
A survey of techniques in applied computational complexity c*)

R o b e r t Meersman (**)

A B S T R A C T

An attempt is made to introduce the non-expert reader to the many aspects of a relatively
new and varied field which seems to be at the same time analysis, algebra and computer
science. Computational complexity can be roughly described as the theory of optimizing
finite and infinite algorithms for use on digital computers. Even for "simple" problems like
the finding of a zero of a real function or even the evaluation of a polynomial, surprisingly
deep techniques are necessary. A representative sample of the presently existing bibliography
on the subject is included at the end.

1. INTRODUCTION
Programmers tend to become slightly overawed with
the truly enormous speed and data handling capacity
of modern day digital computers. This often results
in clumsy and wasteful programming. In recent years
however the use of such devices has greatly intens-
ified, and consequently the demand for more ef-
ficient programs has risen, not to speak of situations
where actual speed is essential in running certain
programs. The search for "optimal" algorithms for
specific problems implies the finding of good criteria
for optimality or efficiency, and the need of classify-
ing algorithms with respect to these criteria. This
essentially constitutes a vast field of research current-
ly labeled as computational complexity.
Part of this is taken up by "abstract" complexity
theory, from the viewpoint of recursive function
theory and the theory of Turing machine computa-
tions.
We will not be concerned here with this "general"
aspect of computation; for an excellent survey the
interested reader is referred to the papers of Hart-
manis and Hopcroft [8] and of Borodin [1]. As even
a theoretically "good" algorithm can be badly im-
plemented, the study of the behaviour of a particul-
ar algorithm in a particular computer could also be
considered part of complexity theory. This is what
Knuth [14] calls a type A analysis. For a (very com-
plete) treatment of this problem, see of course his
books [15] [16] [17].
How difficult or complex is a particular problem ?
Assume we have found a class of solutions for it,
such that with each solution we can associate a real
number called its complexity. We could then define
the complexity of this problem relative to that class
of algorithms as the infimum of these numbers.
Naturally, chosen algorithms depend on the kind of

complexky measure (Trivial example : for each
element in one class of programs for the same prob-
lem, consider its size (s) and its execution time (t)
as complexity measures. By increasing s, for instance
through lookup tables, it is often possible to reduce
(t). As a striking illustration of the fact that the
oldest algorithms did not necessarily survive time
because of their efficiency, consider the multiplica-
tion of two n-bit numbers. This is done classically
in 0(n 2) "elementary" operations. However there
exists a simple way to do it in 0(nlog 3) operations
(see Knuth [16]) and in 1970 SchSnhage and Stras-
sen [41] discovered a method requiring only
0 (n log n log log n) steps, using the so-caUed Fast
Fourier Transform and modular arithmetic (*).
This survey is divided into two parts, respectively
treating - in the terminology of Traub [54] [56] -
algebraic computational complexity (sections 2 to 5)
and analytic computational complexity (sections 6
to 8). The first kind, loosely stated, treats problems
of Finite nature like the evaluation of polynomials,
while the second is concerned with problems like for
example the finding of a zero of a certain function.
Our aim is to make the reader aware of the very wide
variety of techniques presently in use in this field.

2. EVALUATION OF CERTAIN FUNCTIONS

Problem 1
To evaluate the polynomial Pn(x) =a n xn+. . . +alx+a0.
It is well known that this can be done in a simple
way by the so called "Homer's Rule", i.e.

set T n = an;

compute T i = Ti+ l x + a i for i = n- l , n-2 1,0;

(*) all logarithms in this paper are to base 2.

(*) This paper is an extension of two talks given in Nov. 1973 at the Seminar on Numerical
Analysis at the Universitaire InsteUing Antwerpen

(**) Vrije Universiteit Brussel, Departement voor Wiskunde, Terhulpesteenweg 166, 1170
Brussel

Journal o£ Computational and Applied Mathematics, volume I, no 1, 1975. 39

then Pn(X) = T 0.
The complexity of such schemes is most often ex-
pressed in the number of arithmetic operations used.
Clearly Horner's scheme uses n multiplications (MUL)
and n additions/subtractions (ADD 7. It is difficult
to imagine a cheaper way to do it, yet the optimal-
ity of Horner's Rule was not proven until 1958 by
Pan [34]. Indeed we have the following

THEOREM
Among all algorithms with input (a 0, a l , . . . , an ; x)
and output Pn(x) Homer's scheme is optimal, i. e.
it minimizes the number of Multiplications, Divisions
and Additions, Subtractions.

(Remark : We leave it to the reader to construct an
example where a polynomial can be evaluated in a
cheaper way using division).
For a relatively simple proof, see Reingold and
Stocks [38] : it proceeds by induction on the count
of "crucial steps" (those steps of the algorithm
which contribute to the operation count) by a sub-
stitution argument on the first crucial step.
It is essential to note that, in the theorem above,
the coefficients of Pn are part of the input. Indeed,
often the problem is to evaluate the same poly-
nomial Pn at a large number of points (take for in-
stance a library program which uses a polynomial
to approximate a given function). In such a case it
could be interesting to do some preliminary arith-
metic on the coefficients in order to save multiplica-
tions at evaluation time. (In many practical cases it
is a reasonable assumption to consider addition time
negligible relative to multiplication or division time,
e. g. when n is a multiple precision number or a
square matrix). This procedure is commonly called
preconditioning and seems to be introduced by
Motzkin [29] and Pan [34].

Example : For any fourth degree polynomial P4"
It is possible (see for instance Knuth [1 §]) to deter-
mine a 0 t~ 4 such that

P4(x) = ((y + x +tx2)Y +tx3)0t 4

where y = (x + t~0) x + 0t 1

and thus computing P4(x) with 3 MUL and 5 ADD.
The result is to cut the number of necessary multi-
plications roughly in half; still we need at least

1 (n +1)] MUL and n ADD

(Winograd [60]; Winograd and Rabin [37]. In this

paper, an algorithm using __1 n + 0(log n 7 MUL and
2

n + 0(n) ADD can be found 7. For some simple
proofs see Reingold and Stocks [38].
Some results are also beginning to be available on
the simultaneous evaluation of an n th degree poly-
nomial at n + 1 arbitrary points• This is "dual" to

the interpolation problem through the finite Fourier
Transform. (For details, see Horowitz [1117. The
principle is to take the finite Fourier Transform at
n = 2k points which are related to the n primitive
(complex) roots of unity and then exploiting their
symmetry as fully as possible. This will account for
the k = log n factor in the results. Kung [20] shows
both interpolation and evaluation can be solved in
0 (n(log n)2)operations (total), nibbling off a factor
(log n) from the previous best result (Moenck and
Borodin [28.] through a fast division algorithm.
Strassen [49] comes to the same result via deep tech
niques from algebraic geometry : he relates the
number of MUL/DIV and ADD/SUB in a set of
rational functions to the ("geometrical") degree of
the intersection of an equal number of algebraic
varieties, and applying a generalized version of
Bezout's theorem. Moreover, he shows 0(n log n)
MUL/DIV are sufficient.

Problem 2
To evaluate Pn and all its (normalized) derivatives at
a point x.
We will only mention this problem because it is a
beautiful example of an old and much used algorithm
which suddenly appears to be not so good at all !
Classically, the solution is given as

T~ 1 = a i + 1 i = 0 , n - 1

Ti ___a 0 ,n j = 0

TJ
1

• °

__ T L I + x T I _ 1 j = o a n d

i = j + i ,n

t h e n

PJ(x7 = T j] = 0 n
j ! n

This is called the iterated Horner scheme, and needs

n i n + 17 MUL and n (n + 1_._._.~) ADD.
2 2

In 1974, Shaw and Traub [43] published the follow-
ing algorithm for the same problem (see also Traub
[55]7:

T_I = a i x n - i - 1
1 +1

i X n T ~. = a 0
J

i _- 0, 1 n-1

j = O n

j = 0 n - 1 and
i = j + l ,n

then.

PJ (x) x-J T j j O, , n-1
j ! = n = "'"

which needs only 3n-2 MUL and n (n +17 ADD.
2

In both cases the total number T(n) is of second order
in n. Recently, Kung [22] has given a method requir-

Journal of Computational and Applied Mathematics, volume I, no 1, 1975. 40

ing only a total of 0(n log n 7 operations :

T (n) ~ < 6 n l o g n + 0 (n l o g n)

It is an open problem wheter there is an upper
bound of order 0(n) for the number of additions
alone. Lower bounds appear to be unknown too at
this moment.

3. ON COMPUTING THE PRODUCT OF A MA-
TRIX WITH A VECTOR OR ANOTHER MA-
TRIX

Both polynomial evaluation and the product o f a
matrix with a vector can be considered as special
cases of the same type of problem (Winograd [60]).
Indeed they each correspond to a suitable choice
for ¢, $ and x in the following theorem :

THEOREM (Winograd)
If we are to compute the t-vector ~ = Ox + ¢
where : • is a t x n matrix over the field
F(x I Xn) of rational functions Cover the field
F); ¢ is a t-vector over the same field, and x is an
n-vector (the "parameters" of the algorithm), then
we need at least as many MUL/DIV as there are
columns of * independent over F.
The proof, like the one for polynomials above, is
again based on a substitution argument and by in-
duction on the number of MUL/DIV operations
(the substitution having for goal to remove the first
"active" MUL/DIV from the computation). We re-
mark that the x i in the theorem are in fact the para-
meters of the problem, i. e. for example the co-
efficients of the polynomial to be computed.

COROLLARY
Put ~ = 0, x = the pq-vector containing the ele-
ments of a p x q matrix M row by row, ~ = p x p q
matrix over the field ~ (Yl yq) such that

¢ ~ = My.

It follows that the ordinary method of computing My
minimizes the number of multiplications, because all
pq columns of ¢ are independent over ~ as func-
tions in ~ (Yl . . . Yq)P.

In the same paper, an interesting algorithm is given
to compute My in about half the multiplications,
using preconditioning on the rows of M :

first compute for each row

n/2
~i = Z x i j =1 ' 2j -1 xi, 2j

(Suppose M is n × n with n even 7
and then we have

n n/2
(MY) i = Z

i = l xij YJ = j ~ l (xi'2j-1 +Y2j)(xi'2j

+ Y2j-17 - ~i- 7/

n/2
where ~ = ~ needs n MUL, bringing j = l Y2j-1 Y2j

Journal o f Computational and Applied Mathematics, volume I, no 1, 1975.

the total to n (n + 17 MUL, not counting the ~n.n
2 2

MUL of the ~i" This algorithm is easily adapted to

the product o f two (nxn 7 matrices, giving a method

requiring only [1__n3] + 0(n 2) MUL (all counted)
2

instead of n 3 + 0 (n 2) MUL. This still is an 0(n37
upper bound, and the question arises whether this
can be lowered. Surprisingly, the answer is yes -
thanks to an algorithm of V. Strassen [44] which is
becoming a classic. It consists o f an ingenuous and
highly non-trivial way to multiply two 2x2 matrices
in only 7 multiplications instead of 8, in a manner
not using commutat/vely, so it can be recursively
applied to larger matrices by partitioning.
This lowers the upper bound to 0 (nlog 77. It works
as follows :

B a

Put I = (A+DXa+d7 I I=(C+D)a I I I = A(b-d 7
IV _- D (c - a 7 V= (A+B)d VI = (C-A) (a+b)

VII = (B-D) (c+d 7

ThenMm = II+IV-V+VI m+V t
II + IV I + III - II + VI~

The number 7 is minimal for 2x2 matrices (Wino-
grad [621, see also Strassen [45]). Some generaliza-
tions and related results are known (Hopcroft and
Kerr [10] for 2×n matrices; Gastinel [6]). Two major
open problems remain :

Open Problem 1 : Can the upper bound be lowered
still ?

In particular, does there exist a Strassen-like method
which multiplies two 3x3 matrices in 21(<31og 7)
multiplications or less ? Some people suspect it to
lie close to 0(n2).

Open Problem 2 : Much hss is known about lower
bounds.
A trivial one is n2. In fact, all known lower bounds
are 0(n27 (Borodin [117. Can this be raised ? See
Strassen [45] for some efforts in this direction with
ortogonal matrices using the rank of the Lie ring of
S0(n) (The special ortogonal group of order n).

4. A MODEL FOR ALGORITHMS
In order to prove for instance that Homer's scheme
is optimal among a certain class of schemes implies
the need of a good definition of "scheme" or "algo-
rithm". Unification here seems to be lacking; most
currently the definition is adapted to the problem
under consideration. For polynomial evaluation often
"chains" (Knuth [16])or some analogous scheme is
used. This consists o f computing Pn(x) by a series of
steps ~ ' ~-1' X0' Xl ,Am such that

41

1) the X i (-£ ~< i ~<-1) are constants

2) X 0 = x

3) t h e ~ j = + X k c o x k , w i t h w E { + , - , % / }
and k , k ' < j

4) X m = Pn(X)

(also Reingold and Stocks [38]7.

This principle was generalized considerably by Wino-
grad [60] and again so by Strassen [47][48]. The
latter has built a very nice formalism in which to
describe elegantly a large class of problems from
algebraic computational complexity. He introduces
into numerical mathematics the concept of "Palgebra"
(for Partial Algebra) which for a particular problem
essentially is a set A of objects to be computed
(the "carrier") equipped with a set I2 of operations
on A (the " type") which need not be defined every-
where (hence the "partial"). With each element of
60 is associated a natural number s(co) : the number
of operands of co. Thus

60 : AS(c°) ~ A(*)

Important special cases are nullary operations
(s(co) -- 0, constants) and unary operations (s(co)=l,
for instance scalar multiplication in a vector space).
DeFine a computation fl of length 1 as a sequence of
steps

fli = (cop Ji I " "" Jis(coi)) 1 ~< i ~< 1,

with
coi Eg l and jio< i ~" a ~ [1 : s(coi)](**)

(Thus allowing no loops).

With fl is associated a result sequence aft through

(a~)i := a~ i := col (aji I " '" ajisi) si = s (col)

ff this is defined, and else a~ = ~ . fl is said to com-
p u t e F C A f f 1) o o q N

2) Feat
(Think of F for example as a set of polynomials in
A = IR[x], with x as nuUary operation). Let us
suppose for simplicity that all finite subsets of A are
computable. (In such a case, A is called prime).
After introducing an execution time z : I2-~ IR+,
two complexity measures are associated with a com-
putation : 1

(Length) L(z It) : = i~=l z(co i)

1 ~ i) djia) (Depth) D(z Ifl) : = maxi= 1 (z(coi)+max

The L-complexity of F C A is defined as

L(zIF) = rain {L(zlfl) I aft D F }

(*) : f : A ~ B stands for a partial mapping

(**) : [m : n] = {p I p E H and m-~<p ~< n}

and aft which realizes this minimum is called L-
optimal.
Preconditioning can be dealt with by defining com-
putations fl which compute F rood E, i. e. which
compute F if E is "known". The L and D measures
have several natural properties, such as

L (F U E) ~ < L (F m o d E) + L (E)

D (a) ~< D (a mod E) + D (a) (transitivity)

Two useful induction principles are also proved (L-
and D-induction) in the above-mentioned papers.

5. SOME RESULTS
In his formalism, Strassen proceeds to define pro-
grams as functions from a set of inputs (palgebra's
over x 1 . . . Xn) to a set of so-called ~2-sets (roughly
equivalent to computations). A theorem is proved
which says that for almost all inputs (in a suitably
generalized Zariski sense) the L-complexity of a
program does not rise by restricting oneself to
"straight" computations (i. e. without branching
instructions). In a later paper (Strassen [50]) tech-
niques from information theory are used to derive
among other things a "statistical" result on the com-
plexity of real numbers : for almost all a E ~ (in
the Lebesgue sense) the length Le(a) of computing
an e approximation b to a satisfies

1 log@ log -fi-
Le(a) ~< + 0 () (small)

1 1 log log-g- log log -~-

Here algebraic complexity theory seems to overlap
a little with analytical theory, specifically this is close-
ly related to some results of Paterson [35] and Kung
[19]. Kung [21] also uses Strassen's formalism ap-
plied tO the problem of inverting a power series :

De£me L n = the length of computation to deter-
mine the first n coefficients in

(~ a i x i)-1
1

Kung proves L n ~ n + 1

and L n ~ 4 n - log n

by using Newton iteration, thus narrowing down the
bound of Sieveking [40] (L n ~< 5n - 27 Kung con-
jectures

L n = 4 n - 0(n).

Brosowski [4] suggested the generalization of Stras-
sen's formalism to include mixed type computations
(for example boolean values, thus introducing branch-
ing) and possibly loops.

6. THE COMPLEXITY OF ITERATIONS IN ONE
V A R I A B L E : INTRODUCTION

We now turn to some problems in analytical com-
putational complexity. Apart from the result just
mentioned in § 5, the intersection with algebraic
complexity theory seems to be almost empty at the

Journal of Computational and Applied Mathematics, volume I, no 1, 1975. 42

n l o m e n t .
A great deal of the present efforts is directed to one
particular problem, namely the approximation by
means of an iteration of a zero a of a real function
f : this is easy to describe and yet it has very wide
applications in almost every branch of numerical
mathematics. We will assume an intuitive notion of
iterative method (a procedure which is repeated a
number of times such that the output at step k is
part of the input at step k + 1). For an early and
fundamental treatment of the subject from the com-
plexity viewpoint, we refer to Traub [53]. Some of
the ideas also date back to Ostrowski [33].

Problem
Given an analytic function f : ~ -'> l~., which has a
unique simple zero 0t in some given interval, to com-
pute an approximation to within e of 0t by means of
an iterative method ~ (which is supposed to be con-
vergent).
Of course, numerous methods of solution exist for
this type of problem; the difficulty is to decide
which is "best". A good efficiency measure will have
to satisfy some properties : it should be inversely
proportional to total cost, i. e. if E i is the efficiency
of method ~i applied to f, giving an e-approxima-
t-ion to 0t with total arithmetic cost C i (i = 1, 2) we
have

E 1 C 2
' x , - (A)

E 2 C 1

Furthermore, we should have

P ($ o $) = p($) (B)

where ~o¢ is the iteration in which each step is a
succession of two steps ~b. In general it will also
depend explicitly on the problem £ Such a measure
is given by

E(#)- - log p (1)
d

Here p is the order or power of convergence of the
method, defined as the greatest number p >i I such
that

lira lxi +1 - al
_ C < ~ (w i t h C < l i f p = l)

i-+~ Ix i - a I p

tit is clear that the larger p is, the greater is the
speed of convergence).
d is defined as the total cost per step. Up to a mono-
tonic function, (1) is the only possible choice
(Gentleman [7]) satisfying the requirements A and
B. The cost d can further be split up in (Traub [55]
[561I.

1) the costs c i of evaluating the derivatives t~i)

2) the (minimum) cost a~ of combining these
evaluations to ~.

Thus d = .~ m i c i + a~ with m i the number of (new)
1

function evaluations per step. When old evaluations
are reused, the iteration is said to be with memory.
Traub [54] has studied the influence of memory on
the order of convergence and found that any amount
of memory only adds less than i to the order p.

EXAMPLE. NEWTON vs. SECANT vs. TRA UB
ITERATION
Newton iteration is defmed as

f (x i)
x i + l = x i - _ _ _= ¢~q (xi, f, f ')

f ' (x i)

In the above notation we have aCN = 2, m 0 = m 1 = 1 ,

memory = 0. One can prove rather easily p~ = 2
under certain general conditions on £
Secant iteration is given by

x i - xi_ 1
x i+ 1 = x i - - ~b S (x i, xi_ 1, f)

f(xi) - f(xi- 1)

thus a~s ~ 4 , m 0 = 2 , m i = 0 (i~1) , memory = 1.

This is a special case of so-called interpolatory itera-
tion, i. e. when x i+ 1 is computed by interpolating
by polynomial of minimal degree at a number of
points xi, xi_ I , xi_ n.
The order of such an iteration is given by (Traub
[51]) the unique positive root p of

p n _ 2; p i = 0
i < n

v g + l
For ~S' P~b S - - - - - ~ % 1.6

So ~S has lower order than ~bN, but uses one new
evaluation per step less. It can be shown (Traub [53])
that

E(~b N) < E (~bS) if c I > 0.44 c 0,

so Newton iteration is not always more efficient.
Both ~S and ¢~q are examples of one-point iteration
(all new evaluations are at xi).
Let us define Tranb's iteration by

z i = x i + f(x i)

(f(xi)) 2
= ~_ ~ (xi, z i, f) xi + 1 f (zi) _ f (x i)

This is a two-point iteration (a special case of so-
called multipoint iteration) of order 2.
Recently, Kung and Traub [25] proved that for itera-
tions without memory which use two new evaluations
per step (two of f or one of f and one of f ') either
¢~N or ~ is optimal relative to total operation count
depending whether resp.

c 1 < c 0 + 3 or c 1 > c 0 + 3

Journal of Computational and Applied Mathematics, volume I, no 1, 1975. 43

Remark : In a more realistic setting, distinction
should be made between multiplications count and
additions count, especially where multiple precision
numbers are involved.
Rissanen [39] showed that modulo a mild but com-
plicated smoothness condition on the algorithms us-
ing one evaluation and one unit of memory, ¢S is
optimal. This has been considerably generalized by
Wozniakowski [64].

7. ITERATIONS IN ONE VARIABLE : THEO-
REMS AND CONJECTURES

It is clear that the order and hence the efficiency of
an iterative method are in direct relation to the
amount of information (new or old) used in every
step. Also the way in which this information is used
is of importance. We have a remarkable result of
Kung [18] :

THEOREM
Let x i + 1 = ¢(xi, X i_ l , . . .) be any rational iteration
which uses M multiplications. Then the maximal
order of ¢ is not greater than 2 M.
However (Kung [19]) this maximal order is achieved
only when the limit ~ is rational. This generalizes a
similar result of Paterson [35].
Now consider the influence of using derivatives of
the function f. Winograd and Wolfe [63] proved
that for any one-point iteration which at each step
uses at most evaluations of f and its first d derivat-
ives, the maximal order is d + 2.
This is done by establishing the existence of an
analytic f such that

ICk (Xk) - r~l
lira inf " exists and is > O.
k --> oo II Ix; - a id +1

j ~ k a

Remark that the iteration method need not be
stationary (¢k) and any amount of memory is per-
mitted. Without memory, the maximal order is
d + 1; iterative methods exist which realize this
bound (see Kung and Traub [24], who show indeed
that any one-point iteration without memory of
order d + 1 must use evaluations of f and its first
d derivatives).
This method is based on interpolation; in fact,
Wozniakowski [64] shows (Hermite-) interpolatory
methods are optimal in a very general sense. The
above restrictions do not apply to multipoint itera-
tions, at is shown by examples of King [13], ex-
hibiting fourth order three-point methods using
two f ' , one f , and one f ' , two f evaluations respect-
ively.
Kung and Traub [23] then found two families of
n-point iterations, both of order 2n-1, using either
n evaluations of f (and no derivatives) or n - 1 evalua-
tions o f f and only I of f ' . The former is given by

zi, 1 = xi +/~f(xi) (/3 : real constant)

zi, k = _p~l (0)

xi + 1 = Zi, n = pnl(0)

--Pk 1 is the inverse interpolating polynomial where

atf(zi , j) l ~ j ~ k - 1 .

This is about the fastest stationary iteration method
known at this moment.
They also show :

THEOREM
If one uses (Hermite) interpolation, 2n-1 is the max-
imal order obtainable with n evaluations (for
methods such as above).
Also, for any rational method, the order cannot be
"more than 2n.
They conjecture however, that 2 n-1 is optimal.
Recently, they proved this in the case n = 2 (Kung
and Tranb [25]); n >t 3 remains open, but in any
case, absolute bounds on computational efficiency
are already in view.

8. A FEW OTHER AREAS OF RESEARCH IN
ANALYTIC COMPLEXITY

First of all, we have of course the multi-dimensional
iteration calculus. Very little is known here, because
the difficulties are vast : the notion of "order" can-
not indeed be generalized to n dimensions without
at least some care (Ortega and Rheinboldt [32])
Brent [2] [3] defines the order as

log[Ix i + l - a [I
P = l i m

i . oo logl Ix i - a l l

(where x i, x i + 1 and ~ are n-dimensional vectors).

Wozniakowski [64] defines the order via test-se-
quences (i. e. by comparing the speed of convergence
of ~b with sequences of given order a). He remarks
the difficulty lies in the fact that in the multivariate
case, one cannot in general be sure that the iteration
function remains defined on the previously comput-
ed results. He proposes the investigation of assump-
tions of "good position" in results concerning con-
vergence. With his definition, he is able to prove the
optimality of interpolatory methods in the one-point
case (using derivatives). Really good efficiency meas-
ures are yet to be found;

Brent [2] defines it as log # and con-
cost per.step

jectures the maximal efflcmncy is bounded by
log poo,n where Poo,n is the (unique)positive root of

n ÷ j .
$.p-(j) = 1
J

when using only evaluations of f, and taking o n e
evaluation of the vector f as unit of cost.
In many cases, the cost of evaluating derivatives is
prohibitive, and the cost of memory, which may
seem trivial in the one-dimensional case, can become

Journal of Computational and Applied Mathematics, volume I, no 1, 1975. 44

important. Brent [3] discusses also some classes of
practical, yet efficient methods. These are all based
on some rehtively simple iteration procedure, such
as discrete Newton, secant, or triangularization,
which is repeated at each "step" a number o f times
(this number is then optimized and depends in
general on the number of equations in the problem
under consideration).
Quite another domain of interest is the complexity
of finite grid methods for the solution o f partial
differential equations. Even less is known here.
We have a result of Schultz [42] who develops a
method with so-called cubic Hermite functions on

aat'i~q2j2dr;~N';)~sitdorna;;d~nw~e0(N2~) ~tt~me.~Ca2yPme;_

totically "opt imal" in view of the fact that N 2 are
always needed, even ff we know the solution and
have to tabulate it. Completely different techniques
are employed by Hoffman, Martin and Rose [9] who
prove 0(n~) multiplications and 0(n21og n) storage
is necessary when one uses elimination procedures.
They depend on graph-theoretical techniques by re-
presenting a matrix with its rows as vertices and its
non zero elements as edges of a graph; elimination
is then done by deleting a vertex and interconnecting
all its neighbours.

9. CONCLUSION
Computational complexity of practical problems
constitutes a fast-growing field of interest and re-
search. A better insight in the theory of the comput-
ing process is being obtained. Many areas however
remain untouched as yet or almost so : Miller [26]
has started to develop a theory of "infini tely" com-
plex problems, making use of topology and analysis;
complexity theory for numerical integration or for
finite difference methods in the numerical solution
of ordinary differential equations is virtually non-
existent at this moment. Also, the coming of the
new paralld or vector machines will require the
development o f quite new techniques and algorithms
(Traub [57], Winograd [61]). An important practical
probhm associated with the ever "be t te r" algorithms
is their numerical stability, i. e. their sensitivity to
rounding errors etc . . . Except for some isolated
efforts, these problems are open (W. Miller [27],
Ortega [31], Tienari [52], Wilkinson [59]).
(Take for example Traub's iteration in § 6 which
involves the division of very small numbers when
convergence proceeds). Most o f the problems seem
to originate from the difficult marriage between
mathematical analysis and the finiteness o f the mach-
ine, so good models will have to be developed,
especially for analytical complexity theory (Tsich-
ritzis [58]).

BIBLIOGRAPHY AND REFERENCES
The following abbreviations are used :

Miller & Thatcher : = Complexity of Computer Com-
putations, Miller & Thatcher (Ed.) Plenum Press 1972.
Report CMU : = Report Dept. Comp. Sc. Carnegie
Mellon Univ. Pittsburg, Penn.

1. Borodin A., "Computational complexity : Theory and
practice" from : AHO (ed.) 1972

2. Brent R., "The computational complexity of iterative
methods for systems of equations". Miller & Thatcher

3. Brent R., "Some efficient algorithms for solving sys-
tems of nonlinear equations". Siam J. Num. Anal. Vol.
10,no 2 April 1972

4. Brosowski, "Private communication"

5. Byrne & Hall ted.), "Numerical solution of systems of
nonlinear equations". Acad. Press 1973

6. Gastinel, "Sur le calcul des produits de matrices". Num.
Math. Vol. 17 (1971)

7. Gentleman W. M., "On the relevance of various cost
models of complexity. Complexity of sequential and
parallel algorithms", JF Traub (Ed.) Acad. Press 1973

8. Hartmanis J. and Hopcroft J. E., "An overview of the
theory of computational complexity". J. ACM Vol. 18,
no 3, July 1971

9. Hoffman A. J., Martin S. M. and Rose D.J., "Complex-
ity bounds for regular finite difference and finite dements
grids". SIAM J. Num. Anal. Vol. 10, no 2, April 1973

10. Hopcroft J. E. and Kerr L. R., "On minimizing the
number of multiplications necessary for matrix multi-
plication". SIAM J. Appl. Math. Vol. 20, no 1, Jan. 1971

11. Horowitz E., "A fast method for interpolation using
preconditioning". Information processing letters 1 (1972)

12. Isaacson E. and Keller H. B., "Analysis of numerical
methods". John Wiley 1966

13. King K. E., "A family of fourth order methods for non-
linea~ equations". SIAM J. Numerical Anal. Vol. 10, no
5 (Oct. 1973)

14. Knuth, D. E., "Mathematical analysis of algorithms".
IFIP 1971 Congress Proceedings I135-I143

15. Knuth, D. E., "The art of computer programming : Vol.
1" (Fundamental algorithms) Addison Wesley 1968

16. Knuth, D. E., "The art of computer programming : Vol.
2" (Seminumerical algorithms) Addison Wesley 1971

17. Knuth, D. E., "The art of computer programming : Vol.
3" (Sorting and searching) Addison Wesley 1973

18. Kung, H. T., "A bound on the multiplication efficiency
of iteration". J. Comp. & Syst. Sciences Vol. 7 no 4
(1973)

19. Kung, H. T., "The computational complexity of algebraic
numbers". Keport CMU (1973)

20. Kung, H. T., "Fast evaluation and interpolation". Report
CMU (1973)

21. Kung, H. T., "On computing reciprocals of power series".
Report CMU (1973)

22. Kung, H. T., "A new upper bound on the complexity of
derivative evaluation". Keport CMU (1973)

23. Kung, H. T. and Traub, J. F., "Computational complex-
ity of one-point and multipoint iteration". Keport CMU
(1973)

24. Kung, H. T. and Traub, J. F., "Optimal order of one
point and mnltipoint iteration". Report CMU (1973)

25. Kung, H. T. and Traub, J. F., ''Optimal order and ef-
ficiency for iterations with two evaluations". Report
CMU (19737

26. Miller, W., "Toward abstract numerical analysis". J. ACM
Vol. 20, no 3, July 1973

Journal o f Computational and Applied Mathematics, volume I, no 1, 1975. 45

27. Miller, W., "Remarks on the complexity of roundoff
analysis". IBM Report (1973)

28. Moenck, R. and Borodin, A., "Fast modular transform
via division". Proc. 13th Syrup. on switching and auto-
mata theory 1972

29. Motzkin, T. S., "BulLAmer. Math. Soc:'Vol. 61 (1955)

30. Munro, I. and Paterson, M. S., "Optimal algorithms for
parallel polynomial evaluation". J. Comp. & Syst.
Sciences, Vol. 7, no 2 (1973)

31. Ortega, J. M., "Stability of difference equations and
convergence of iterative processes". SIAM J. Num. Anal.
Vol. 10, no 2, April 1973

32. Ortega, J. M. and Rheinboldt, W. C., "Iterative solution
of nonlinear equations in several variables". Academic
Press 1970

33. Ostrowski, A. M., "Solution of equations and systems
of equations". Academic Press 1960

34. Pan, V. Y., "Methods of computing values of poly-
nomials". Russian Math. Surveys, Vol. 21 (1966)

35. Paterson, M. S., "Efficient iteration for algebraic num-
bers". Miller & Thatcher (1972)

36. Rail, L. B., "Computational solution of nonlinear oper-
ator equations". John Wiley 1969

37. Rabin, M. O. and Winograd, S., "Fast evaluation of
polynomials by rational preparation". Comm. Pure and
Appl. Math. Vol. 25 (1972)

38. Reingold, E. M. and Stocks, A. I., "Simple proofs of
lower bounds for polynomial evaluation". Miller &
Thatcher (1972)

39. Rissanen, J., "On optimum root-finding algorithms".
J. Math. Anal. Applic. Vol. 36, no 1, Oct. 1971

40. Sieveking, M., "An algorithm for division of powerseries".
Computing Vol. 10 (1972)

41. Schtnhage, K. und Strassen, V., "Schnelle Muhiplikation
Grosset Zai~len". Computing Vol. 7 (1971)

42. Schultz, M. H., '~'he computational complexity of
elliptic partial differential equations". Miller and That-
cher (1972)

43. Shaw, M. and Traub, J. F., "On the number of multi-
plications for the evaluation of a polynomial and some
of its derivatives". J. A.C.M. Vol. 21, no i (1974)

44. Strassen, V., "Gaussian elimination is not optimal".
Num. Math. Vol. 13, 1969

45. Strassen, V., "Vermeidung yon Divisionen". Journal fiir

Mathematik, Band 264 (1972)

46. Strassen, V., "Evaluation of rational functions". Miller
& Thatcher (1972)

47. Strassen, V., "Berechnung und Programm r ' . Acta In-
formatica, Vol. 1, 1972

48. Strassen, V., "Berechnung und Programm II". Acta In-
formatica, Vol. 2, 1973

49. Strassen, V., "Die Berechnungskomplexit~it yon elemen-
tarsymmetrischen Funktionen und yon Interpolations-
koeffmienten". Num. Math. Vol. 20 (1973)

50. Strassen, V., "Berechnungen in Algebren endlichen Typg',
Computing Vol. 11, 1973

51. Strassen, V., "Polynomials with rational coeff, which
are hard to compute". Report Universit£t Zfirich 1973

52. Tienari, M., "Some topological properties of numerical
algorithms", BIT Vol. 12, 1972

53. Traub, J. F., "Iterative methods for the solution of
equations". Prentice Hall (1964)

54. Traub, J. F., "Computational complexity of iterative
processes". SIAM J. Comput. Vol. 1, no 2, June 1972

55. Traub, J. F., "Theory of optimal algorithms". Report
CMU, 1973

56. Traub, J. F., "An introduction to some current research
in numerical computational complexity". Report CMU,
1973

57. Traub, J. F., "Iterative solution of tridiagonal systems
in parallel or vector computers". Report CMU, 1973

58. Tsichritzis: D., "A model for iterative computation".
Information Sciences, Vol. 5, 1973

59. Wilkinson, "Rounding errors in algebraic processes".
Prentice-HaU N. Y. (1963)

60. Winograd, S., "On the number of multiplications neces-
sary to compute certain functions". Comm. Pure and
Appl. Math., Vol. 23, 1970

61. Winograd, S., "ParaUel iteration methods". Miller &
Thatcher 1972

62. Winograd, S., "On multiplication of 2 x 2 matrices".
IBM Report RC2767

63. Winograd, S. and Wolfe, P., "Optimal iterative processes"
IBM Research Report (Aug. 1971)

64. Wozniakowski, H., "Maximal stationary iterative methods
for the solution of operator equations". Report CMU
1973

J o u r n a l o f C o m p u t a t i o n a l and App l i ed Mathemat ics , vo lume I, no 1, 1975. 46

