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Reverse-time stochastic diffusion equation models are defined and it is shown how most 
processes defined via a forward-time or conventional diffusion equation model have an associated 
reverse-time model. 
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1. Introduction 

Stochastic differential equations have a built-in direction of time flow since future 
increments in the driving process are assumed independent of present and past 
values of the process defined by the solution of the equation. The differential 
equations are thought of as evolving forward in time, normally from some fixed 
initial[ time, and the integral representation of a solution, involving as it does an 
Ito integral, emphasizes again, via the detailed approximation rule for the integral, 
the forward time flow. In this paper, we discuss reverse-time stochastic differential 
equations, and for a wide variety of diffusion proces,:;es, we show that each (forward- 
time) representation of a diffusion process genera.tes a reverse-time representation 
as well. 'The only sorts of restrictians needed are those which ensure that the 
Kolmogorov equatiohs for associated probability densities (not just distribution 
functions) all have unique smooth solutions; such restrictions, though hard to 
translate into requirements on the diffusion and drift quantities, seem nevertheless 
intrinsic. 

Results in this vein for diffusion processes described by linee r stochastic differen- 
tial equations have been recently developed, see especially [1] but also [2-9]. Some 
of these references contain applications of the reverse-time models to problems of 
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stochastic realization, signal processing, and electric circuit theory. The ideas of 
this paper have been developed partly with the hope of such applications fall-out 
in the nonlinear case. 

Some results for nonlinear diffusion equations are also available. For example;, 
Nelson [10] considers diffusion equations with constant diffusion matrix, and fails 
to relate the driving noise in the reverse-time equations to that in the forward 
equation. Stratonovich [11] analyzes a scalar diffusion equation, and also fails to 
relate the driving noise in the reverse-time equations to that in the forward equation. 

The paper is st~ructured as follows. In Section 2 we review some key features of 
the construction of reverse-time models for linear stochastic differential equations. 
In Section 3 we define (in the obvious way) reverse-time models for nonlinear 
diffusion equations and state the main result. This is established in Section 4, with 
further insights and a much simpler proof of part of the main result given in Section 
5; it may prove easier for some readers to consider Section 5 prior to Section 4. 
The method of this section appears to have been first suggested in [11], where it 
is applied to a scalar diffusion process; it should be noted that the result in [11] is 
incorrectly stated. 

2. The linear problem 

The fullest exposition of results on forward and reverse-time stochastic realiz- 
ations for Gauss-Markov processes can be found in [1]. We sketch some of the 
ideas here, as motivation for the subsequent results. 

Suppose x is a purely nondeterministic, wide-sense stationary n-dimensional 
process, described as the solution cf the. stochastic differential equation set 

dx = A x  dt + B dw. (2.1) 

Here, A and B are constant matrices, Re[A~(A)]<0 for all i and w(. ) is a vector 
Wiener process such that x(t) is independent of future increments of w, but not of 
past ones, i.e., x(t) is independent of w(t2) -w( t l )  for all t2> tx ~ t  but not (in 
general) of w(t3)-w(t4)  for t>~t3> t4. (One could consider such a situation as 
arising, for example, by considering (2.1) with a finite initial time to, and initial 
state a random variable X(to) independent of the w(.) process; then one can let 
to-,-oo.) 

Such a model will be called a forward time model~ One thinks of (2.1) as evolving 
forward in time, and can consider its solution as 

P t 

x(t) = | eA"-S~B dw(s). 
d - -  oo 

A reverse time model on the other hand is one for which 

(2.2) 

dx = fi, x dt +/~ d~ (2.3) 
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where now Re[Ai(fi,)]>0 for all i, a,id }~(.) is a vector Wiener process with x(t) 
independent of past increment of if, but not of future ones. 

One might think of (2.3) as evolving backward in time, having a solution 
oO 

x(t) =-S t  e~'"-')B dff(s). (2.4) 

Such models are useful in studying smoothing problems [1, 3], questions of reversi- 
bility [5], and electric network synthesis [7]. 

Now in [1], the problem is considered of obtaining from a given forward-time 
representation of x(t) a reverse-time representation. This problem is solved in the 
following way. Let 

P = E[x(t)x'(t)]. (2.5) 

(The matrix P is the solution of the linear matrix equation PA' + A P  = - B B ' ,  and 
is nonsingular precisely when rank [B A B  . . .  A"-1B] = n.) Suppose P is non- 
singular, and define a vector process ff by 

dff, = d w - B ' P - I x  dt, if(0) = 0, (2.6) 

which in conjunction with (2.1) implies 

dx = (A + BB'P -~) dt + B dff. (2.7) 

Then it can be proved that Re[ai(A +BB'P-1)]>O for all i, and that rP(.) is a 
vector Wiener process with x(t) independent of past increments of if, (but not of 
future ones), i.e., with the definitions (2.5) and (2.6), (2.7) is a reverse time model. 

Two further points may be noted. First, the requirement that P = E[x(t)x'(t)]> 0 
can be interpreted as a requirement that (2.1) be a minimal dimension model in a 
certain sense, and the nonsingularity ensures that the probability density of x(t) 
exists. Second, stationarity is not an essential ingredient of these results, see for 
example [2, 3, 7] where some of the ideas are presented free of a stationarity 
assumption. 

3. Construction of rt, verse time nonlinear models 

Let (/2, ~ ,  P) be a fixed probability space, let {~¢,, -oo < t < ~} be an iacreasing 
family of sub-cr-~.lgebras on ~ ,  and let { w , - o o <  t < 0o} be an r-vector Brownian 
motion process ruch that wt is ~,-measurable for each t, and w t -  w~ for t 1--s is 
independent of ~t~; we require for s I> 0 

E[wt+slM,]=w,, (3.1) 

E[(w,+s- wt)(w,+~- w,)' ] ~t]  = sI. (3.2) 

We study an Ito stochastic differential equation of the form 

dxt = f(xt, t) dt + g(x,, t) dwt. (3.3) 
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Here, x, is an n-vector process, and f ( . , . )  and g(. , . )  are n x 1 and n x n matrix 
functions with certain smoothness and growth properties which guarantee existence 

and uniqueness of a solution, see e.g. [9]. 
Eq. (3.3) is understood to be defined in some region t ~ to, Xto is an almost surely 

bounded random variable independent of {wt,-oo< t < ,~}, and it may be possible 
for certain equations to allow to ~ - o o .  Commonly M, is the minimal o--algebra with 
respect to which xto and Ws, s ~< t are measurable. The solution has certain properties, 
depending on the smoothness and growth of f and g, as set out in standard references, 
e.g. [9, 12]. We shall term (3.3) a forward lto equation or forward-time model. 

We now describe what is meant by a reverse-time model, The idea is not simply 
to make some adjustment to (3.3) to permit use of a backward rather than forward 
Ito integral [13] for expressing the solution of (3.3). 

We require a decreasing family {,d,, -oo < t < oo} of sub-o-algebras on M and an 
m 

n-vector process {if,, -oo < t < oo} such that ~, is M,-measurable for each t, ~,t - ~s 
for t I> s is independent of Mr, e.nd for s I> 0 

ID,+A: a,,+:, 
- I s t .  

(3.4) 

, ( 3 . 5 )  

This process drives a reverse-time Ito equation of the form 

m 

dxt = f (x,, t) dt + g(xt, t) d ff't, (3.6) 

which is understood to be defined in some region t <~ T, where it may be possible 
to have T~oo .  One has XT a random variable independent of {~t , -oo< t < oo} 
and (3.6) is shorthand for 

T T 

XT--Xt = ~t f(Xt, t )d t+ ~t g(xt, t)d~'t, (3.7) 

in which the second integral is a backward Ito integral. Again, it is understood that 
f and g satisfy the growth and smoothness properties sufficient for existence and 
uniqueness of a solution. 

Evidently in the forward model, x, is independent of future increments of the 
driving Wiener process, while in the reverse time model, xt is independent of past 
increments of the driving process. 

The main result explains how to construct a reverse-time realization from a 
forward-time realization. In order to formulate this result, as further background 
we recall the fact that associated with (3.3) are forward and backward Kolmogorov 
equations, see, e.g. [9, 12]. These take various forms; for example, the forward 
equation for the probability density 1 p(xt, t]Xs, s) for t > s is 

i A lower case d will be reserved henceforth tc designate a probability density, with the displayed 
arguments implicitly defining the random variable~ of which p is the density. 
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Op(xt, t lx , , s )  O! 
at = -,=, ~ -d-XT,X~, [p(x" tlx,, s)f(x,, t)] 

n 0 2 

+ ½ , .~  ax~ ax{ {p(x" tlx,, s)[g(x,, t)g'(x, t)]~J}. 

while the backward equation, again for t > s, is 

-ap(x,, tlxs, s) 

(3.8) 

0 
--- ~ ~x~ {P(X:~tlx,,s)fl'(xs, s)} 08 ~=1 

n d 2 

+~ E , i  ~.i=l a~ s ax~ {p(x,, tlXs, s)[g(xs, s)g'(xs, s)]'}. (3.9) 

Appropriate boundary conditions are usually associated with the equation. Uncon- 
ditioned forward equations, or partially conditioned forward equations also exist. 
Sufficient conditions for the transition density t a satisfy the Kolmogorov equation 
are (see, e.g. [9, pp. 297-8]), that [ ( . , .  ) and g ( . , .  ) guarantee existence of a unique 
strong solution to (3.3) for an almost surely bounded initial condition, that [ ( . , .  ) 
g ( . , . )  are twice continuously differentiable in x, that their first order partials in x 
are bounded, that the second order partials grow no faster than IIxF as x - ,  0o for 
some m > 0  and that the transition probability density p(x,, tlx~,s) is twic.e con- 
tinuously differentiable in x, and continuously differentiable in t. Sufficient conditions 
for there to be no other solution of the Kolmogotcv equations satisfying the same 
boundary conditions, i.e., for uniqueness, are unknowr to us. We now have the 
following theorem. 

Theorem. Let xt be the process described by (3.3), and s u p p o s e / ( . , . )  and g ( . , . )  
are such as to guarantee the existence of the probability density p(x,, t) for to <~ t <- T 
as a smooth and unique solution of its associated Kolmogorov equation. Suppose 
further that an r-vector process a,, is defined by ~ ,  = 0 and 

dwk =dwk +p(x,, t-------)~ [p(xt, t)gik(xt, t)] dt, (3.10) 

and that the forward ,~olmogorov equation associated with the joint process (xt, kt) 
yields a smooth and unique solution in t>  to for p(x,  ~-'t, t) and in t > ~ >i to for 
p(x,, ~'t, t[ ~'s, s). Then 

(i) x, and ~ , -  v~s are independent for all t >~ s >I to. 
(ii) With ~tt the minimal tr-algebra with respect to. which xs for s ~ t and ~ for 

s >~ t are measurable, conditions (3.4) and (3.5) hoM. 
(iii) A reverse time model for xt is defined by 

where 

m 
dxt = [(xt, t) dt + g(xt, t) dfft 

1 0 
['(x,, t)=fi(x,, t) p(x,, t) ~a-~xi, [p(x" t)g"k(xt' t)gjk(x" t)]. 

(3.11) 

(3.!2) 
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We remark that in the light of the linear results, it is not surprising that the 
probability density p(xt, t) shouM have to exist; our proof makes essential use however 
not just of existence, but of unique solvability of the Kolmogorov forward equations 
for this and a related density. 

4. Proof of main theorem 

While this section contains a full proof of the main theorem, the next section 
contains a different, ~impler proof of only some of the claims of the theorem. 

Let us consider the joint process (xt, ~t) defined by 

dx, = f (x ,  t) dt + g(xt, t) dwt, (4.1.) 

1 0 r :)gik 
d~k--p(xt ,  t)~-~Xittp(x,, . (xt, t)]dt+dw~, (4.2) 

with k = 1 , . . . ,  r. The associated forward Kolmogorov equation is 

Op(x,, if't, t) 
Ot 

0 
= -i=, ~ -~xit [p(x" vp,, t)fi(x,, t)] 

b p(x,, ~,, t) 0 t)]} 

,, ~2 

+ ½ ~ Ox~ Ox~ {p(x,, ~,, t)[g(xt, t)g'(xt, t)] ii} 
i,i=l 

+½ 0 2 

Off~ a~ t [p(x,, fit, t)] 
k,l=l t 

n r c3 2 
-t- E E " [p(xt,  l~t, t )g  ik (Xt, t ) ] ,  

,=1 k=l Ox', 0 ~  
(4.3) 

and the boundary condition we take is the natural one 

p(xto, rPto, to) = p(xto, to)6( ff%). (4.4) 

The bulk of the proof will now b,e completed via several lemmas. The first relates 
p(xt, ~t, t) to p(x,, t). 

Lennna 1. Suppose p(x,, t) is the solution of the forward Kolmogorov equation for 
(4.1) and 

'/~ (if" t)=[2~r(t-to)]r/2 2 ( t -  to)J" 

Then the solution of (4.3) an4 (4.4) is given by 

(4.5) 

p(xt, ffPt, t)=p(xt, t)~(~'t, t). (4.6) 
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Note. The notation in (4.5) is chosen to emphasize that, at this point, there is no 
claim that ~b(f,, t) is actually the probability density of f,, though below w~. shall 
demonstrate this property. 

Proof. When p(xt, t)O(ft, t) replaces p(x,, ft .  t) on the right-hand side of (4.3), 
straightforward manipulations yield for this right-hand side the expres;;ion 

O 0 2 
~b( if, t, t) -~i "~xit [p(xa t) f '(xa t)] + 1 ~.. Ox' axl {p(xt, t)[g(xt, t)g'(xt, t)]"} 

+It,(x  t) y ow, ow, J - k  - !  • 
k , !  

Taking cognizance of the forward Kolmogorov equation for p(x,  t) and of (4.5), 
which implies that 

o4,(f , ,  t) 1 o24,(, t, t) 
Ot =~Y~ - k  . t  , (4.7) k,t c3Wt c~Wt 

the expression becomes 

0 
-~[p(xa t )~( fa  t)]. 

This agrees with the left-hand side of (4.3) when p(xt, f, ,  t) is replaced by 
p(xt, t)4~(ft, t). So (4.6) satisfies (4.3). That (4.6) ensures that (4.4) holds is also 
trivial. VI 

As promised, we now identify ~b(ft, t) with the probability density of f,. 

Lemma 2. With the same hypotheses as Lemma 1, 

p(xt, ft,  t)= p(xt, t)p(fit, t). (4.8) 

Pr0,of. An elementax y application of Bayes' theorem to (4.6) yields 

p(f t ,  t l x , ) = ~ ( f , , t ) ,  

and since O(ft,  t) is independent of xt we must have 

p(f t ,  t )=O( f t ,  t). 0 

Eq. (4.8) shows that xt is independent of any increment f , -  fro = ft. We must 
now extend the independence to include increments f t -  fs for arbitrary s ~ (to, t). 
This requires several further lemmas which pin down the form of p(xt, f ,  tl fs, s) 
for t ~> s. The first is akin to Lemma 1, and has a proof using the result of 
Lemma 2. 
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Lemma 3. Suppose p(xt, t) is the solution of the forward Kolmogorov equation for 
(4.1). Then the conditional density, p(x,  ~ ,  tl ~ ,  s) associated with (4.1) and (4.2) 
for t >>- s >~ to is 

p(x,, ~,, tJ ff,~, s)=p(x,, t)~,(O,, Os, t - s )  

where 

1 [ (~,- ~,)'(~,- ~,)] 
O(~,, ff'5, t-s)=[2~r(t . ,s)] , /2exp 2 ( t - s )  " 

(4.9) 

(4.10) 

Proof. The conditional density on the left of (4.9) satisfies a certain Kolmogorov 
equation with certain boundary cx~nditions. We must show the quantity on the right 
of (4.9) satisfies the same equation and boundary condition. 

The equation to be satisfied is (4.3) with p(x,, if,,, t) replaced by p(x,, ~t, tl ~s, s), 
and the same argument as used in proving Lemma 1 establishes that the right-hand 
side of (4.9) also satisfies the equation. 

The boundary condition satisfied by p(xt, ~t, tiffs, s) is obtained as follows. (The 
independence of x~ and if, established in Lemma 2 is critical here.) We know that 

lim p(x,, if,, tJx,, ff~, s) = !im 8(x,-a~)8(ffp,-if's) 
d,s t,ts 

and that 

p(x,, ~s, tl ~,, s) -- I p(x.., ~,, t [x .  ~,, s )p(x ,  s J ~s, s) dx, 

f p(x,, a,,, tix,, ~s,s)p(x,, s) dx~. 

Hence 

lira p(xt, fit, tl if,, s) = lira p(x,, t)8(ffh- ffs). 
d,s t~s 

The right-hand side of (4.9) has the same limit, in 'view of the definition :ff 0. 
Accordingly, (4.9) is established. I'-I 

Before getting the desired independence re:ult we note without proof the folilow- 
ing simple lemma. 

Lenmm 4. Let A,  B, C be three/ointly aistributed random variables, and let pA(a), 
etc. denote the probability density of A evaluated at A = a. Then, if 

p s s c ( b l c ) = f ( b - c )  

for some [unction f, defining D = B -  C results in 

pD(d)= f(d). 
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if 
PA, nlc(a, b ]c)"-" pA(a)f(b --c) 

for some function f, defining D = B - C results in 

pa.o = Pa (a )po(d) = PA (a) f(d).  

Now we have the following lemma. 

Lemma 5. With xt, ff, t defined as above, and for t >~ s >~ to, 

p(x,, ffp,- ~'s, t, s) = p(x,, t )p ( f f , -  ~,~, t, s). 

Proof. Apply Lerama 4 to (4.9), identifying a = x,, b = if,, c = ~s, / = q/. !'3 

This lemma completes the proof of claim (i) of the theorem. Claim (ii) is immediate 
using this lemma, the Markovian character of xt, and the density p(~,-- f fs ,  t, s), 
which is the expression ~ in (4.10). We turn to claim (iii). 

From (4.1) and (4.2), we have 

dx~=l  f ' (x, , t )  y(x,,1 t) g,k otto } Y. (xr, t) E ~__i[P(Xt, t)g ik(xt, t)] dt 
k i 

4.~g'k(xt, t ) d ~  k 
~- 

o r  

dx, = f(xt, t) dt + g(x,, t) dffp,, 

with obvious definition of )~ Since (4.1) and (4.2) have integral forrns involving the 
standard (forward) Ito integral, the integral form of this equation also involves a 
standard Ito integral, save that ~, should be regarded as a semi-martingale, (3.10) 
defining the decomposition into a martingale and a bounded-variatien process. In 
order to convert this equation to one to be understood as using backward Ito 
integration, we must make an adjustment ff g depends explicitly on xt--double in 
fact that required t,, convert this equation to a Stratonovich equation, [12], or 
double that required to obtain a symmetrized integral with respect to the usual 
W~ener martingale, and by extension, with respect to ~t, reg~xded as a semi- 
martingale. The reverse-time model, using a backward Ito integral, [13], is 

where 

dxt = f(x,, t) dt + g(xt, t) da,, 

Og ~k (x,, t) • 
f '  (x,, t) = ~ (x,, t ) -  E Ox---~ g,k (x,, t) 

i,k 

1 0 
= fi(xt, t) p(x,, t) ~ ~x:t [p(xt' t)g"~ (xt' t)g/k(xt' t)]. 

This establishes claim (iii) of the theorem. 
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5. Another approach to the main result 

In this sectior~:, we describe an alternative (and historically our first) approach to 
the main result which yields most, but not all, of it. This alternative approach 
highlights the existence of reverse-time-versions of the usual Kolmogorov equations 
and was suggested in [11]. In broad outline, the idea is as follows. 

There is a one-to-one, onto correspondence between the stochastic differential 
equation for xt and the Kolmogorov equation for p(xt, t ]xs, s), t >~ s. Consequently, 
there should be a one-to-one onto correspondence between a reverse-time equation 
for xt and a Kolmogorov equation for p(x,, t l x . s ) ,  s This suggests that the 
equation for the latter density be sought. We now indicate how it may be easily 
obtained. 

We consider 

dxt = f(xt, t) dt + g(x,, t) dwt (5.1) 

where w, has the usual properties. Then the backward (not reverse-time) Kol- 
mogorov equation for s I> t is 

bp(x ,  s I x,, t) t) Op(x~, s I x,, t) 
Ot - -  = E [i (x,, i 

i OX t 

+½ E gik(x,, t)gik(xt, t)O2p(x~,..SlXt,I t) 
~,j.k ox', Ox~ 

(5.2) 

and the forward, uaconditioned, equation yields 

Op(x,, t) 0 fi  0t =2  t) (x,, t)] 

1 O2[g ik (x,, t)g ik (x,, t)p(x,, t)] 
- - 2 Y -  i • i.i.k Ox, Ox~ (5.3) 

Now, because 

p(xt, t, xs, s) = p(xs, s [xt, t)p(x,,  t), (5.4) 

we can attempt to obtain a partial differential equation for p(xt, t, xs, s), regarding 
x,, t as the independent variables and x,  s as parameters. We obtain, combining 
(5.2) through (5.4), 

op(x,, t, xs, s) 
Ot 

= terms involving f, g, p(xt, t) and p(xs, s lxt, t) 
and their xt-derivatives. 

We eliminate every occurrence of p(xs, s [xt, t) on the right-hand side, replacing it 
in accordance with (5.4) by p(x,, t, x~; s) /p(xt ,  t). The  end result of these manipula- 
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tions is, for s >~ t, 

O 0 
- =  p(xt, t, x ,  s )=  Y'. 2--7[ P(xt, t)p(xt, t, x~, s)] 

Ot T Ox , 

where fi is as before, viz, 

+½ ~ O2[p(x,, t, Xs, S)gJk(xt, t)gik(xt, t)] 

, . ,k 
(5.5) 

1 0 
f '(x,, t )=f ' (xt ,  t) p(xt, t------~), j~Ox"-~t [p(x" t)gik(xt' t)gik(xt' t)]. (5.6) 

The same partial differential equation (but with different boundary conditions of 
course) is satisfied by p(x,, t ]x ,  s) [and in fact p(xt, t )]-- this  is trivial to see. Just 
as (5.3) corresponds to the forward model (5.1), so then (5.5) has to correspond 
to the reverse model 

m 

d2t =/(St,  t) dt + g(.~t, t) d~t (5.7) 

where fit is a vector Wiener process with past increments independent of £,. (The 
apparent non correspondence of the signs in (5.1) and (5.2) on the one hand and 
(5.6) and (5.7) on the other hand is a result of the reversal of the time flow 
direction.) Note that in arguing this way we have obtained (more easily in fact) all 
the results of Section 3 save one: we have not shown here that we can identify 
trajectories {x,,-oo < t < oo} and {~,,-oo < t < oo} of the forward and reverse time 
models. The approach of this section however allo, vs a simpler appreciation of the 
result, and also throws up the Kolmogorov equation (5.5), which we might term 
tLe reverse-time (as opposed to backward) Kolmog~rov equation. There is of course 
even a further Kolmogorov equa t ion~the  reverse-time parallel of the backward 
equation associated with the forward-time, model. 

6. Miscellaneous comglements 

6.1. Time-invariant problems 

If the forward-time model ha s f(xt, t) and g(x,, t) independent of t, and if there 
exists a stationary density or(x,), again independent of t, znd satisfying (uniquely) 
the steady-state Kolmogorov equation, then it is immediately verified that the 
reverse-time model has f(x,, t) independent of t. 

6.2. Forward stability implies reverse-time stability 

The analog of the stability result described in Section 2 for linear equations is 
as follows. Suppose. that the forward-time model has f(xt, t) and g(x,, t) independent 
of t, and that lim~_~o p(x,, tlx. s ) -  z.(x,), independent of Xs, s. Suppose further that 



324 B.D.O. Anderson ] Reverse-time diffusion equation 

or(. ) is used to define a reverse-time model. Then we can ask whether this re ,¢erse- 
time model has reverse time stability, in the sense that lim,.._oo p(xa t l x ,  s) =: Cr(x,). 
We now demonstrate that this is the case. 

lim p(x,, t lx. s )  = l im p(x,, t lx .  s) (by time-invariance of the model) 

lira pixy, s ixt, t)cr(x,) 
5 ..~ 0 0  

~r(x~) 

~r(xA~'(x,) 
~(xs) 

(by stability of forward model) 

= l r ( x , ) .  

6.3. Simple example 

Consider the stationary system with scalar x defined by 

dx =f(x)  d t +  g(x) dw. 

Here, f ( . )  and g(. ) are smooth and confined to the second and fourth quadrants, 
each lying in a cone whose boundaries are strictly within the quadrants. It follows 
easily that 

k ~ 2/(tr) dcr} It(x) = g-~x) exp{ Io g2(cr ) 

for some constant k. Then 

[2f(x) g'(x)] dt, dff, =dW + [ g(x ) - 

and the reverse-time equation becomes 

dx = - f ( x )  dt + g(x) d~. 

6.4. Finding a forward-time model given a reverse-time model 

This is straightforward. As one could expect, if a forward time model F2 is 
constructed from a reverse time model R1 which itself was constructed from a 
forward time model F1, then we have F~ = Fz. 

6.5. Linear systems 

We can easily verify the main result in the case of the stationary linear system 
(2.1), repeated for convenience, 

dx = A x  dt + B dw. 
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One has 
1 

p(xt) = (2~)./21pi1/2 exp{-~x'P-~x}.  

Here, P is the solution of PA'  + A P  = - B B ' ,  and is assumed nonsingular. Then 

p(X') ~Xit[p(x,)BJk) ] = _y. (p_l)iix~BJ k 

Thus, following (3.10), 

d#,  = dw - B ' P - l x  dt 

as stated in (2.6). 

= - k t h  entry of B'P- lx .  

6.6. Future extensions 

There are at least two directions in which we believe this work can be 
extended. First, we expect to examine smoothing or interpolation problems, where 
p(x, l zs, s ~ [0, T]) is sought given the pair 

dxt = f(xt, t) dt + g(xt, t) dwt, 
(6.1) 

dzt = h(xt, t) dt +j(x,, t) dw,. 

Such problems are studied in, e.g. [14, Chapter 9] and [i 5], and hitherto have used 
solution methods which reflect a preference for direct: on of time flow that the 
quantity sought appears to lack; linear results along the lines desired are however 
available [1, 3, 16]. Secondly, we aim to consider problems of reversibility and 
dynamic reversibility of processes, see e.g. [5, 7]. Such processes arise in many 
physical situations, e.g. in linear electric networks comprising resistors, capacitors 
and inductors. We are developing extensions of the known results on reversibility 
and dynamic reversil:~:lity for linear networks to nonlinear, but still passive, 
networks, see [17] for some results. 
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