2. It remains to show that the components of y are independent. Because

the components of xℓ are independent, we find that E(xjxj′) = 0, for j ≠ j′. It follows that for j, j′ ∈ Z2ℓ−1 with j ≠ j′,

E(yjyj′) = α2E(x2jx2j′) + αβ(E(x2j+1x2j′) + E(x2jx2j′+1)) + β2E(x2j+1x2j′+1) = 0.

Thus, yj, j ∈ Z2ℓ−1 , are independent, and we conclude that y := [yj : j ∈ Z2ℓ−1 ] is a real Gaussian random vector.
The proof of this lemma may be completed by induction on n. The statement of this lemma holds trivially for n = 0. We

assume that the statement of this lemma holds for n = µ, µ ∈ ZN , that is, gµ,e′ , e′
∈ Z2µ , are real Gaussian random vectors

with mean 0 and standard deviation δ/2
µ
2 . Note that for each e ∈ Z2µ+1 , there exist integers e′

∈ Z2µ and j ∈ {0, 1} such
that

gµ+1,e = Qjgµ,e′ .

In the definition of y, by choosing α := 1/2, β := 1/2, and α := 1/2, β := −1/2, respectively, we obtain that both Q0(gµ,e′)

and Q1(gµ,e′) are real Gaussian random vectors withmean 0 and standard deviation δ/2
µ+1
2 . That is, gµ+1,e is a real Gaussian

randomvectorwithmean 0 and standard deviation δ/2(µ+1)/2. The induction principle ensures that for all (n, e) ∈ JN+1, gn,e
are real Gaussian random vectors with mean 0 and standard deviation δ/2n/2. �

We are now ready to present the main result of this section.

Theorem 3.2. Suppose that g := [gj : j ∈ Z2N ], with N ∈ N, is a real Gaussian random vector with mean 0 and standard
deviation δ and m ∈ Z+

2N−1
. Then the following statements hold:

(i) For all r > 0 and (n, e) ∈ JN+1,

Sm(gn,e, r) = − ln


1

2δ
√
2π

∫
R


erf

y + 2n/2r

δ


− erf


y − 2n/2r

δ


e−y2/δ2dy


. (3.3)

(ii) For fixed r and n, Sm(gn,e, r) = Sm(gn,e′ , r), for all e, e′
∈ Z2n .

(iii) For fixed r, if n > n′, then Sm(gn,e, r) < Sm(gn′,e′ , r), for all e ∈ Z2n and e′
∈ Z2n′ .

Proof. (i) From Lemma 3.1, we know that for each (n, e) ∈ JN+1, gn,e is a real Gaussian random vector with mean 0 and
standard deviation δ/2n/2. Thus, by Eq. (3.2) with a change of variables y = 2n/2x, we obtain the formula (3.3).

(ii) Note that the right hand side of formula (3.3) depends only on n; it is independent of e. Hence, this statement follows
immediately from (3.3).

(iii) By the definition of the error function erf, we know that erf is a strictly increasing function. Thus, we have that if
n < n′,

erf

y + 2n/2r

δ


< erf


y + 2n′/2r

δ


, and − erf


y − 2n/2r

δ


< −erf


y − 2n′/2r

δ


.

It follows that for all y ∈ R, if n < n′, then

erf

y + 2n/2r

δ


− erf


y − 2n/2r

δ


< erf


y + 2n′/2r

δ


− erf


y − 2n′/2r

δ


.

Thus, the above inequality with formula (3.3) yields the inequality in (iii). �

To close this section, we present a numerical example which confirms the analytical results in Theorem 3.2. Specifically,
we apply the HE method to a real Gaussian white noise s, shown in Fig. 3(a), where entropies are calculated by Eq. (2.1),
and compare the result of the HE analysis with the analytical result shown in Theorem 3.2. The numerical result is shown
in Fig. 3(b). From Fig. 3(b), we can see that for fixed scale factor n, the sample entropy of sn,e, e ∈ Z2n , is a constant with
respect to e, and the values of sn,e are decline as the scale factor n increases.

4. Analysis of the 1/f noise

The 1/f noise which can be observed in various physical systems is a signal whose power spectral density is proportional
to the reciprocal of its frequency. We analyze in this section the 1/f noise by using the hierarchical entropy method.

Wenowdescribe the 1/f noise according to [12]. The 1/f noise is defined in terms of complexGaussian randomvariables.
As usual, we let i =

√
−1, the imaginary unit, and we use C to denote the complex plane. A complex variable z := x + iy
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a b

Fig. 3. HE analysis of Gaussian white noise.

is called a complex Gaussian random variable if both x and y are real independent Gaussian variables with the same mean
0 and standard deviation δ. The corresponding probability density function for the complex Gaussian random variable z is
given by

ρ(z) :=
1

π δ2
z
e−|z|2/δ2z , z ∈ C,

where δz :=
√
2δ. We need the notion of the discrete Fourier transform. For a given n ∈ N, we let θn :=

2π
2n and define the

discrete Fourier transform Fn by

Fn :=
1
2n


e−iθnkl : k ∈ Z2n , l ∈ Z2n


. (4.1)

In particular, for a random vector x taking values in R2N , we use x̂ to denote the discrete Fourier transform of x, that is,
x̂ := FNx.

Wewrite x̂ := [zk : k ∈ Z2N ]
T . It can be verified by the definition of the discrete Fourier transform the following symmetric

property

z2N−1+k = z2N−1−k, k ∈ Z+

2N−1 . (4.2)

This symmetry property of the components of vector x̂ leads us to focusing only on its first 2N−1
+ 1 components. If

zk, k ∈ Z+

2N−1−1
, are independent complex Gaussian random variables with mean 0, z0 and z2N−1 are real Gaussian random

variables with mean 0, and there is a positive constant c such that for all k ∈ Z2N−1+1 the standard deviations δk of zk satisfy
δk ≤

c
k+1 , then we call x a 1/f random vector and call an instance of x a 1/f noise. We will use f := [fk : k ∈ Z2N ]

T to denote
a 1/f random vector and f̂ := [zk : k ∈ Z2N ]

T to denote the discrete Fourier transform of f.
The hierarchical entropy analysis of the 1/f noise requires understanding the statistical properties of f1,j := Qj(f), for

j ∈ Z2. This leads us to investigate the compositionQj := FN−1QjF−1
N , j ∈ Z2, (4.3)

where F−1
N is the inverse discrete Fourier transform which takes the form

F−1
n :=


eiθnkl : k ∈ Z2n , l ∈ Z2n


.

Note that for each j ∈ Z2 the matrixQj is a counter part of Qj in the Fourier domain. In the next lemma, we identify them in
terms of two diagonal matrices. For each j ∈ Z2, we introduce two sequences

d+

j,k := 1 + (−1)jeiθN k, d−

j,k := 1 − (−1)jeiθN k, k ∈ Z2N−1

and define two diagonal matrices accordingly
D+

j := diag[d+

j,k : k ∈ Z2N−1 ] and D−

j := diag[d−

j,k : k ∈ Z2N−1 ].

Lemma 4.1. If N ∈ N is fixed, then for j ∈ Z2,

Qj =
1
2


D+

j ,D−

j


. (4.4)
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Proof. For each j ∈ Z2, from the definition of F−1
N and Qj, a straightforward computation leads to

QjF−1
N =

1
2


eiθN−1 lk(1 + (−1)jeiθN k) : l ∈ Z2N−1 , k ∈ Z2N


. (4.5)

Let pj := diag[D+

j ,D−

j ] and F̃N :=
1
2


F−1
N−1, F

−1
N−1


. Thus, from (4.5) we have that

Q N
j F−1

N = F̃Npj. (4.6)

From (4.6) we have that

Qj = FN−1F̃Npj =
1
2
[IN−1, IN−1]pj, (4.7)

where IN−1 denotes the identity matrix of order 2N−1. Substituting the expression of pj into (4.7) yields formula (4.4). �

For a real vector x of length 2N , we write its discrete Fourier transform as x̂ := x̃+ iỹ, where x̃ and ỹ are two real vectors
of length 2N . We define two operators Tl and Tr , respectively, which project a vector of length 2N to a vector of length 2N−1

consisting of, respectively, the first and last 2N−1 components of the original vector, and let

x̃l := Tlx̃, x̃r := Tr x̃, ỹl := Tlỹ, ỹr := Tr ỹ.

For j ∈ Z2, we let xj := Qjx and we will express its discrete Fourier transform x̂j in terms of x̃l, x̃r , ỹl and ỹr . To this end, we
introduce three diagonal matrices

A+

j := diag[1 + (−1)j cos(θNk) : k ∈ Z2N−1 ],

A−

j := diag[1 − (−1)j cos(θNk) : k ∈ Z2N−1 ],

and

Bj := diag[(−1)j sin(θNk) : k ∈ Z2N−1 ].

Lemma 4.2. If x is a real vector of length 2N , then

x̂j =
1
2


A+

j x̃l + A−

j x̃r − Bjỹl + Bjỹr

+

i
2


A+

j ỹl + A−

j ỹr + Bjx̃l − Bjx̃r

. (4.8)

Proof. For each j ∈ Z2, from the definition of x̂, x̂j and xj, we have that

x̂j = FN−1Qjx = FN−1QjF−1
N x̂ = Qjx̂. (4.9)

In (4.9) we use Lemma 4.1 to conclude that

x̂j =
1
2


D+

j ,D−

j


x̂. (4.10)

According to the definition of D+

j and D−

j , we know that

D+

j = A+

j + iBj, D−

j = A−

j − iBj. (4.11)

We partition the real and imaginary parts of the vector x̂ as

x̂ =


x̃l
x̃r


+ i


ỹl
ỹr


. (4.12)

Substituting (4.11) and (4.12) into (4.10), we obtain (4.8). �

Lemma 4.3. Suppose that x is a real random vector of length 2N . If the first 2N−1
+ 1 components of x̂ are independent, then the

first 2N−2
+ 1 components of x̂j are independent.

Proof. We write x̂ := [zk : k ∈ Z2N ] and x̂j := [zj,k : k ∈ Z2N−1 ]. From (4.10) we have that for each k ∈ Z2N−2+1, zj,k is
a linear combination of zk and zk+2N−1 . Noting that zk+2N−1 = z̄2N−1−k, we know that zj,k is a linear combination of zk and
z̄2N−1−k. Since for k, k′

∈ Z2N−2+1, {k, 2
N−1

− k} ∩ {k′, 2N−1
− k′

} = ∅ when k ≠ k′, and random variables zk, k ∈ Z2N−1+1,
are independent, we conclude that random variables zj,k, k ∈ Z2N−2+1, are independent. �

A real random matrix is a matrix whose entries are random variables taking values in R. The mathematical expectation
of a randommatrix is defined as a matrix of the expectation of its entries.
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Lemma 4.4. If z1 and z2 are two independent complex Gaussian random variables with mean 0, and standard derivations δ1 and
δ2, respectively, then for each pair α := αr + iαi, β := βr + iβi with αr , αi, βr , βi ∈ R, αz1 +βz2 is a complex Gaussian random
variable with mean 0 and standard derivation

δ := (α2
r δ

2
1 + α2

i δ
2
1 + β2

r δ
2
2 + β2

i δ
2
2)

1/2. (4.13)

Proof. We let z := αz1 + βz2 and prove that z is a complex Gaussian random variable. It suffices to show that the real part
x and the imaginary part y of z are two independent real Gaussian random variables with the same real mean and standard
derivation.

For k ∈ Z+

2 , we let xk and yk be the real part and the imaginary part of zk. From the definition of complex Gaussian random
variables, we know that for all k ∈ Z+

2 , xk and yk are two real Gaussian random variables withmean 0 and the same standard
derivations δk/

√
2. Since

x = αrx1 − αiy1 + βrx2 − βiy2, y = αix1 + αry1 + βix2 + βry2, (4.14)

by Theorem 10.5 [11], we know that x and y are two real Gaussian random variables. Clearly, the mean of x and y is 0 and
the standard derivation of x and y is

1
√
2


α2
r δ

2
1 + α2

i δ
2
1 + β2

r δ
2
2 + β2

i δ
2
2

1/2
. (4.15)

Thus, z has mean 0 and standard deviation δ given by (4.13)
It remains to show that x and y are independent. To this end, we will prove that the covariance between x and y is zero,

since, by Theorem 4.1.2 in [13], this implies that x and y are independent. We calculate the covariance between x and y as
follows. From (4.14), we have that xy = vTDu, where v := [αr , −αi, βr , −βi]T , u := [αi, αr , βi, βr ]T and

D :=

x1x1 x1y1 x1x2 x1y2
y1x1 y1y1 y1x2 y1y2
x2x1 x2y1 x2x2 x2y2
y2x1 y2y1 y2x2 y2y2

 .

Thus, we observe that

E(xy) = vTE(D)u. (4.16)

Since x1, x2, y1, y2 are independent and E

(xk)2


= E


(yk)2


=

δ2k
2 , for k ∈ Z2, we have that E(D) =

1
2diag[δ

2
1, δ

2
1, δ

2
2, δ

2
2].

Substituting this equation into (4.16) yields E(xy) = 0. �

Lemma 4.5. If the first 2N−1
+1 components of x̂ are independent complex Gaussian random variables, then for each j ∈ {0, 1},

the first 2N−2
+1 components of x̂j are independent complex Gaussian random variables, except for the first and the (2N−2

+1)th
components which are real Gaussian random variables. Moreover, for each k ∈ Z2N−1+1, if the mean and standard derivation of
the (k + 1)th component of x̂ are 0 and δk, respectively, then the mean of all components of x̂j is 0 and the standard deviation of
the (k + 1)th component of x̂j is

δj,k =
√
2

(1 + αj,k)δ

2
k + 2(1 − αj,k)δ

2
2N−1−k

1/2
, (4.17)

where αj,k := (−1)j cos (θNk).

Proof. We write x̂j :=

zj,k : k ∈ Z2N−2+1


. We first prove that zj,0 and zj,2N−2 are real Gaussian random variables. By

Lemma 4.2, we have that

zj,0 =
1
2


1 + (−1)j


z0 +

1
2


1 − (−1)j


z2N−1 . (4.18)

Since z0 and z2N−1 are real Gaussian random variables, from (4.18) and Theorem 10.5 [11] we know that zj,0 is a real Gaussian
random variable. Furthermore, noting that 2N−1

− 2N−2
= 2N−2, again from Lemma 4.2 we have that

zj,2N−2 = x2N−2 − (−1)jy2N−2 , (4.19)

where x2N−2 and y2N−2 are the real part and the image part of z2N−2 , respectively. Hence, we conclude that zj,2N−2 is a real
Gaussian random variable. Since from Lemma 4.2 we have that

zj,k =
1
2
(1 + (−1)jeiθN k)zk +

1
2
(1 − (−1)jeiθN k)z2N−1+k, (4.20)

by Lemma 4.4 we obtain that zj,k is a complex Gaussian random variable.
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a b

Fig. 4. Standard derivations of the components of random vectors f̂1,0 and f̂1,1 .

Since the random variables zk, k ∈ Z2N−1+1, are independent, it follows from Lemma 4.3 that the random variables
zj,k, k ∈ Z2N−2+1, are independent. By applying Lemma4.4 to Eq. (4.20)with the symmetric property (4.2) and using Theorem
10.5 [11] to Eqs. (4.18) and (4.19), we obtain (4.17). �

We now return to the hierarchical entropy analysis of the 1/f noise f. With the preparation presented above, we first
prove a theoretical result which concerns f1,0.

Theorem 4.6. If f is a 1/f random vector, and δk and δ0,k are the standard derivations of the (k + 1)-th random variable of
f̂ and f̂1,0, respectively, then f1,0 is also a 1/f random vector. Moreover, if there exists a positive constant c such that for all
k ∈ Z2N−1+1, δ

2
k ≤

c
1+k , then for all k ∈ Z2N−2+1, δ

2
0,k ≤

c
1+k .

Proof. Let f̂1,0 be the Fourier transform of f1,0. To prove that f1,0 is a 1/f random vector, we will show that the first 2N−2
+1

elements of f̂1,0 are independent real or complex Gaussian random variables, and for all k ∈ Z2N−2+1, δ
2
0,k ≤

c
1+k .

Since f be a 1/f random vector, from the definition of a 1/f random vector we know that the first 2N−1
+ 1 elements

of f̂ are independent real or complex Gaussian random variable with mean 0. Thus, from Lemma 4.5, we have that the first
2N−2

+ 1 elements of f̂1,0 are independent real or complex Gaussian random variables.
We next prove that for all k ∈ Z2N−2+1, δ

2
0,k ≤

c
1+k . From (4.17), we have for all k ∈ Z2N−2+1 that

δ2
0,k =

1
2


(1 + cos(θNk))δ2

k + (1 − cos(θNk))δ2
2N−1−k


. (4.21)

Since for all k ∈ Z2N−1+1, δ
2
k ≤

c
1+k , from (4.21) we have that

δ2
0,k ≤

c
1 + k


2N−2

+ 2N−2 cos(θNk) − k cos(θNk) + 1
1 + 2N−1 − k


. (4.22)

Since cos(θNk) ≤ 1 and k ∈ Z2N−2+1, it can be verified that the fractional expression in the parentheses of the right hand
side of (4.22) is bounded below by 1

2 and above by 1. This gives the desired result. �

In the remaining part of this section, we perform a numerical experiment which confirms the result regarding the lower
frequency component f1,0, presented in Theorem 4.6 and provides us with additional insight into the higher frequency
component f1,1.

Since f is a 1/f random vector, from Lemma 4.5 we know that for each j ∈ Z2, f̂1,j is a random vector of independent
Gaussian random variables. We choose a 1/f random vector f so that the standard deviation δk of the components zk, k ∈

Z2N−1+1, of f̂ equals to 1
k+1 , and calculate the standard derivation δ1,j,k of each component z1,j,k, k ∈ Z2N−1 , of vector f̂1,j

by using Eq. (4.17). Since z1,j,k = z̄1,j,2N−1−k for k ∈ Z+

2N−2 , we only compute δ1,j,k for k ∈ Z2N−2+1. We show the values of
δ1,j,k, j ∈ Z2, k ∈ Z2N−2+1 in Fig. 4.

In Fig. 4(a), we plot the values of δ1,0,k, k ∈ Z2N−1+1 by the solid line, and compare it with the values of 1/(k + 1), k ∈

Z2N−1+1 which is shown by the dashed line. The numerical result shows that they are very close. In fact, Fig. 4(a) shows that
the standard derivations of the elements of f̂1,0 (the blue solid line) are proportional to the reciprocal of the frequency factor
k (the red dashed line).
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Fig. 5. Covariance matrix of f1,1 .

Fig. 6. HE analysis of 1/f noise s and s1,0 .

In Fig. 4(b), we plot the values of δ1,1,k, k ∈ Z2N−1+1 by the blue solid line, which shows that the standard derivations of
the components of f̂1,1 approximately equal to a constant as the frequency factor k increases. Noting that the components
of f̂1,1 are independent real or complex Gaussian random variables, the standard derivations of the components of f̂1,1 with
large frequencies are approximately equal to a constant, as shown in Fig. 4(b). This implies that f1,1 behaves pretty like a
real Gaussian random vector. This can be further supported by the covariance matrix of f1,1 shown in Fig. 5. From Fig. 5 we
see that the covariance matrix of f1,1 is very close to a diagonal matrix with constant diagonal entries. This means that the
components of f1,1 are almost independent real Gaussian random variables with the same standard derivation.

We now consider the hierarchical entropy analysis of 1/f random vector f. According to Theorem 4.6, we know that f1,0
is also a 1/f random vector. As shown in Fig. 4(a), the standard derivation of the components of f̂1,0 is approximately equal
to that of the components of f̂. Hence, we expect that the result of the HE analysis of a 1/f random vector f equals to the result
of HE analysis of f1,0. We test this by applying the hierarchical entropy method to a 1/f noise s with 215 data points and
s1,0 := Q0s. Here we use s to denote a 1/f noise, which is an instance of a 1/f random vector f. The parameters used in
calculating the hierarchical entropy arem = 2 and r = 0.15. The results are shown in Fig. 6. Fig. 6(a) shows the hierarchical
entropy values of s0,0, while Fig. 6(b) shows those of s1,0. The difference of the entropy values of s0,0 and s1,0 can neglectable.

Wenext illustrate numerically that f1,1 is a randomvectorwhich is approximately equal to a real Gaussian randomvector.
We apply the hierarchical entropy method to s1,1 := Q1s. The parameters used are m = 2 and r = 0.15. The results are
shown in Fig. 7. From Fig. 7, we find that the entropies with the same scale factor is approximately equal to a constant, and
the entropies decrease as the scale factor increases. This behavior of s1,1 is pretty much like that of the Gaussian white noise
which is shown in Fig. 3(a).

5. Hierarchical entropy analysis of heartbeat data

In this section, we apply the hierarchical entropy method to analyze the cardiac interbeat interval time series derived
from 24 h continuous electrocardiographic (ECG) Holter monitor recordings of 72 healthy subjects, 43 subjects with
congestive heart failure (CHF) and 9 subjects with atrial fibrillation (AF). The parameters used in calculating the hierarchical
entropy are m = 2 and r = 0.15. We demonstrate that the hierarchical entropy method extracts significant features of
these time series which may help us distinguish the subjects.
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Fig. 7. HE analysis of s1,1 .

Fig. 8. HE analysis of heartbeat time series from 26 healthy young subjects and 46 healthy elderly subjects.

We calculate the hierarchical entropy of the subjects of each group. To present our results, we define necessary notations.
We let {sl : l ∈ Z+

L } denote a set of time series where L is a integer. For a given K ∈ N, {sl,n,e : (n, e) ∈ JK } denotes the
hierarchical decomposition of signal sl with K scales. Given the time series set {sl : l ∈ Z+

L }, for fixed m ∈ N, r ∈ R we
define the mean of the entropy of scale (n, e) by

Mn,e :=
1
L

L−
l=1

Sm(sl,n,e, r).

We use a binary tree of column diagrams to represent the values ofMn,e. The high of a column at note (n, e) corresponds to
the value of Mn,e. In this tree, (0, 0) denotes the root node, and for each node (n, e), we use (n + 1, 2e) and (n + 1, 2e + 1)
to denote its left and right child nodes, respectively.

Example 1 shown in Fig. 8 compares the hierarchical entropy analysis of the cardiac interbeat interval time series of the
healthy young subjects with that of the healthy elderly subjects. We show the mean values {Mn,e : (n, e) ∈ J5} of the 26
healthy young subjects in Fig. 8(a) and those of the 46 healthy elderly subjects in Fig. 8(b). The numerical results are reported
in Table 1.

In both Fig. 8(a) and (b), the subtrees with the root node (1, 1) of the hierarchical entropy trees look pretty much like
the hierarchical entropy tree of the Gaussian white noise. Hence, the first higher frequency component in both cases is most
likely just noise. For this reason, we consider only the subtrees with root node (1, 0) in both Fig. 8(a) and (b). Comparing the
values of the corresponding nodes in the two subtrees with root node (1, 0), we see that the values of nodes in the subtree
in Fig. 8(a) are significantly larger than those of the corresponding nodes in the subtree in Fig. 8(b). Moreover, when we fix
the scale factor n = 3 or 4, the values of the nodes in Fig. 8(b) decrease faster than the corresponding values in Fig. 8(a) as
e increases. In other words, in the same scale, the higher frequency components of the time series derived from the young
subjects are more irregular than the corresponding components of the time series derived from the elderly subjects.

In Example 2, we compare the hierarchical entropy analysis of the cardiac interbeat interval time series from the 72
healthy subjects and that from the 43 subjects with congestive heart failure (CHF). The numerical results are reported in
Table 2 and shown in Fig. 9. The mean values Mn,e, (n, e) ∈ J5, of the hierarchical entropy values for the healthy subjects
and for the CHF subjects are illustrated in Fig. 9(a) and (b), respectively.

Again, in both Fig. 9(a) and (b), the subtrees with root node (1, 1) of the hierarchical entropy trees looks pretty much
like the hierarchical entropy tree of the Gaussian white noise and thus, as in the last example, the first higher frequency
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Table 1
Hierarchical entropy values for the 26 healthy young subjects vs. those for the 46 healthy elderly subjects.

Scales Healthy young subjects Healthy elderly subjects
0 1 2 3 4 0 1 2 3 4

Entropy

1.21 1.36 1.55 1.60 1.54 0.89 0.85 0.97 1.11 1.15
0.94 0.51

0.84 0.49 0.38 0.17
0.72 0.29

0.69 0.42 0.17 0.30 0.17 0.07
0.29 0.09

0.50 0.29 0.17 0.07
0.34 0.09

0.60 0.35 0.16 0.04 0.33 0.20 0.10 0.04
0.08 0.04

0.21 0.08 0.09 0.04
0.10 0.04

0.37 0.20 0.09 0.18 0.10 0.04
0.09 0.04

0.19 0.08 0.09 0.03
0.08 0.04

Fig. 9. Hierarchical entropy analysis of the heartbeat time series from the 72 healthy subjects and from the 43 subjects with congestive heart failure (CHF).

Table 2
Hierarchical entropy values of the heartbeat time series from the 72 healthy subjects vs. the 43 subjects with congestive heart failure (CHF).

Scales Healthy subjects CHF subjects
0 1 2 3 4 0 1 2 3 4

Entropy

1.01 1.03 1.18 1.29 1.29 1.26 0.98 0.90 0.96 1.08
0.67 0.39

0.55 0.29 0.33 0.18
0.45 0.19

0.44 0.26 0.10 0.40 0.25 0.12
0.16 0.12

0.29 0.15 0.21 0.10
0.18 0.10

0.43 0.25 0.12 0.04 0.57 0.37 0.22 0.11
0.05 0.11

0.14 0.05 0.20 0.10
0.06 0.10

0.25 0.13 0.06 0.36 0.21 0.10
0.06 0.10

0.12 0.05 0.19 0.09
0.05 0.09

component in both cases is most likely just noise. In Fig. 9(a), the values Mn,1, n ∈ Z+

4 increase as the scale n increases. In
Fig. 9(b), the valuesMn,1, n ∈ Z+

4 , have theminimumvalue at n = 3. Note thatMn,1 describes the heartbeat accelerationwith
the scale n−1. Thus, from Fig. 9(a), we know that the heartbeat accelerations of the healthy subjects becomesmore irregular
as the scale factor increasing. This indicates that the time series derived from the healthy subjects are more ‘‘complex’’ than
that derived from the CHF subjects.

Example 3 is about the hierarchical entropy analysis of the cardiac interbeat interval time series from the 9 subjects with
atrial fibrillation (AF). We report the numerical results in Table 3 and illustrate them in Fig. 10. For the comparison purpose,
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Fig. 10. Hierarchical entropy analysis of the heartbeat time series from the 72 healthy subjects and from the 9 subjects with atrial fibrillation (AF) and the
Gaussian noise.

Table 3
Hierarchical entropy values of the 9 subjects with atrial fibrillation (AF) vs. the Gaussian white noise.

Scales AF subjects Gaussian white noise
0 1 2 3 4

Entropy

2.21 2.01 1.76 1.47 1.18 2.47 2.12 1.81 1.46 1.12
0.94 1.12

1.27 0.96 1.46 1.13
0.96 1.14

1.58 1.26 0.94 1.76 1.43 1.10
0.94 1.11

1.27 0.96 1.44 1.11
0.96 1.10

1.86 1.57 1.25 0.93 2.12 1.79 1.46 1.10
0.95 1.14

1.26 0.95 1.44 1.11
0.94 1.12

1.56 1.26 0.95 1.78 1.45 1.13
0.94 1.10

1.25 0.95 1.44 1.12
0.94 1.10

in Fig. 10(a), we review the results of the hierarchical entropy analysis of the time series from the 72 healthy subjects (shown
in Fig. 9(a)). In Fig. 10(b), we present themean valuesMn,e, (n, e) ∈ J5, of the hierarchical entropy analysis of the AF subjects
while in Fig. 10(c), we review the hierarchical entropy analysis of the Gaussian noise which is shown in Fig. 3(a).

Comparing Fig. 10(a) and (b), we see that the hierarchical entropy results of the time series from the subjects with AF are
significantly different from those from the healthy subjects. In Fig. 10(b), we see that the values Mn,0, n ∈ Z5, decrease as
the scale n increases, in the same manner as the hierarchical entropy values of the Gaussian white noise do (see, Fig. 10(c)).

It is difficult to distinguish the time series for AF subjects from the Gaussian white noise by only using the multiscale
entropy, the values at nodes (n, 0), n ∈ Z5, since the multiscale entropy for AF data behaves very similar to that for the
Gaussian noise [2]. The hierarchical entropy analysis seems to have significant improvement over the multiscale entropy
analysis. Observing the hierarchical entropy values shown in Fig. 10(b), we see that there is a notable feature that for each
n ∈ Z+

4 , the value Mn,0 is different from the values Mn,e, e ∈ Z+

2n−1. On the other hand, from Fig. 10(c), we observe that
the hierarchical entropy values of the Gaussian noise at the same scale are a constant. By using this feature, we can clearly
distinguish the time series for the atrial fibrillation (AF) subjects from the Gaussian white noise.

6. Conclusion

The hierarchical entropy method introduces entropy of higher frequency components of a time series in addition to
entropy of its lower frequency components provided by the multiscale entropy analysis for the series. Theoretical study
and numerical experiments show that the HE methods provides useful information in quantifying the complexity of a time
series.
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