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Abstract 

A new aperiodic tile set containing only 14 Wang tiles is presented. The construction is based 
on Mealy machines that multiply Beatty sequences of real numbers by rational constants. 

1. Introduct ion  

Wang tiles are unit square tiles with colored edges. A tile set is a finite set of Wang 
tiles. We consider tilings of the infinite Euclidean plane using arbitrarily many copies 
of the tiles in the given tile set. Tiles are placed on the integer lattice points of the plane 
with their edges oriented horizontally and vertically. The tiles may not be rotated. The 
tiling is valid if everywhere the contiguous edges have the same color. 

Let T be a finite tile set, and f :  7/2 ..~ T a tiling. Tiling f is periodic with period 
(a, b) e 2 2 \  {(0, 0)} ifff(x, y) = f ( x  + a, y + b) for every (x, y) e 7/2. If there exists a peri- 
odic valid tiling with tiles of T, then there exists a doubly periodic valid tiling, i.e. 
a tiling f such that, for some a,b > O , f ( x , y ) = f ( x  + a , y ) = f ( x , y  + b) for all 
(x, y) e 7/2. A tile set T is called aperiodic iff(i) there exists a valid tiling, and (ii) there 
does not exist any periodic valid tilings. 

Chapters 10 and 11 of I-3] contain an excellent overview of what is known about  
aperiodic tile sets. Their existence was proved in a remarkable work by Berger ]-2] in 
1966. The tile set he constructed contains over 20000 tiles, and he used them to prove 
that it is undecidable whether a given tile set admits valid tilings. Since then several 
aperiodic sets have been found, including the smallest known aperiodic tile set due to 
R. Amman that contains only 16 tiles. In the present work we reduce this number  even 
further by presenting an aperiodic set of 14 Wang tiles. It remains an interesting open 
problem whether there are even smaller aperiodic sets. 
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Fig. 1. Aperiodic set of 14 Wang tiles. 

2. The tiles 

Our set T of 14 tiles is shown in Fig. 1. The colors are rational numbers - -  number 
0 may also be marked with a prime. Let us divide T into two disjoint sets T 2 and T2/3, 
where T2 contains the four tiles on the first row of Fig. 1 and T2/3 the remaining ten 
tiles. The colors of the vertical edges are different in the two sets, so in every valid tiling 
all tiles on the same row must belong to the same set Tq. 

We say that tile 

a 

I 
c 

multiplies by q if aq + b = c + d. In other words, the tile multiplies the number on its 
upper edge by q, adds the 'carry' from the left edge, and splits the result between the 
lower edge and the 'carry' to the right. Clearly, the tiles in T2 multiply by 2, and the 
tiles in T2/a by 2. (The vertical color 0' in T2/3 is interpretated as 0; the prime is used to 
distinguish it from the color 0 used in T2.) 

Proposition 1. T h e  t i le se t  T does  no t  a d m i t  a per iod ic  tiling. 

Proof. Assume that f :  7} 2 -~ T is a doubly periodic tiling with horizontal period a and 
vertical period b. For  i ~ Z, let nl denote the sum of colors on the upper edges of tiles 
f(1,  i), f (2,  i) . . . . .  f ( a ,  i). Because the tiling is horizontally periodic with period a, the 
'carries' on the left edge o f f ( l ,  i) and the right edge of f (a ,  i) are equal. Therefore 
ni+ 1 = qini, where qi = 2 if tiles of T 2 a re  used on row i and qi = 2 if tiles of T2/3 a re  used. 
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Because the vertical period of tiling f is b, 

nl = nb+l = qlq2 ... qb 'n l ,  

and because two tiles with O's on their upper edges cannot be next to each other, 
nl ~ O. So qlq2 ... qb = 1. This contradicts the fact that no non-empty product of 2's 
and 2's can be 1. [] 

To show that T is aperiodic one has to demonstrate the existence of valid tilings. 
We do it in the next section by showing that the tiles can be used to multiply balanced 
representations of real numbers by 2 and -~. This shows that there are in fact 
uncountably many valid tilings. 

Any finite set of Wang tiles may be interpreted as a Mealy machine without initial 
and final states. A Mealy machine M is a labeled directed graph whose nodes are 
called states and edges are called transitions. The transitions are labeled by pairs a/h of 
letters. The first letter a is the input symbol and the second letter b the output symbol. 
Machine M computes a relation p ( M )  between bi-infinite sequences of letters. A bi- 
infinite sequence x over set S is a function x : 2 ~ S. We will abbreviate x(i) by xi. 
Bi-infinite sequences x and y over input and output alphabets, respectively, are in 
relation p ( M )  if and only if there is a bi-infinite sequence s of states of M such that, for 
every i E 7/, there is a transition from si-1 to sl labeled by xi/yi .  

The states of the Mealy machine corresponding to a given tile set are the colors of 
vertical edges. The colors of horizontal edges are the input and output symbols. There 
is a transition from state s to state t with label a/b iff there is a tile whose left, right, 
upper and lower edges are colored by s, t, a and b, respectively. Obviously, bi-infinite 
sequences x and y are in the relation p ( M )  iff there exists a row of tiles, with matching 
vertical edges, whose upper edges form sequence x and lower edges sequence y. So 
there is a one-to-one correspondence between valid tilings of the plane, and bi-infinite 
iterations of the Mealy machine on bi-infinite sequences. 

The Mealy machine M corresponding to our aperiodic tile set is shown in Fig. 2. 

It consists of two disjoint components  M2 and M2/3 corresponding to subsets T2 

and T2/3. 

3. Beatty sequences 

For  an arbitrary real number  r we denote by [_rJ the integral part  of t ,  i.e. the largest 
integer that is not greater than r, and by {r} the fractional part  r - [_r/. In proving 
that our tile set can be used to tile the plane we use Beat ty  sequences of numbers. 
Given a real number  c~, its bi-infinite Beatty sequence is the integer sequence A(~) 
consisting of the integral parts of the multiples of c~. In other words, for all i e 2v, 

A(~)i = L i ' ~ / .  
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Fig. 2. Mealy machine corresponding to the aperiodic tile set. 

Beatty sequences were introduced by Beatty [1] in 1926. He proved that, for any 
positive irrational numbers c~ and/ /sat isfying e -  1 + /~ -  1 = 1, every integer - -  except 
- 1 and 0 - -  appears in exactly one of the Beatty sequences A(c~) and A(/~). (Because 

the only multiples of c~ and /~ in the interval [ - 1, 1] are 0.c~ and 0.//, number  
0 appears in both Beatty sequences and number  - 1  in neither of them.) 

We use sequences obtained by computing the differences of consecutive elements of 
Beatty sequences. Define, for every i e Z, 

B(o~)i = A ( ~ ) i -  a ( ~ ) i - l "  

The bi-infinite sequence B(=()i will be called the balanced representation of e. The 
balanced representations consist of at most two different numbers: If k ~<e ~< k + 1 
then B(e) is a sequence of k's and (k + 1)'s. Moreover,  the averages over finite 
subsequences approach =( as the lengths of the subsequences increase. In fact, the 
averages are as close to e as they can be: The difference between l . e  and the sum of 
any l consecutive elements of B(e) is always smaller than one. 

For  a given positive rational number  q = n/m, let us construct a Mealy machine Mq 
that multiplies balanced representations B(e) of real numbers by q. The states of Mq 
will represent all possible values of qLrJ  - LqrJ for r e E. Because 

qLrJ -  1 <<.qr-- 1 <LqrJ <<.qr <q([_rJ  + 1), 

we have 

- q < q L r J  - L q r J  < 1. 
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Because the possible values of q [_ r J - [.qr j are multiples of 1/m, they are among the 
n + m - 1 elements of 

n - 1  n - 2  m - 2  m - l }  
s =  - - ,  - - ,  . . . .  - -  , - . 

m m m m 

S is the state set of Mq. 

The transitions of Mq are constructed as follows: There is a transition from state 
s ~ S with input symbol a and output symbol b into state s + qa - b, if such a state 
exists. If there is no state s + qa - b in S then no transition from s with label a/b 

is needed. After reading input ... B(e)i-2 B(c0i 1 and producing output ... B(q~)~ 2 

B(q~)i ~, the machine is in state 

Si  1 = qA(7) i -~  -- A(q~) i -1  ~S .  

On the next input symbol B(~)~ the machine outputs B(q~)i and moves to state 

s i -  1 + qB(a)i --  B(q:~)i = qA(~) i -  a + qB(cOi - (A(qcOi 1 + B(qT)i) 

= q A ( ~ ) i -  A(q~)i 

=s i  ~S. 

The Mealy machine was constructed in such a way that the transition is possible. This 
shows that if the balanced representation B(c 0 is a sequence of input letters and B(q~) 

is over output letters, then B(e) and B(qe)  are in relation p(Mq). 

Mealy machine M2 in Fig. 2 is constructed in this fashion for multiplying by 2, 
using input symbols {0, 1} and output symbols {1, 2}. This means that B(:0 and B(2e) 
are in relation p(M2) for all real numbers c~ satisfying 0 ~< c~ 41  and 1 ~< 2e ~< 2, that is, 
for all 2 e [½, 1]. Similarly, M2/3 is constructed for input symbols {1, 2} and output 
symbols {0, 1, 2}, so that B(e) and B(2ct) are in relation p(M2/3) for all c~ ~ [1, 2]. 

Proposition 2. Ti le  set  T admits  uncountab ly  man), valid tilings o f  the plane. 

Proof. From the input sequence B(e) for any :~ ~ [½, 2], the Mealy machine M com- 
putes output B(2:0 if~ e [½, 1], and B(2c0 ifc~ e [1, 2]. The machine M may be applied 
again using the previous output as input, and this may be repeated arbitrarily many 
times. 

On the other hand, ire e [2, 2] there is input B(½~) or B ( ~ )  that is in relation p ( M )  

.<4 This can be >--4 and B(3e) is used ifc~ --:3. with B(e). Input sequence B(½e) is used if ~ ,/3, 
repeated arbitrarily many times, so M can be iterated also backwards. This shows that 
there are bi-infinite iterations of M on bi-infinite sequences B(e), ~ ~ [2, 2], which 
proves the proposition. [] 

Propositions 1 and 2 prove that T is aperiodic. 
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