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Reverse-time stochastic diffusion equation models are defined and it is shown how most
processes defined via a forward-time or conventional diffusion equation model have an associated
reverse-time model.

Stochastic equations diffusivin equations
reverse-time equations Kolmogorov equations
Fokker-Plank equations

1. Introduction

Stochastic differential equations have a built-in direction of time flow since future
increments in the driving process are assumed independent of present and past
values of the process defined by the solution of the equation. The differential
equations are thought of as evolving forward in time, normally from some fixed
initiaj time, and the integral representation of a solution, involving as it does an
Ito integral, emphasizes again, via the detailed zpproximation rule for the integral,
the forward time flow. In this paper, we discuss reverse-time stochastic differential
enuations, and for a wide variety of diffusion processes, we show that each (forward-
time) representation of a diffusion process generates a reverse-time representation
as well. The only so:ts of restrictions needed are those which ensure that the
Kolmogorov equations for associated probability densities (not just distribution
functions) all have unique smooth solutions; such restrictions, though hard to
translate into requirements on the diffusion and drift quantities, seem nevertheless
intrinsic.

Results in this vein for diffusion processes described by linezr stochastic differen-
tial equations have been recently developed, see especially [1] but also [2-9]. Some
of these references contain applications of the reverse-time models to problems of
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stechastic realization, signal processing. and electric circuit theory. The ideas of
this paper have been developed partly with the hope of such applications fall-out
in the nonlinear case.

Some results for nonlinear diffusion equations are also available. For exampie,
Nelson [10] considers diffusion equations with constant diffusion matrix, and fails
to relate the driving noise in the reverse-time equations to that in the forward
equation. Stratonovich [11] analyzes a scalar diffusion equation, and also fails to
relate the driving noise in the reverse-time equations to that in the forward equation.

The paper is structured as follows. In Section 2 we review some key features of
the construction of reverse-time modzls for linear stochastic differential equations.
In Section 3 we define (in the obvious way) reverse-time models for nonlinear
diffusion equations and state the main result. This is established in Section 4, with
further insights and a rauch simpler proof of part of the main result given in Section
5; it may prove easier for some readers to consider Section 5 prior to Section 4.
The method of this section appears to have been first suggested in [11], where it

is applied to a scalar diffusion process; it should be noted that the result in [11] is
incorrectly stated.

2. The linear problem

The fullest exposition of results on {forward and reverse-time stochastic realiz-
ations for Gauss—Markov processes can be found in [1]. We sketch some of the
ideas here, as motivation for the subsequent results.

Suppose x is a purely nondeterministic, wide-sense stationary n-dimensional
process, described as the solution of the stochastic differential equation set

dx =Ax dt+Bdw. 2.1)

Here, A and B are constant matrices, Re[A;(A)]< 0 for all i and w(-) is a vector
Wiener process such that x(¢) is independent of future increments of w, but not of
past ones, i.e., x(¢) is independent of w(t,)—w(t;) for all £,>¢,=¢ but not (in
general) of w(t;)—w(t,) for t=1>1,. (One could consider such a situation as
arising, for example, by considering (2.1) with a finite initial time t,, and initial
state a random variable x(#) independent of the w(-) process; then one can let
tg -> —00.)

Such a model will be called a forward time model. One thinks of (2.1) as evolving
forward in time, and can consider its solution as

t

x()=| e Bdw(s). (2.2)

—00

A reverse time model on the other hand is one for which

dx=Axdr+B dw (2.3)
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where now Re[A;(A)]>0 for all , and Ww(-) is a vector Wiener process with x(¢)
independent of past increment of w, but not of future ones.
One might think of (2.3) as evolving backward in time, having a solution

x(0)= —I e*""B dw(s). (2.4)
t
Such models are useful in studying smoothing problems [1, 3], questions of reversi-
bility [5], and electric network synthesis [7].
Now in [1], the problem is considered of obtaining from a given forward-time
representation of x(#) a reverse-time representation. This problem is solved in the
following way. Let

P=E[x(H)x'(1)]. (2.5)

(The matrix P is the solution of the linear matrix equation PA'+ AP =-BB’, and
is nonsingular precisely when rank [B AB --- A" 'B]=n.) Suppose P is non-
singular, and define a vector process w by

dw=dw-B'P 'xdr, w(0)=0, (2.6)
which in conjunction with (2.1) implies
dx=(A+BB'P ) dt+B dw. 2.7

Then it can be proved that Re[A;(A+BB'P~")]>0 for all i, and that w(-) is a
vector Wiener process with x(¢) independent of past increments of w, (but not of
future ones), i.e., with the definitions (2.5) and (2.6), (2.7) is a reverse time model.

Two further points may be noted. First, the requirement that P = E[x(t)x'(¢)]>0
can be interpreted as a requirement that (2.1) be a minimal dimension model in a
certain sense, and the nonsingularity ensures that the probability density of x(¢)
exists. Second, stationarity is not an essential ingredient of these results, see for
example [2, 3, 7] where some of the ideas are presented free of a stationarity
assumption.

3. Construction of ruverse time nonlinear models

Let (12, o, P) be a fixed probability space, let {sf,, —00 <t <0} be an increasing
family of sub-co-zlgebras on &, and let {w, —00 <t < 00} be an r-vector Brownian
motion process cuch that w, is sf-measurable for each ¢, and w, —w; for t=s is
independcnt of &/ ; we require for s =0

E[we.s|oi]=ws (3.1)
E[(Wees = w)(Wees — Wr)’ldr] =sl. (3.2)
We study an Ito stochastic differential equation of the form

dx,=f(x, ) dt+g(x, t) dw,. (3.3)
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Here, x, is an n-vector process, and f(-,-) and g(-,-) are n X1 and n X n matrix
functions with certain smoothness and growth properties which guarantee existence
and uniqueness of a solution, see e.g. [9].

Eq. (3.3) is understood to be defined in some region ¢ = fo, x,, is an almost surely
bounded random variable independent of {w,, —00 <¢ <0}, and it may be possible
for certain equations to allow ¢, » —c0. Commonly &, is the minimal o-algebra with
respect to which x,, and w;, s <t are measurable. The solution has certain properties,
depending on the smoothness and growth of f and g, as set out in standard references,
e.g. [9, 12]. We shall term (3.3) a forward Ito equation or forward-time model.

We now describe what is meant by a reverse-time model. The idea is not simply
to make some adjustment to (3.3) to permit use of a backward rather than forward
Ito integral [13] for expressing the solution of (3.3).

We require a decreasing family {s#,, —00 < ¢ < o0} of sub-cg-algebras on & and an
n-vector process {Ww,, —00 <t <00} such that w, is s-measurable for each ¢, w, — W,
for t=s is independent of &, and for s =0

E[Wl]gt+s] = Wits (3.4)
E[(Wr - W:+s)(wr - wr+s)' |52{+s] = sl . (35)

This process drives a reverse-time Ito equation of the form

dx, = f(x, t) dt + g(x, £) dw, (3.6)

which is understood to be defined in some region ¢ < 7T, where it may be possible
to have T—»>00. One has x; a random variable independent of {Ww, —00 <t <00}
and (3.6) is shorthand for

T T
sr—x=[ Fou dt+j &(x, 1) dv, 3.7)

in which the second integral is a backward Ito integral. Again, it is understood that
f and g satisfy the growth and smoothness properties sufficient for existence and
uniqueness of a solution.

Evidently in the forward model, x, is independent of future increments of the
driving Wiener process, while in the reverse time model, x, is independent of past
increments of the driving process.

The main result explains how to construct a reverse-time realization from a
forward-time realization. In order to formulate this result, as further background
we recall the fact that associated with (3.3) are forward and backward Kolmogorov
equations, see, e.g. [9, 12]. These take various forms; for example, the forward
equation for the probability density’ p(x, t|x, s) for t>s is

' A lower case ¢ will be reserved henceforth tc¢ designate a probability density, with the displayed
arguments implicitly defining the random variable. of which p is the dcnsity.
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ap(xnt|x,s) 2 @ i
or = R ax:'[p(xbt!xss s)f (xts t)]
n 62 .l
+% ) i i{P(xr, tlx,, s)[g(x, 1)g'(x, 1"} (3.8)
ij=10X; 0X;

X
while the backward equation, again for 7>, is

3P0k X0 5) 5 2 p (x5 ) F (1 )}

a5 i=1 0Xg

n 2
13— {p (e e gt )g'(xs )11 (3.9)
ii=10Xg 0X;

Appropriate boundary conditions are usually associated with th: equation. Uncon-
ditioned forward equations, or partially conditioned forward equations also exist.
Sufficient conditions for the transition density to satisfy the Kolmogorov equation
are (see, e.g. [9, pp. 297-8]), that f(-, -) and g(-, - ) guarantee existence of a unigue
strong solution to (3.3) for an almost surely bounded initial condition, that f(-,-)
g{-, ) are twice continuously differentiable in x, that their first order partials in x
are bounded, that the second order partials grow no faster than ||x||™ as x - o for
some m >0 and that the transition probability density p(x, ¢|x,, s) is twice con-
tinuously differentiable in x, and contiruously differentiable in . Sufficient conditions
for there to be no other solution of the Kolmogoicv equations satisfying the same
boundary conditions, i.e., for uniqueness, are unknowr: to us. We now have the
following theorem.

Theorem. Let x, be the process described by (3.3), and suppose f(-,-) and g(-,*)
are such as to guarantee the existence of the probability density p(x, t) for to<t<T
as a smooth and unique solution of its associated Kolmogorov equation. Suppose
further that an r-vector process w, is defined by w,, =0 and

dwk =dwk +——3 2

t p(e, 1) < o) [p(x, ng" (x, 1)] dt, (3.10)

and that the forward {olmogorov equation associated with the joint process (x,, w,)
yields a smooth and unique solution in t>1, for plx, ®,t) and in t>s=1, for
p(xy, Wy t| W, s). Then
(i) x,and w,— W, are independent for all t = s = t,.
(i) With 54, the minimal o-algebra with respect to which x; for s =t and W, for
s =1 are measurable, conditions (3.4) and (3.5) hold.
(iii) A reverse time model for x, is defined by

dx, = f(x, £) dt+g(x, 1) dw, (3.11)
where

Flen )= Floy ) =5 2

ox] " (x, 08" (5 1] 2.12
p(x” !);-;cax;[p(Xn t)g (.x,, [)g (x t)] ( )



318 B.D.O. Anderson [ Reverse-time diffusion equation

We remark that in the light of the linear results, it is not surprising that the
probability density p(x,, t) should have to exist; our proof makes essential use however
not just of existence, but of unique solvability of the Kolmogorov forward equations
for this and a related density.

4. Proof of main theorem

While this section contains a full proof of the main theorem, the next section
contains a different, simpler proof cf only some of the claims of the theorem.
Let us consider the joint process (x,, w,} defined by

dx, = f(x, 1) dt +g(x, ) dw, 4.1)
1 3
-k k
dw, = PR 2 P —Ip(x. g™ (x, N1 dt +dws, (4.2)
with k =1, ..., r. The associated forward Kolmogorov equation is

9p (X Wi 1) _ g [p(x W 1) f (%0 )]

at

_ 9 [ px, We i) _a_ ) ik
X =) s St e (x,,t)]}

=1 axi ax{{p(xb W’u t)[g(xo t)g'(x,, !)]ii}

r 2

d
+3 Xy Wy £
2“2; aw‘ a-:[P(r t )]

2
+ Z Z Y3 [p(xl" Wi, t)g'k(xu )l 4.3)
iS1 651 ox) oW,
and the boundary condition we take is the natural one
p(xto’ wtos tO) = p(xtoy 10)8(';'&))- (4-4)
The bulk of the proof wiil now bz completed via several lemmas. The first relates
p(xy Wy, 1) tO plxs, ).

Lemma 1. Suppose p(x, t) is the solution of the forward Kolmogorov equation for
4.1) and

Wi W, ]

1
d(w, t)—mexp[ —10) 4.5)

Then the solution of (4.3) arnd (4.4) is given by
I’(xu wts t) =p(xt9 t)¢(wn t)- (4-6)
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Note. The notation in (4.5) is chosen to emphasize that, at this point, there is no
claim that ¢ (w, ?) is actually the probability density of w,, though below we shall
demonstrate this property.

Proof. When p(x,, t)¢(w, t) replaces p(x, w,, t) on the righi-hand side of (4.3),
straightforward manipulations yield for this right-hand side the expression

o (w, t){ "Z [p(x,, t)f (x5 t)]+2 Z ——7{p(x, g(x, ng'(x, f)]u}

66'

O’ (s t)}
+ t
2p(x, )Z L
Taking cognizance of the forward Kolmogorov equation for p(x, f) and of (4.5),
which implies that

2 —
a¢(aut»,, 1) %k,aad’(wwt) 4.7)

the expression becomes

d -
5[p(xt’ Do (W, 1)].

This agrees with the left-hand side of (4.3) when p(x, w, ) is replaced by
p(x, )d(w, t). So (4.6) satisfies (4.3). That (4.6) ensures that (4.4) holds is also
trivial. [

As promised, we now identify & (w, t) with the probability density of w..

Lemma 2. With the same hypotheses as Lemma 1,
p(xy, Wy, 1) = p(x, )p(Wy, 1). (4.8)
Proof. An elementaiy application of Bayes’ theorem io (4.6) yields

p (W, tlx,) =¢(W, t),
and since ¢ (W, t) is independent of x, we must have

p(wb t)=¢(wb t)- D

Eq. (4.8) shows that x, is independent of any increment w, — w,, = w,, We must
now extend the independence to include increments w, — w; for arbitrary s € (f, 1).
This requires several further lemmas which pin down the form of p(x,, W, t|W,, s)
for t=s. The first is akin to Lemma 1, and has a proof using the result of
Lemma 2.
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Lemma 3. Suppose p(x, t) is the solution of the forward Kolmogorov equation for
(4.1). Then the conditional density, p(x, W, t| W, 5) associated with (4.1) and (4.2)
fort=s=1tis

plx, W, t| W, ) =plx, DY (W, Ws, t —5) (4.9)

where

—ws)’(w:—ws)]. (4.10)

(0 By 1=8) ==~ exp] 1"
'«0 Wi Wy, § —[2“(t"S)]'zexp z(t_s)

Proof. The conditional density on the left of (4.9) satisfies a certain Kolmogorov
equation with certain boundary conditions. We must show the quantity on the right
of (4.9) satisfies the same equation and boundary condition.

The equation to be satisfied is (4.3) with p(x, W, ¢) replaced by p(x,, W, t| W, 5),
and the same argument as used in proving Lemma 1 establishes that the right-hand
side of (4.9) also satisfies the equation.

The boundary condition satisfied by p(x,, W, ¢| W,, 5) is obtained as follows. (The
independence of £, and w, established in Lemma 2 is critical here.) We know that

IEP} p(xh ﬁ’n t ' xs, Wss S) = !j?g 5(xt "1’3)8(%’; - 1"’.‘-’s)
and that

p(x, W, t]W,, s)= j D(X:, W, 1] X5, Wy, 5) P(X5, 5| Wy, 5) dix,

= J p(xy, Wi, t| x5, We, 5) p(x,, 5) dxs.

Hence
l'i{l: p(xh Wty ’I ws’ S) = lliflsl p(xn t)a(wr - Wg)..

The right-hand side of (4.9) has the same Lmit, in view of the definition of .
Accordingly, (4.9) is established. [

Before getting the desired independence re- ult we note without proof the fol ow-
ing simple lemma.

Lemma 4. Let A, B, C be three jointly aistributed random variables, and let p.(a),
etc. denote the probability density of A evaluated at A = a. Then, if

peic(blc)=f(b—c)
for some function f, defining D = B — C results in

pol(d)=f(d).
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If
Pasic(a, blc)=pala)f(b—c)
for some function f, defining D = B — C results in

Pa,p =pala)pp(d)=pala)f(d).
Now we have the following lemma.
Lemma §. With x,, w, defined as above, and fort=s = t,,
p(xy W — Wy, t, 8) = p(x,, )p (W, — Wy, ¢, 5).
Proof. Apply Lerama 4 to (4.9), identifyinga=x, b=w,c=w, f=¢. O

This lemma comipletes the proof of claim (i) of the theorem. Claim (ii) is immediate
using this lemma, the Markovian character of x, and the density p(w,-- wy, ¢, 5),
which is the exzpression ¢ in (4.10). We turn to claim (iii).

From (4.1) and {4.2), we have

dx; = [ f(xy 1) = Y8 (xst) Z [p(x,, Ng™ (xs t)]} dr

( Xty t) k
'+§‘£‘ gik(xg, t)dw;

or
dx, = f(x, t) dt + g(x, t) dw,

with obvious definition of f Since (4.1) and (4.2) have integral forms involving the
standard (forward) Ito integral, the integral form of this equation also involves a
standard Ito integral, save that w, should be regarded as a semi-martingale, (3.10)
defining the decomposition into a martingale and a bounded-variaticn process. In
order to convert this equation to one to be understood as using backward Ito
integration, we must make an adjustment if g depends explicitly on x,—double in
fact that required t:: convert this equation to a Stratonovich equation, [12], or
double that required to obtain a symmetrized integral with respect to the usual
Wiener martingale, and by extension, with respect to W, regerded as a semi-
martingale. The reverse-time model, using a backward Ito integral, [13], is

x: = flx, t) dt +g(x, 1) dw,

where

i 1) = (o 1)~ z"’g ai"" D g (x, 1)

¢

= f!(Xe )————Zk Pw [p(x,, g™ (X 1)g™ (x5 )]

This establishes claim (iii) of the theore:n.
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5. Another approach to the main result

In this section, we describe an alternative (and historically our first) approach to
the main result which yields most, but not all, of it. This alternative approach
highlights the existence of reverse-time-versions of the usual Kolmogorov equations
and was suggested in [11]. In broad outline, the idea is as follows.

There is a one-to-one, onto correspondence between the stochastic differential
equation for x, and the Kolmogorov equation for p(x, t| x5, ), t =s. Consequently,
there should be a one-to-one onto correspondence between a reverse-time equation
for x, and a Kolmogorov equation for p(x, t|x;, s), s =t This suggests that the
equation for the latter density be sought. We now indicate how it may be easily
obtained.

We consider

xe=f(x, t) dt + g(x, t) dw; (5.1)

where w, has the usual properties. Then the backward (not reverse-time) Kol-
mogorov equation for s =1 is

?p(xss £ ‘xrs t) - i ap(xi’ § |x1’ t)
at =2f (1) dx:

0°p (X, 8| X0 1)

+3 % g% (x, g™ (x 1) —, (5.2)
ik dx, 0x;
and the forward, uaconditioned, equation yields
a (xt, t)
- DY S lp (e, f (]
i t
™ Jt Y t
ik ax t ax ¢
Now, because
P(Xu t, X0 §) = pxs, §|x0 )P (x4 1), (5.4)

we can attempt to obtain a partial differential equation for p(x, ¢, x, 5), regarding

X, ¢ as the independent variables and x,, s as parameters. We obtain, combining
(5.2) through (5.4),

ap(xy 1 X5, S)

P = terms involving f, g, p(x, t) and p(x,, s|x, )

and their x~derivatives.

We eliminate every occurrence of p(x,, s|x, t) on the right-hand side, replacing it
in accordance with (5.4) by p(x,, , x.. £)/p(x,, t). The end result of these manipula-
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tions is, for s =¢,

) 9 =
-a;p(xz, 1 X §)= ; a_x-f[f (xs 1) p(xy 8, x5, 5)]

2 ik ik
e 3 Lp(xs 1, %5, S)g (:’_c,, 1)g" (x,, 1)] (5.5)
Lik th Bx,
where f' is as before, viz,
=i i d i i
Flxo t)=f(xy 1)= ¥ —lp(x, g™ (x, g™ (x,, 1)]. (5.6)

plx, t) j.ka?

The same partial differential equation (but with different boundary conditions of
course) is satisfied by p(x, t|x,, 5) [and in fact p(x, r)]—this is trivial to see. Just
as (5.3) corresponds to the forward model (5.1), so then (5.5) has to correspond
to the reverse model

dz, = f(%, ) dt + g(%, £) dw, (5.7)

where w, is a vector Wiener process with past increments independent of %. (The
apparent non correspondence of the signs in (5.1) and (5.2) on the one hand and
(5.6) and (5.7) on the other hand is a result of the reversal of the time flow
direction.) Note that in arguing this way we have obtained (more easily in fact) all
the results of Section 3 save one: we have not shown here that we can identify
trajectories {x,, —00 <t <oo} and {¥, —o0 <t <o} of the forward and reverse time
models. The approach of this section however allovs a simpler appreciation of the
result, and also throws up the Kolmogorov equation (5.5), which we might term
tl.c reverse-time (as opposed to backward) Kolmogorov equation. There is of course
even a further Kolmogorov equation—the reverse-time parallel of the backward
equation associated with the forward-time model.

6. Miscellaneous complements

6.1. Time-invariant prodlems

If the forward-time model has f(x, ¢) and g(x, ¢) independent of ¢, and if there
exists a stationary density = (x,), again independent of ¢, znd satisfying (uniquely)
the steady-state Kolmogorov equation, then it is immediately verified that the
reverse-time model has f(x, ¢) independent of «.

6.2. Forward stability implies reverse-time stability

The analog of the stability result described in Section 2 for linear equations is
as follows. Suppos that the forward-time model has f(x,, ¢) and g(x,, t) independent
of ¢, and that lim. » p(x, | x,, §) = 7(x.), independent of x,, s. Suppose further that
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a(+) is used to define a reverse-time model. Then we can ask whether this re verse-
time model has reverse time stability, in the sense that lim,., o p(x,, #|x,, §) = 7 (x).
We now demonstrate that this is the case.

lim p(x,!|x; s)= lilg p(x, t|xs, 5) (by time-invariance of the model)
t-»—00 S=»

lim p(xs, 8 | x4 )7(xe)

m(xs)

_ mlxs)m(x,)

(by stability of forward model)
m(x;)

= 7(x,).
6.3. Simple example
Consider the stationary system with scalar x defined by
dx=f(x)dt+g(x)dw.

Here, f(+) and g(-) are smooth and confined to the second and fourth quadrants,
each lying in a cone whose boundaries are strictly within the quadrants. It follows
easily that

__k *2f(o)
w(x)= gz(x) exp{ A ET(:’—) da‘}

for some constant k. Then

2f(x)
g(x)

and the reverse-time equation becomes

diw =dw +[ - g'(x)] dr,

dx =—f(x)dt+g(x)dw.

6.4. Finding a forward-time model given a reverse-time model

This is straightforward. As one could expect, if a forward time model F; is
constructed from a reverse time model R; which itself was constructed from a
forward time model F;, then we have F; = F,.

6.5. Linear systems

We can easily verify the main result in the case of the stationary linear system
(2.1), repeated for convenience,

dx=Ax dt+ B dw.
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One has
1 -1
P(x:) = (217)" 2|P|1 2 GXP{__%x'P X}.

Here, P is the solution of PA’'+ AP = —BB’, and is assumed nonsingular. Then

1 0

;,(__,55 - a‘,:[p(x,)B”‘)] ==Y (P~ Y'xiB*

= —kth entry of B'P 'x.
Thus, following (3.10),
dw,=dw—B'P 'x dt
as stated in (2.6).

6.6. Future extensions

There are at least two directions in which we believe this work can be
extended. First, we expect to examine smoothing or interpolation problems, where
p(x.|z,, s €[0, T) is sought given the pair

dx, = f(x, t) dt + g(x, t) dw,

(6.1)
dz, =h(x, )dt+j(x, t) dw, .

Such problems are studied in, e.g. [14, Chapter 9] and [15], and hitherto have used
solution methods which reflect a preference for direct on of time flow that the
quantity sought appears to lack; linear results along the lines desired are however
available [1, 3, 16]. Secondly, we aim to consider problems of reversibility and
dynamic reversibility of processes, see e.g. [5, 7]. Such processes arise in many
physical situations, e.g. in linear electric networks comprising resistors, capacitors
and inductors. We are developing extensions of the known results on reversibility
and dynamic reversit lity for linear networks to nonlinear, but still passive,
networks, see [17] for some results.
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