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R o b e r t  Meersman (**) 

A B S T R A C T  

An attempt is made to introduce the non-expert reader to the many aspects of a relatively 
new and varied field which seems to be at the same time analysis, algebra and computer 
science. Computational complexity can be roughly described as the theory of optimizing 
finite and infinite algorithms for use on digital computers. Even for "simple" problems like 
the finding of a zero of a real function or even the evaluation of a polynomial, surprisingly 
deep techniques are necessary. A representative sample of the presently existing bibliography 
on the subject is included at the end. 

1. INTRODUCTION 
Programmers tend to become slightly overawed with 
the truly enormous speed and data handling capacity 
of modern day digital computers. This often results 
in clumsy and wasteful programming. In recent years 
however the use of such devices has greatly intens- 
ified, and consequently the demand for more ef- 
ficient programs has risen, not to speak of  situations 
where actual speed is essential in running certain 
programs. The search for "optimal" algorithms for 
specific problems implies the finding of good criteria 
for optimality or efficiency, and the need of classify- 
ing algorithms with respect to these criteria. This 
essentially constitutes a vast field of  research current- 
ly labeled as computational complexity. 
Part of this is taken up by "abstract" complexity 
theory, from the viewpoint of recursive function 
theory and the theory of  Turing machine computa- 
tions. 
We will not be concerned here with this "general" 
aspect of computation; for an excellent survey the 
interested reader is referred to the papers of Hart- 
manis and Hopcroft [8] and of Borodin [1]. As even 
a theoretically "good" algorithm can be badly im- 
plemented, the study of  the behaviour of  a particul- 
ar algorithm in a particular computer could also be 
considered part of complexity theory. This is what 
Knuth [14] calls a type A analysis. For a (very com- 
plete) treatment of this problem, see of  course his 
books [15] [16] [17]. 
How difficult or complex is a particular problem ? 
Assume we have found a class of solutions for it, 
such that with each solution we can associate a real 
number called its complexity. We could then define 
the complexity of this problem relative to that class 
of algorithms as the infimum of these numbers. 
Naturally, chosen algorithms depend on the kind of 

complexky measure (Trivial example : for each 
element in one class of programs for the same prob- 
lem, consider its size (s) and its execution time (t) 
as complexity measures. By increasing s, for instance 
through lookup tables, it is often possible to reduce 
(t). As a striking illustration of the fact that the 
oldest algorithms did not necessarily survive time 
because of their efficiency, consider the multiplica- 
tion of  two n-bit numbers. This is done classically 
in 0(n 2) "elementary" operations. However there 
exists a simple way to do it in 0(nlog 3) operations 
(see Knuth [16]) and in 1970 SchSnhage and Stras- 
sen [41] discovered a method requiring only 
0 (n log n log log n) steps, using the so-caUed Fast 
Fourier Transform and modular arithmetic (*). 
This survey is divided into two parts, respectively 
treating - in the terminology of Traub [54] [56] - 
algebraic computational complexity (sections 2 to 5) 
and analytic computational complexity (sections 6 
to 8). The first kind, loosely stated, treats problems 
of Finite nature like the evaluation of polynomials, 
while the second is concerned with problems like for 
example the finding of a zero of a certain function. 
Our aim is to make the reader aware of the very wide 
variety of techniques presently in use in this field. 

2. EVALUATION OF CERTAIN FUNCTIONS 

Problem 1 
To evaluate the polynomial Pn(x) =a n xn+. . .  +alx+a0.  
It is well known that this can be done in a simple 
way by the so called "Homer's Rule", i.e. 

set T n = an; 

compute T i = Ti+ l x  + a i for i = n- l ,  n-2 ..... 1,0; 

(*) all logarithms in this paper are to base 2. 

(*) This paper is an extension of two talks given in Nov. 1973 at the Seminar on Numerical 
Analysis at the Universitaire InsteUing Antwerpen 

(**) Vrije Universiteit Brussel, Departement voor Wiskunde, Terhulpesteenweg 166, 1170 
Brussel 

Journal o£ Computational and Applied Mathematics, volume I, no 1, 1975. 39 



then Pn(X) = T 0. 
The complexity of such schemes is most often ex- 
pressed in the number of  arithmetic operations used. 
Clearly Horner's scheme uses n multiplications (MUL) 
and n additions/subtractions (ADD 7. It is difficult 
to imagine a cheaper way to do it, yet the optimal- 
ity of  Horner's Rule was not proven until 1958 by 
Pan [34]. Indeed we have the following 

THEOREM 
Among all algorithms with input (a 0, a l , . . . , an ;  x) 
and output  Pn(x) Homer's scheme is optimal, i. e. 
it minimizes the number of  Multiplications, Divisions 
and Additions, Subtractions. 

(Remark : We leave it to the reader to construct an 
example where a polynomial can be evaluated in a 
cheaper way using division). 
For a relatively simple proof, see Reingold and 
Stocks [38] : it proceeds by induction on the count 
of  "crucial steps" (those steps of  the algorithm 
which contribute to the operation count) by a sub- 
stitution argument on the first crucial step. 
It is essential to note that, in the theorem above, 
the coefficients of Pn are part of the input. Indeed, 
often the problem is to evaluate the same poly- 
nomial Pn at a large number of  points (take for in- 
stance a library program which uses a polynomial 
to approximate a given function). In such a case it 
could be interesting to do some preliminary arith- 
metic on the coefficients in order to save multiplica- 
tions at evaluation time. (In many practical cases it 
is a reasonable assumption to consider addition time 
negligible relative to multiplication or division time, 
e. g. when n is a multiple precision number or a 
square matrix). This procedure is commonly called 
preconditioning and seems to be introduced by 
Motzkin [29] and Pan [34]. 

Example : For any fourth degree polynomial P4" 
It is possible (see for instance Knuth [1 §]) to deter- 
mine a 0 . . . . .  t~ 4 such that 

P4(x) = ((y + x  +tx2)Y +tx3)0t 4 

where y = (x + t~0) x + 0t 1 

and thus computing P4(x) with 3 MUL and 5 ADD. 
The result is to cut the number of  necessary multi- 
plications roughly in half; still we need at least 

1 (n +1)] MUL and n ADD 

(Winograd [60]; Winograd and Rabin [37]. In this 

paper, an algorithm using __1 n + 0(log n 7 MUL and 
2 

n + 0(n) ADD can be found 7. For some simple 
proofs see Reingold and Stocks [38]. 
Some results are also beginning to be available on 
the simultaneous evaluation of an n th degree poly- 
nomial at n + 1 arbitrary points• This is "dual" to 

the interpolation problem through the finite Fourier 
Transform. (For details, see Horowitz [1117. The 
principle is to take the finite Fourier Transform at 
n = 2k  points which are related to the n primitive 
(complex) roots of unity and then exploiting their 
symmetry as fully as possible. This will account for 
the k = log n factor in the results. Kung [20] shows 
both interpolation and evaluation can be solved in 
0 (n(log n)2)operations (total), nibbling off  a factor 
(log n) from the previous best result (Moenck and 
Borodin [28.] through a fast division algorithm. 
Strassen [49] comes to the same result via deep tech 
niques from algebraic geometry : he relates the 
number of  MUL/DIV and ADD/SUB in a set of 
rational functions to the ("geometrical") degree of  
the intersection of an equal number of  algebraic 
varieties, and applying a generalized version of 
Bezout's theorem. Moreover, he shows 0(n log n) 
MUL/DIV are sufficient. 

Problem 2 
To evaluate Pn and all its (normalized) derivatives at 
a point x. 
We will only mention this problem because it is a 
beautiful example of  an old and much used algorithm 
which suddenly appears to be not so good at all ! 
Classically, the solution is given as 

T~ 1 = a i +  1 i = 0 . . . .  , n - 1  

Ti ___a 0 . . . .  ,n  j = 0  

TJ 
1 

• ° 

__ T L I  + x T I _  1 j = o . . . . .  a n d  

i = j + i  . . . .  ,n  

t h e n  

PJ( x7 = T j ] = 0 . . . . .  n 
j !  n 

This is called the iterated Horner scheme, and needs 

n i n + 17 MUL and n (n + 1_._._.~) ADD. 
2 2 

In 1974, Shaw and Traub [43] published the follow- 
ing algorithm for the same problem (see also Traub 
[55]7: 

T_I = a i  x n - i - 1  
1 +1  

i X n T ~. = a 0 
J 

i _- 0, 1 . . . . .  n-1  

j = O  . . . . .  n 

j = 0 . . . . .  n - 1  and 
i = j + l  . . . .  ,n  

then. 

PJ (x) x-J T j j O, , n-1  
j !  = n = "'" 

which needs only 3n-2 MUL and n (n +17 ADD. 
2 

In both cases the total number T(n) is of second order 
in n. Recently, Kung [22] has given a method requir- 
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ing only a total of  0(n log n 7 operations : 

T ( n ) ~ < 6 n l o g n + 0 ( n l o g n )  

It is an open problem wheter there is an upper 
bound of  order 0(n) for the number of  additions 
alone. Lower bounds appear to be unknown too at 
this moment. 

3. ON COMPUTING THE PRODUCT OF A MA- 
TRIX WITH A VECTOR OR ANOTHER MA- 
TRIX 

Both polynomial evaluation and the product o f  a 
matrix with a vector can be considered as special 
cases of the same type of  problem (Winograd [60]). 
Indeed they each correspond to a suitable choice 
for ¢,  $ and x in the following theorem : 

THEOREM (Winograd) 
If we are to compute the t-vector ~ = Ox + ¢  
where : • is a t x n matrix over the field 
F(x I . . . . .  Xn) of  rational functions Cover the field 
F); ¢ is a t-vector over the same field, and x is an 
n-vector (the "parameters" of  the algorithm), then 
we need at least as many MUL/DIV as there are 
columns of  * independent over F. 
The proof, like the one for polynomials above, is 
again based on a substitution argument and by in- 
duction on the number of  MUL/DIV operations 
(the substitution having for goal to remove the first 
"active" MUL/DIV from the computation). We re- 
mark that the x i in the theorem are in fact the para- 
meters of  the problem, i. e. for example the co- 
efficients of  the polynomial to be computed. 

COROLLARY 
Put ~ = 0, x = the pq-vector containing the ele- 
ments of  a p x q matrix M row by row, ~ = p x p q 
matrix over the field ~ (Yl . . . . .  yq) such that 

¢ ~  = My. 

It follows that the ordinary method of  computing My 
minimizes the number of  multiplications, because all 
pq columns of  ¢ are independent over ~ as func- 
tions in ~ (Yl . . .  Yq)P. 

In the same paper, an interesting algorithm is given 
to compute My in about half the multiplications, 
using preconditioning on the rows of  M : 

first compute for each row 

n/2 
~i = Z x i j =1 ' 2j -1  xi, 2j 

(Suppose M is n × n with n even 7 
and then we have 

n n/2 
(MY) i = Z 

i = l  xij YJ = j ~ l  (xi'2j-1 +Y2j)(xi'2j 

+ Y2j-17 - ~i- 7/ 

n/2 
where ~ = ~ needs n MUL, bringing j = l  Y2j-1 Y2j 
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the total to n (n + 17 MUL, not counting the ~n.n 
2 2 

MUL of the ~i" This algorithm is easily adapted to 

the product o f  two (nxn 7 matrices, giving a method 

requiring only [ 1__n3] + 0(n 2) MUL (all counted) 
2 

instead of  n 3 + 0 (n 2) MUL. This still is an 0(n37 
upper bound, and the question arises whether this 
can be lowered. Surprisingly, the answer is yes - 
thanks to an algorithm of V. Strassen [44] which is 
becoming a classic. It consists o f  an ingenuous and 
highly non-trivial way to multiply two 2x2 matrices 
in only 7 multiplications instead of  8, in a manner 
not using commutat/vely, so it can be recursively 
applied to larger matrices by partitioning. 
This lowers the upper bound to 0 (nlog 77. It works 
as follows : 

B a 

Put I = (A+DXa+d7 I I=(C+D)a I I I =  A(b-d 7 
IV _- D ( c - a  7 V= (A+B)d VI = (C-A) (a+b)  

VII = (B-D) (c+d  7 

ThenMm = II+IV-V+VI m+V t 
II + IV I + III - II + VI~ 

The number 7 is minimal for 2x2 matrices (Wino- 
grad [621, see also Strassen [45]). Some generaliza- 
tions and related results are known (Hopcroft and 
Kerr [10] for 2×n  matrices; Gastinel [6]). Two major 
open problems remain : 

Open Problem 1 : Can the upper bound be lowered 
still ? 

In particular, does there exist a Strassen-like method 
which multiplies two 3x3 matrices in 21(<31og 7) 
multiplications or less ? Some people suspect it to 
lie close to 0(n2). 

Open Problem 2 : Much hss is known about lower 
bounds. 
A trivial one is n2. In fact, all known lower bounds 
are 0(n27 (Borodin [117. Can this be raised ? See 
Strassen [45] for some efforts in this direction with 
ortogonal matrices using the rank of  the Lie ring of  
S0(n) (The special ortogonal group of  order n). 

4. A MODEL FOR ALGORITHMS 
In order to prove for instance that Homer's scheme 
is optimal among a certain class of  schemes implies 
the need of  a good definition of  "scheme" or "algo- 
rithm". Unification here seems to be lacking; most 
currently the definition is adapted to the problem 
under consideration. For polynomial evaluation often 
"chains" (Knuth [16])or some analogous scheme is 
used. This consists o f  computing Pn(x) by a series of  
steps ~ . . . .  ' ~-1' X0' Xl . . . .  ,Am such that 
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1) the X i ( -£ ~< i ~<-1) are constants 

2) X 0 = x 

3) t h e ~ j = +  X k c o x  k , w i t h w E  { + , - , % / }  
and k , k ' <  j 

4) X m = Pn(X) 

(also Reingold and Stocks [38]7. 

This principle was generalized considerably by Wino- 
grad [60] and again so by Strassen [47][48]. The 
latter has built a very nice formalism in which to 
describe elegantly a large class of  problems from 
algebraic computational complexity. He introduces 
into numerical mathematics the concept of  "Palgebra" 
(for Partial Algebra) which for a particular problem 
essentially is a set A of objects to be computed 
(the "carrier") equipped with a set I2 of  operations 
on A (the " type")  which need not be defined every- 
where (hence the "partial"). With each element of  
60 is associated a natural number s(co) : the number 
of operands of  co. Thus 

60 : AS(c°) ~ A(*) 

Important special cases are nullary operations 
(s(co) -- 0, constants) and unary operations (s(co)=l, 
for instance scalar multiplication in a vector space). 
DeFine a computation fl of length 1 as a sequence of 
steps 

fli = (cop Ji I " "" Jis(coi)) 1 ~< i ~< 1, 

with 
coi Eg l  and jio< i ~" a ~  [1 : s(coi)](**) 

(Thus allowing no loops). 

With fl is associated a result sequence aft through 

(a~)i :=  a~ i :=  col (aji I " '"  ajisi) si = s (col) 

ff this is defined, and else a~ = ~ .  fl is said to com- 
p u t e F C A f f  1) o o q N  

2) Feat 
(Think of F for example as a set of  polynomials in 
A = IR[x], with x as nuUary operation). Let us 
suppose for simplicity that all finite subsets of  A are 
computable. (In such a case, A is called prime). 
After introducing an execution time z : I2-~ IR+, 
two complexity measures are associated with a com- 
putation : 1 

(Length) L(z It) : = i~=l z(co i) 

1 ~ i )  djia ) (Depth) D(z Ifl) : =  maxi= 1 (z(coi)+max 

The L-complexity of  F C  A is defined as 

L(zIF) = rain {L(zlfl) I aft D F }  

(*) : f : A ~ B stands for a partial mapping 

(**) : [m : n ] =  {p I p E H  and m-~<p ~< n} 

and aft which realizes this minimum is called L- 
optimal. 
Preconditioning can be dealt with by defining com- 
putations fl which compute F rood E, i. e. which 
compute F if E is "known". The L and D measures 
have several natural properties, such as 

L ( F U E ) ~ < L ( F m o d E )  + L ( E )  

D (a) ~< D (a mod E) + D (a) (transitivity) 

Two useful induction principles are also proved (L- 
and D-induction) in the above-mentioned papers. 

5. SOME RESULTS 
In his formalism, Strassen proceeds to define pro- 
grams as functions from a set of  inputs (palgebra's 
over x 1 . . .  Xn) to a set of  so-called ~2-sets (roughly 
equivalent to computations). A theorem is proved 
which says that for almost all inputs (in a suitably 
generalized Zariski sense) the L-complexity of  a 
program does not rise by restricting oneself to 
"straight" computations (i. e. without branching 
instructions). In a later paper (Strassen [50]) tech- 
niques from information theory are used to derive 
among other things a "statistical" result on the com- 
plexity of  real numbers : for almost all a E ~ (in 
the Lebesgue sense) the length Le(a ) of  computing 
an e approximation b to a satisfies 

1 log@ log -fi- 
Le(a ) ~< + 0 ( ) (small) 

1 1 log log-g- log log -~- 

Here algebraic complexity theory seems to overlap 
a little with analytical theory, specifically this is close- 
ly related to some results of  Paterson [35] and Kung 
[19]. Kung [21] also uses Strassen's formalism ap- 
plied tO the problem of  inverting a power series : 

De£me L n = the length of computation to deter- 
mine the first n coefficients in 

(~ a i x i)-1 
1 

Kung proves L n ~ n + 1 

and L n ~ 4 n -  log n 

by using Newton iteration, thus narrowing down the 
bound of Sieveking [40] (L n ~< 5n -  27 Kung con- 
jectures 

L n = 4 n -  0(n). 

Brosowski [4] suggested the generalization of  Stras- 
sen's formalism to include mixed type computations 
(for example boolean values, thus introducing branch- 
ing) and possibly loops. 

6. THE COMPLEXITY OF ITERATIONS IN ONE 
V A R I A B L E  : INTRODUCTION 

We now turn to some problems in analytical com- 
putational complexity. Apart from the result just 
mentioned in § 5, the intersection with algebraic 
complexity theory seems to be almost empty at the 
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n l o m e n t .  
A great deal of  the present efforts is directed to one 
particular problem, namely the approximation by 
means of an iteration of  a zero a of  a real function 
f : this is easy to describe and yet it has very wide 
applications in almost every branch of  numerical 
mathematics. We will assume an intuitive notion of  
iterative method (a procedure which is repeated a 
number of  times such that the output at step k is 
part of  the input at step k + 1). For an early and 
fundamental treatment of  the subject from the com- 
plexity viewpoint, we refer to Traub [53]. Some of 
the ideas also date back to Ostrowski [33]. 

Problem 
Given an analytic function f : ~ -'> l~., which has a 
unique simple zero 0t in some given interval, to com- 
pute an approximation to within e of  0t by means of  
an iterative method ~ (which is supposed to be con- 
vergent). 
Of course, numerous methods of  solution exist for 
this type of  problem; the difficulty is to decide 
which is "best". A good efficiency measure will have 
to satisfy some properties : it should be inversely 
proportional to total cost, i. e. if E i is the efficiency 
of method ~i applied to f, giving an e-approxima- 
t-ion to 0t with total arithmetic cost C i (i = 1, 2) we 
have 

E 1 C 2 
' x , -  (A) 

E 2 C 1 

Furthermore, we should have 

P ( $ o $ )  = p($)  (B) 

where ~o¢ is the iteration in which each step is a 
succession of  two steps ~b. In general it will also 
depend explicitly on the problem £ Such a measure 
is given by 

E(#)- -  log p (1) 
d 

Here p is the order or power of convergence of the 
method, defined as the greatest number p >i I such 
that 

lira lxi +1 - al 
_ C < ~  ( w i t h C < l i f p = l )  

i-+~ Ix i - a I p 

tit is clear that the larger p is, the greater is the 
speed of  convergence). 
d is defined as the total cost per step. Up to a mono- 
tonic function, (1) is the only possible choice 
(Gentleman [7]) satisfying the requirements A and 
B. The cost d can further be split up in (Traub [55] 
[561I. 

1) the costs c i of evaluating the derivatives t~i) 

2) the (minimum) cost a~ of  combining these 
evaluations to ~. 

Thus d = .~ m i c i + a~ with m i the number of  (new) 
1 

function evaluations per step. When old evaluations 
are reused, the iteration is said to be with memory. 
Traub [54] has studied the influence of  memory on 
the order of  convergence and found that any amount 
of  memory only adds less than i to the order p. 

EXAMPLE. NEWTON vs. SECANT vs. TRA UB 
ITERATION 
Newton iteration is defmed as 

f ( x  i) 
x i + l  = x i - _ _  _= ¢~q (xi, f, f ' )  

f '  (x i ) 

In the above notation we have aCN = 2, m 0 = m 1 = 1  , 

memory = 0. One can prove rather easily p~ = 2 
under certain general conditions on £ 
Secant iteration is given by 

x i -  xi_ 1 
x i+  1 = x i - - ~b S (x i, xi_ 1, f )  

f(xi) - f(xi- 1) 

thus a~s ~ 4 ,  m 0 = 2 ,  m i = 0 ( i~1) ,  memory = 1. 

This is a special case of  so-called interpolatory itera- 
tion, i. e. when x i+  1 is computed by interpolating 
by polynomial of  minimal degree at a number of 
points xi, xi_ I . . . .  , xi_ n. 
The order of  such an iteration is given by (Traub 
[51]) the unique positive root p of  

p n _  2; p i = 0  
i < n  

v g + l  
For ~S' P~b S - - - - - ~  % 1.6 

So ~S has lower order than ~bN, but uses one new 
evaluation per step less. It can be shown (Traub [53]) 
that 

E(~b N) < E (~bS) if  c I > 0.44 c 0, 

so Newton iteration is not always more efficient. 
Both ~S and ¢~q are examples of one-point iteration 
(all new evaluations are at xi). 
Let us define Tranb's iteration by 

z i = x i + f(x i) 

(f(xi)) 2 
= ~_ ~ (xi, z i, f) xi + 1 f (zi) _ f (x i) 

This is a two-point iteration (a special case of  so- 
called multipoint iteration) of  order 2. 
Recently, Kung and Traub [25] proved that for itera- 
tions without memory which use two new evaluations 
per step (two of  f or one of  f and one of f ' )  either 
¢~N or ~ is optimal relative to total operation count 
depending whether resp. 

c 1 < c 0 + 3  or c 1 > c 0 + 3  
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Remark : In a more realistic setting, distinction 
should be made between multiplications count and 
additions count, especially where multiple precision 
numbers are involved. 
Rissanen [39] showed that modulo a mild but com- 
plicated smoothness condition on the algorithms us- 
ing one evaluation and one unit of memory, ¢S is 
optimal. This has been considerably generalized by 
Wozniakowski [64]. 

7. ITERATIONS IN ONE VARIABLE : THEO- 
REMS AND CONJECTURES 

It is clear that  the order and hence the efficiency of  
an iterative method are in direct relation to the 
amount of  information (new or old) used in every 
step. Also the way in which this information is used 
is of  importance. We have a remarkable result of 
Kung [18] : 

THEOREM 
Let x i +  1 = ¢(xi, X i_ l , . . .  ) be any rational iteration 
which uses M multiplications. Then the maximal 
order of  ¢ is not greater than 2 M. 
However (Kung [19]) this maximal order is achieved 
only when the limit ~ is rational. This generalizes a 
similar result of  Paterson [35]. 
Now consider the influence of  using derivatives of 
the function f. Winograd and Wolfe [63] proved 
that for any one-point iteration which at each step 
uses at most evaluations of f and its first d derivat- 
ives, the maximal order is d + 2. 
This is done by establishing the existence of  an 
analytic f such that 

ICk (Xk . . . .  ) - r~l 
lira inf " exists and is > O. 
k --> oo II Ix; - a id +1  

j ~ k  a 

Remark that the iteration method need not be 
stationary (¢k) and any amount of  memory is per- 
mitted. Without memory, the maximal order is 
d + 1; iterative methods exist which realize this 
bound (see Kung and Traub [24], who show indeed 
that any one-point iteration without memory of  
order d + 1 must use evaluations of  f and its first 
d derivatives). 
This method is based on interpolation; in fact, 
Wozniakowski [64] shows (Hermite-) interpolatory 
methods are optimal in a very general sense. The 
above restrictions do not apply to multipoint itera- 
tions, at is shown by examples of  King [13], ex- 
hibiting fourth order three-point methods using 
two f ' ,  one f ,  and one f ' ,  two f evaluations respect- 
ively. 
Kung and Traub [23] then found two families of 
n-point iterations, both of order 2n-1, using either 
n evaluations of  f (and no derivatives) or n - 1  evalua- 
tions o f  f and only I of  f ' .  The former is given by 

zi, 1 = xi +/~f(xi) (/3 : real constant) 

zi, k = _p~l (0) 

xi + 1 = Zi, n = pnl(0) 

--Pk 1 is the inverse interpolating polynomial where 

atf(zi , j)  l ~ j ~ k - 1 .  

This is about the fastest stationary iteration method 
known at this moment. 
They also show : 

THEOREM 
If  one uses (Hermite) interpolation, 2n-1 is the max- 
imal order obtainable with n evaluations (for 
methods such as above). 
Also, for any rational method, the order cannot be 
"more than 2n. 
They conjecture however, that 2 n-1 is optimal. 
Recently, they proved this in the case n = 2 (Kung 
and Tranb [25]); n >t 3 remains open, but in any 
case, absolute bounds on computational efficiency 
are already in view. 

8. A FEW OTHER AREAS OF RESEARCH IN 
ANALYTIC COMPLEXITY 

First of all, we have of course the multi-dimensional 
iteration calculus. Very little is known here, because 
the difficulties are vast : the notion of  "order" can- 
not indeed be generalized to n dimensions without 
at least some care (Ortega and Rheinboldt [32]) 
Brent [2] [3] defines the order as 

log[ Ix i + l - a [ I  
P = l i m  

i . oo  logl  Ix i - a l l  

(where x i, x i +  1 and ~ are n-dimensional vectors). 

Wozniakowski [64] defines the order via test-se- 
quences (i. e. by comparing the speed of convergence 
of ~b with sequences of given order a). He remarks 
the difficulty lies in the fact that in the multivariate 
case, one cannot in general be sure that the iteration 
function remains defined on the previously comput- 
ed results. He proposes the investigation of  assump- 
tions of  "good position" in results concerning con- 
vergence. With his definition, he is able to prove the 
optimality of  interpolatory methods in the one-point 
case (using derivatives). Really good efficiency meas- 
ures are yet to be found; 

Brent [2] defines it as log # and con- 
cost  per.step 

jectures the maximal efflcmncy is bounded by 
log poo,n where Poo,n is the (unique)positive root of 

n ÷ j .  
$.p-( j ) = 1  
J 

when using only evaluations of  f, and taking o n e  
evaluation of the vector f as unit of cost. 
In many cases, the cost of evaluating derivatives is 
prohibitive, and the cost of  memory, which may 
seem trivial in the one-dimensional case, can become 
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important. Brent [3] discusses also some classes of  
practical, yet  efficient methods. These are all based 
on some rehtively simple iteration procedure, such 
as discrete Newton, secant, or triangularization, 
which is repeated at each "step" a number o f  times 
(this number is then optimized and depends in 
general on the number of  equations in the problem 
under consideration). 
Quite another domain of  interest is the complexity 
of finite grid methods for the solution o f  partial 
differential equations. Even less is known here. 
We have a result of  Schultz [42] who develops a 
method with so-called cubic Hermite functions on 

aat'i~q2j2dr;~N';)~sitdorna;;d~nw~e0(N2~ ) ~tt~me.~Ca2yPme;_ 

totically "opt imal"  in view of  the fact that N 2 are 
always needed, even ff we know the solution and 
have to tabulate it. Completely different techniques 
are employed by Hoffman, Martin and Rose [9] who 
prove 0(n~) multiplications and 0(n21og n) storage 
is necessary when one uses elimination procedures. 
They depend on graph-theoretical techniques by re- 
presenting a matrix with its rows as vertices and its 
non zero elements as edges of  a graph; elimination 
is then done by deleting a vertex and interconnecting 
all its neighbours. 

9. CONCLUSION 
Computational complexity of  practical problems 
constitutes a fast-growing field of  interest and re- 
search. A better insight in the theory of  the comput- 
ing process is being obtained. Many areas however 
remain untouched as yet or almost so : Miller [26] 
has started to develop a theory of  "infini tely" com- 
plex problems, making use of  topology and analysis; 
complexity theory for numerical integration or for 
finite difference methods in the numerical solution 
of ordinary differential equations is virtually non- 
existent at this moment. Also, the coming of  the 
new paralld or vector machines will require the 
development o f  quite new techniques and algorithms 
(Traub [57], Winograd [61]). An important practical 
probhm associated with the ever "be t te r"  algorithms 
is their numerical stability, i. e. their sensitivity to 
rounding errors etc . . .  Except for some isolated 
efforts, these problems are open (W. Miller [27], 
Ortega [31], Tienari [52], Wilkinson [59]). 
(Take for example Traub's iteration in § 6 which 
involves the division of very small numbers when 
convergence proceeds). Most o f  the problems seem 
to originate from the difficult marriage between 
mathematical analysis and the finiteness o f  the mach- 
ine, so good models will have to be developed, 
especially for analytical complexity theory (Tsich- 
ritzis [58]). 
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