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Abstract

This paper provides a framework for assessing and quantifying “clusteredness”
of a data representation. Clusteredness is a global univariate property defined as a
layout diverging from equidistance of points to the closest neighbouring point set.
The OPTICS algorithm encodes the global clusteredness as a pair of clusteredness-
representative distances and an algorithmic ordering. We use this to construct an
index for quantification of clusteredness, coined the OPTICS Cordillera, as the norm
of subsequent differences over the pair. We provide lower and upper bounds and
a normalization for the index. We show the index captures important aspects of
clusteredness such as cluster compactness, cluster separation and number of clusters
simultaneously. The index can be used as a goodness-of-clusteredness statistic, as a
function over a grid or to compare different representations. For illustration, we apply
our suggestion to dimensionality reduced 2D representations of Californian counties
with respect to 48 climate change related variables. Online supplementary material
is available (including an R package, the data and additional mathematical details).

Keywords: index, cluster analysis, dimensionality reduction, perception
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1 Introduction and Motivation

Representation of a data matrix in Rm is an integral part of exploratory data analysis.

Often the representation is interpreted by quantification of structure (e.g., by a correlation)

and/or by inspection of the visual appearance. One type of structure frequently of interest

is whether and how the data points are arranged in discrete groups (clusters). We call this

“clusteredness”.

Clusteredness is a somewhat elusive concept. It has been discussed to some extent in

the literature (e.g., in Greenacre, 2011), but its definition remains vague. Clusteredness

is often assessed visually from how clustered the points in a representation appear. This

process is unclear and intransparent, depending largely on the observer and precluding a

sensible, replicable quantification. It is also limited to (series of) representations in R2 or

R3.

For illustration and to motivate the paper, the last row of Figure 1 shows six different

2D scatterplots depicting the same data: a random subset of 100 cases of the handwritten

digits 1-4 from Alimoglu (1996) (dimensionality reduced). The representations clearly differ

in how clustered they appear.

We asked a diverse set of 24 subjects (see supplement) to rank order the plots according

to the perceived clusteredness of the results, solely instructing that all plots show exactly

the same data (including the same number of data points).The subject’s ranking patterns

are given as a parallel coordinate plot (jittered) in the top row of Figure 1.

The picture is striking: The 24 subjects made 20 different rankings. Clusteredness of

the plots is judged very differently—at most three subjects agreed on a common ranking.

There is little overall consensus and aggregation into a common ranking is not straightfor-

ward. Quantification of the degree of clusteredness of the representations was reported as

very difficult. It seems likely that the different rankings stem from the observers having

different implicit views of clusteredness and how to judge it. So, while the approach of

visually interpreting clusteredness data representations is common, it appears to be highly

subjective. The aim of this paper is to provide a clearly defined way to assess, quantify

and interpret the clusteredness of a data matrix in Rm.
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Figure 1: Parallel coordinate plot of ranking patterns of the 2D plots in the bottom row

with respect to the perceived clusteredness for n = 24 subjects. Jittering was applied to

points to improve readability.
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The paper is organized as follows: First, building upon the density-based clustering

concept underlying Ester et al. (1996) and its extensions, in Section 2 we define and for-

malize a density- and distance-based notion of clusteredness of a data representation as

a continuum of appearances of a representation with no clusteredness and maximal clus-

teredness as endpoints. Second, we discuss aspects of clusteredness relevant to determine

the position on the continuum. These aspects relate to (i) whether a specific number of

objects accumulate close by each other, (ii) how densely the objects accumulate, (iii) how

separated the accumulations are, (iv) the number of accumulations and (v) the spread

of objects in Rm. Third, in Section 3 we propose a univariate measure for quantifying

global clusteredness, the Cordillera, which assesses how much clusteredness one finds in a

data representation. It is based on a clusteredness-representative algorithmic ordering and

clusteredness-representative distances (“reachabilities”). We suggest a specific instance of

the Cordillera utilizing the OPTICS (Ordering Points To Identify The Clustering Structure;

Ankerst et al., 1999) algorithm for obtaining the algorithmic ordering and reachabilities,

which fits neatly into the distance-density based framework and has the properties of mak-

ing only weak assumptions about the object arrangement in the representation. We call

this instance the OPTICS Cordillera, and we give results on its behavior. In Section 4 we

illustrate the practical usage of our proposal on dimension reduction results of a data set

on climate change related natural hazards for Californian counties. We finish with some

final remarks in Section 6.

2 Clusteredness

In this section we describe and formalize a conceptual framework of clusteredness which

captures the accumulation tendency of objects based on the minimum number of objects

comprising an accumulation (k) and the density of objects within a radius up to εmax.

In Section 3 we use this framework to develop an index that quantifies a representation’s

clusteredness.

For notation, let x1, . . . , xN ∈ Rm. The x1, . . . , xN (points or objects) are row vectors of

the data representation as data matrix X. Let dij = d(xi, xj) denote a distance between the

observations xi and xj, most naturally induced by a norm; typically the p-norm distance
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dij = ||xi − xj||p with p ≥ 1.

2.1 Distance-density based Accumulations

We adopt the distance-density based concept of clusters suggested in Ester et al. (1996).

This concept builds in parts on ideas summarized in Jain and Dubes (1988). The under-

lying notion is that a cluster is an arbitrarily shaped accumulation of points with a given

density. Density is here related to a counting measure on the set of points for a given

ε-neighbourhood. Note that in this definition the shape of the neighbourhood depends on

the distance function chosen.

The density of points in an accumulation is assumed to be higher than the density of

points between accumulations. In essence, areas of high density define accumulations which

are separated by low density areas. Areas of noise may also exist; they are characterized

by a density that is lower then the density in any accumulation. An important part in this

concept is that the density in an area has to exceed a certain threshold, which means that

the accumulation must exceed a given number of points k. This k is the minimum number

of points that must comprise an accumulation (i.e., 2 ≤ k < N) and determines the density

threshold.

Let Nε(xi) = {xj : dij < ε} be the set of neighbouring objects to xi within a radius of

ε, including xi itself (ε-neighbourhood of xi). Subsequently we always include the point xi

when counting, so the 1-st nearest neighbour to point xi is point xi itself. Let Sk,ε(xi) be

the subset of Nε(xi) that contains the k−th nearest neighbouring point(s) to and including

xi, Sk,ε(xi) ⊆ Nε(xi). If card (Nε(xi)) < k, then Sk,ε(xi) = ∅. Let a point xj be called

directly density reachable from point xi if xj ∈ Nε(xi) and card (Nε(xi)) ≥ k; xi is then

called a core point. Further, let xj be called density reachable from point xi if there is a

chain of directly density reachable points from xi to xj. Let a point xj be called density

connected to xi if there is a point xk from which both xi and xj are density reachable. Then

we define an accumulation of points or objects as (cf. Ester et al., 1996):

Definition 1 (Accumulation). Given ε and k an accumulation is a (non-empty) set C of

6
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at least k objects satisfying

∀ xi, xj : If xi ∈ C and xj is density reachable from xi =⇒ xj ∈ C

∀ xi, xj ∈ C : xi and xj are density connected

Every object not in any accumulation is “noise”. A specific accumulation of k objects of

which xi is a member we denote by Ck,ε(xi).

An accumulation is therefore a set of density-connected points which is maximal with

respect to density reachability for given k, ε (the first part of Definition 1). An accumulation

is judged solely by the distances between the objects and the density of the objects in the

accumulation. The particular shape of the accumulations remains unspecified.

Definition 1 also means that for given k and ε any object is either an element of only

one accumulation or “noise”, which makes it a definition suitable for partitional clustering.

2.2 Distance-density based Clusteredness

We understand clusteredness as a unidimensional representation of the global clustering

structure. It is the global tendency of X to have points arranged in an unspecified number

of appreciable accumulations of size ≥ k. We are interested if and how accumulations are

present in X rather than the specific accumulations themselves.

An important part of clusteredness as a global property is that for given k but varying

ε, any object can be an element of many, possibly nested accumulations or is “noise”. Par-

ticularly, given k, every accumulation with respect to εl is a subset of an accumulation with

respect to εm if εm > εl. To capture the global clustering structure (overall clusteredness)

one needs to simultaneously characterize the presence of any number of accumulations for

all ε up to an εmax = sup ε. In some sense this is the hierarchical clustering extension of

the distance-density based partitional clustering idea from above.

The simultaneous characterization of the global clustering structure is typically not

encoded univariately but, say, in a dendrogram. A specific algorithm that gives such

an encoding in the framework reviewed above will be discussed in Section 3.1. We are

concerned with obtaining a sensible, unidimensional characterization of clusteredness from

7
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an encoding of the global distance-density based clustering structure. We first define the

unidimensional continuum of clusteredness.

The Clusteredness Continuum. We define clusteredness as the unidimensional contin-

uum representing the global distance-density based arrangement of the objects in X in

accumulations of size ≥ k for varying ε. The two possible extremes are no clusteredness

(“unclusteredness”) and maximal clusteredness. The degree of clusteredness of X is the

tendency of points in X to be arranged in accumulations, i.e., the divergence of X from an

unclusteredness layout, which is maximal for maximal clusteredness.

In this framework, unclusteredness is characterized by the situation that all points have

≥ k − 1 neighbours at a constant distance c. k = 2 gives the most extreme unclustered

layouts and a typical example is when all density-reachable points for ε = c fall onto a

regular tessellation or a lattice in Rm .

The extreme of a maximally clustered arrangement is when for the maximum possible

number of “groups” of points (i.e., the maximum possible number of accumulations plus

one optional group of points that are not in any accumulation), the k observations compris-

ing an accumulation coincide exactly (no distance to each other) and all the positions of

accumulations are at a constant distance dmax away from the closest neighbouring accumu-

lation(s) (dmax also being the minimum distance between any two points from two closest

neighbouring accumulations), so there is equidistance among the closest neighbouring ac-

cumulations.

We can state this more formally:

Definition 2 (No clusteredness). For given 2 ≤ k < N and (sufficiently large) εmax > 0 so

that Sk,εmax(xi) 6= ∅ ∀ xi, no clusteredness (“unclusteredness”) is given if there ∃ c, 0 < c <

∞, so that ∀ xi : d(xi, xj) = c if xj ∈ Sk,εmax(xi), xi 6= xj.

Definition 3 (Maximal clusteredness). For given 2 ≤ k < N and (sufficiently large)

εmax > 0, let n denote the maximum number of possible groups of objects that can be

formed for given k and N , comprising the number of the bN/kc accumulations and possibly

an additional group of N−bN/kck points that cannot form an accumulation, so n = dN/ke

groups. Maximal clusteredness is an arrangement with n = dN/ke groups where for all k

8

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

W
U

 V
ie

nn
a 

U
ni

ve
rs

ity
 L

ib
ra

ry
] 

at
 0

3:
26

 0
5 

Se
pt

em
be

r 
20

17
 



objects in an accumulation it means that xj ∈ Ck,εmax(xi)⇔ dij = 0 and there ∃ dmax > 0

so that ∀ i δ̃i := min{dit : dit > 0} = dmax.

The maximal number of groups coincides with the maximal number of accumulations

at N/k if N ≡ 0 (mod k). Otherwise we have an additional group of N − bN/kck objects

that cannot form an accumulation due to the restriction that there must be at least k

observations in an accumulation.

The observed degree of clusteredness for X lies on the continuum spanned by the two

extremes. To illustrate we use toy examples of 8 labeled data points (see Figure 2). Un-

clustered arrangements are illustrated in the first row. Maximal clusteredness is illustrated

in the bottom right plot where for N = 8 objects and k = 2 the maximum possible number

of groups is n = 4. In each of the four accumulations there are k = 2 objects coinciding

exactly and all four accumulations are equally far away from the closest accumulations.

In Figure 2 the plots in between the top row and the bottom right panel show different

positions on the continuum in increasingly clustered arrangements with N = 8 and k = 2;

note that the plot in the central panel shows two accumulations of four objects each which

with respect to k = 2 is less clustered than the subsequent plots in reading order. For k = 4

however this plot would be the most clustered of all.

The position on the continuum is related to aspects of the global clustering structure

that are all represented in clusteredness. Specifically, clusteredness increases if (i) distances

between accumulations increase (“emphasis aspect” or separation), (ii) objects accumulate

more densely (“density aspect” or cohesion or compactness), (iii) the number of accumula-

tions increase up to the maximal number (“tally aspect”).

We initially derived these aspects in discussion among the authors about desirable

properties that should be met for quantifying clusteredness in our framework. Subsequently

we found empirical support for the importance of these aspects also in cognitive interviews

conducted with subjects who ranked the plots from the introduction. The aspects turned

up as themes in the interviews and the plots were ranked according to those themes. This

is presented in more detail in the supplementary material.

Our concept of clusteredness is related but distinct from the concept of internal cluster

validity as measured for partitional clustering by, e.g., the Silhouette measure (Rousseeuw,

9
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Figure 2: Differently clustered 2D representations of N = 8 points. The top row shows cases

that are unclustered (Definition 2, OC ′ = 0). The definition of OC ′ is given in Section 3.

The second row shows little to moderately clustered arrangements as measured by the OC ′

with respect to clusters of at least k = 2 points, the bottom panel shows arrangement with

higher OC ′ with respect to k = 2. The bottom right plot is maximally clustered for k = 2

(Definition 3, OC ′ = 1). All plots show increasing OC ′ with respect to k = 2 in reading

order.
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1987), prediction strength (Tibshirani and Walther, 2005), the Theoretical Clustering Index

(TCI; Huang et al., 2015) and similar indices (see e.g., Liu et al., 2010, for an overview).

The main difference lies in the role a specific partitioning plays: In cluster validity, the task

is to assess how well a specific clustering represents the objects. For this, a clustering must

be found and each observation must be assigned to a cluster. In contrast, clusteredness

is a property of the global clustering structure of X and does not entail exclusive cluster

assignment of objects.

3 A Clusteredness Index: The OPTICS Cordillera

In this section we propose an index that allows to assess clusteredness as discussed in

Section 2. We call our proposal the “OPTICS Cordillera”. The index is bounded and

owing to the distance-density based framework applicable to a wide range of clustered

appearances.

In essence our proposal maps the global clustering structure of X encoded in a hierarchi-

cal clustering result to the unidimensional clusteredness continuum, numerically reflecting

the degree of clusteredness of X.

The encoding needs to comprise two things: First, a clusteredness-representative al-

gorithmic ordering R(X) = {x(s)}s=1,...,N which is an ordered set of the original points

xi, (i = 1, . . . , N). So x(1) is the xi at the first position in R(X). R(X) is obtained by a

mapping between the original points and the ordering, ρ : {1, . . . , N} → {1, . . . , N}, so

that s = ρ(i) and i = ρ−1(s). This allows us to refer to the position of point xi in the

ordering R(X) as xρ(i), or to the point xi in X for which x(s) = xρ(i) as xρ−1(s)
1. Second,

an equally-sized associated set of clusteredness-representative distances (“reachability dis-

tances” or “reachabilities”) r∗(s) = r∗ρ(i) = r∗i for each point x(s) = xρ(i) of xi. “Clusteredness-

representative”means that each accumulation in X is sequentially represented in R(X) and

that locally maximal r∗(s) in the sequence R(X) characterize separation between accumu-

lations whereas locally minimal r∗(s) in the sequence R(X) characterize compactness in an

accumulation. Together the pair (R(X), {r∗(s)}s=1,...,N) encodes the clusteredness structure

1The brackets around a subscript only singles out that it is located in the ordering, which we do not

need for ρ(i) as that is already the map to the ordering.
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in the representation in such a way that the order in R(X) and subsequent reachabilities

are representative of clusteredness as defined in the previous section, i.e, that sequentially

over the ordering R(X) it holds that if r∗(s) is small then xρ−1(s) and xρ−1(s−1) are close

together. If r∗(s) is large then xρ−1(s) is “far away” from xρ−1(s−1) and also from the other

predecessors xρ−1(s−t), t > 1.

The index, the Cordillera(R(X), {r∗(s)}; q) is the q-norm of the finite differences of the

r∗(s) over R(X). The name Cordillera comes from an analogy of the plot of reachabilities

over the ordering to a mountain range and that the index in a sense measures its raggedness.

Below we discuss how to obtain a concrete R(X) and {r∗(s)} that is compatible with the

distance-density based clusteredness framework and then define the Cordillera for that

instance. This instance we coin the OPTICS Cordillera (OC). Note that the Cordillera

could be analogously defined in a compatible clusteredness framework for other algorithms

yielding an (R(X), {r(s)}) pair, like CLUES (Wang et al., 2007) or OETICS (Forina et al.,

2004).

3.1 Algorithmic Ordering and Reachabilities by OPTICS

The Cordillera depends upon the clusteredness-representative algorithmic ordering or se-

riation R(X) and the set of clusteredness-representative distances r∗(s). For obtaining a

concrete clusteredness-representative ordering-reachability pair we use the OPTICS algo-

rithm (Ordering Points To Identify The Clustering Structure; Ankerst et al., 1999), a sorting

algorithm that outputs a linear ordering of objects where each object is associated with a

special distance. OPTICS has been developed within the distance-density based framework

we used for our clusteredness concept and thus naturally lends itself to substantiate the

Cordillera. A central goal that motivated our choice of framework and algorithm was to

be as inclusive as possible about the nature of accumulations: allowing for nested accu-

mulations, no need for specific accumulation assignment, no assumption about the exact

number of accumulations/observations per accumulation nor about the accumulation shape

(beyond the distance) and no reliance on a notion of centroid. The only assumptions we

make are that an accumulation must comprise at least k objects and that the objects are

density-connected (see Definition 1). OPTICS allows to do that.
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Subsequently, we go into detail about the OPTICS Cordillera and its properties. The

OC = 0 in case of unclusteredness of X as defined in Definition 2 and quantifies how close

X is to Definition 3 for given N, k, εmax and a maximum representative reachability dmax.

For k = 2 and OC = 0 implies unclusteredness. The OC is parsimonious with respect

to parametrization as only k needs to be specified at all times; it however has additional

optional parameters to control runtime and the definition of noise (εmax), “outlier” influence

(εmax, dmax) and aggregation of clusteredness aspects (q). We first briefly describe OPTICS

and then substantiate the OPTICS Cordillera. We then give lower and upper bounds for

it, and discuss properties of the index including its ability to capture the clusteredness

aspects.

The OPTICS Algorithm. We only paraphrase the OPTICS algorithm here. In OPTICS

two special pairwise distances between points for given k and εmax are defined (the defini-

tions can be found in Ankerst et al. (1999) or Appendix B): First, the “core distance” ci

which is the distance of a point xi to its k-th neighbour if Sk,εmax(xi) 6= ∅ and undefined

otherwise. Second, the “reachability distance” rij between two points xi and xj which is

max(dij, ci) if Sk,εmax(xi) 6= ∅ and again undefined if Sk,εmax(xi) = ∅. The parameter k is

mandatory but εmax is optional and can simply be set “very large” (e.g., max dij). Smaller

εmax improves runtime of OPTICS and tends to assign more objects as “noise”.

Based on these two distances the OPTICS algorithm orders the points to obtain R(X),

see Ankerst et al. (1999) or Algorithm 1 in Appendix B. It provides the mapping ρ, which is

not expressible in closed form. OPTICS’s principle is the following: A point gets visited and

the neighbours are recorded. Then its core distance is calculated (if defined, else the next

point is used). Then the directly density reachable neighbours get inserted into a priority

queue sorted by reachability distance to the closest core point. This queue is iteratively

updated for the reachability distance based on the εmax-neighbourhood of the point and

the neighbours in the queue. The queue gets processed so that the point with smallest

reachability distance is selected, its neighbours get recorded and the core distance gets

determined and the reachabilities are updated. If the current point is again a core point,

the above is repeated until no unprocessed points are left. Then the closest unprocessed

point is selected. During this process each point gets assigned the last updated reachability
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(“suitable reachability distance”) r̃i = r̃ρ(i). The OPTICS algorithm outputs the ordering

R(X) together with r̃i = r̃ρ(i).

It is so that if the suitable reachability r̃ρ(i) for xi is small then xρ−1(ρ(i)) and xρ−1(ρ(i)−1)

are close together. If it is large then xρ−1(ρ(i)) is far away from xρ−1(ρ(i)−1) and also from

xρ−1(ρ(i)−t), t > 1. Therefore, points that are subsequent in the ordering R(X) and have

small r̃ρ(i) correspond to accumulations in X, whereas points that are far removed from

each other in R(X) or have some large suitable reachability between them appear distant

in X.

In the Cordillera we use a winsorized version of r̃i, r
∗
i , that is always defined:

Definition 4 (Representative Reachability). Let R(X; k, εmax) be the OPTICS ordering of

X given k and εmax. The representative reachability distance r∗i for point xi is

r∗i = r∗ρ(i) =

min(r̃i, dmax) if r̃i 6= undefined

min(dmax,max{r̃i|r̃i 6= undefined}) otherwise
(1)

Here dmax is the winsorization limit of the maximum possible r∗i . No winsorization (i.e.,

dmax ≥ max r̃i over the defined r̃i) may make the index susceptible to outliers. Setting dmax

to a threshold below that will winsorize all r∗i larger than dmax to the value of dmax. Note

that dmax may winsorize the reachabilities for points in the same or in different accumu-

lations if it is set too low. A good value of winsorization is situational but conventionally

winsorization is often at the 90% or 95% quantile, which suggests dmax = 0.9 max{r̃i} or

dmax = 0.95 max{r̃i} for the defined r̃i.

3.2 The OPTICS Cordillera

We can now turn to give a concrete instance of the Cordillera applied to the pair (R(X), {r∗(s)})

where R(X) is the OPTICS ordering from Algorithm 1 and r∗(s) = r∗ρ(i) = r∗i for xi is the

representative reachability as defined in (1). The (absolute) OPTICS Cordillera (OC) is

then

OC(X; k, εmax, dmax, q) =

(
N∑
s=2

|r∗(s) − r∗(s−1)|q
)1/q

(2)

Loosely speaking, the Cordillera sequentially takes a function of a representative distance

between two accumulations and subtracts a function of representative distances within the
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two accumulations from it, which then gets aggregated; this trades off the accumulation

separation with the accumulation density in some way. In the OPTICS Cordillera the

representative distance within an accumulation is the minimum representative reachability

in an accumulation, the representative distance between two accumulations is their single

linkage distance and the points from which the representative within and between distances

are calculated are found by the OPTICS algorithm.

The usefulness of winsorization becomes apparent. OC aggregates the absolute repre-

sentative reachability differences over R(X). If there is a large difference in representative

reachability (say, due to outliers) the OC value will be high. If this representative reach-

ability is winsorized to dmax, the OC value will be equal or less. Note that dmax may also

winsorize the distance between accumulations or even distances within accumulations if it

is chosen too small. It should therefore be used sensibly only for making the OC robust

against large outlying r∗(s).

Upper and lower bounds for the OPTICS Cordillera. The OPTICS Cordillera in (2)

is bounded. The lower bound is 0. A non-trivial upper bound for the observed OPTICS

Cordillera in case of maximal clusteredness as a function of N and k can be derived.

Proposition 1 (Bounds of the OPTICS Cordillera.). For dmax > 0 we have

0 ≤ OC (X; k, εmax, dmax, q) ≤ OCmax (X, dmax, k, q; εmax)

with

OCmax (X, dmax, k, q; εmax) = q

√
dqmax

(⌈
N − 1

k

⌉
+

⌊
N − 1

k

⌋)
A proof can be found in Appendix A. The bound is sharp for n = N/k.

Normalization of the OPTICS Cordillera. We suggest to use Proposition 1 to normalize

(2) to lie between 0 and 1. The normalized OPTICS Cordillera, OC ′, is given by

OC ′(X; k, εmax, dmax, q) =
OC(X; k, εmax, dmax, q)

OCmax (X, dmax, k, q; εmax)

=

( ∑N
s=2 |r∗(s) − r∗(s−1)|q

dqmax

(⌈
N−1
k

⌉
+
⌊
N−1
k

⌋))1/q

. (3)
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From the denominator expression of (3) the choice of dmax influences the interpretation of

OC ′, see Section 3.2.

Illustration. Figure 3 illustrates the OPTICS Cordillera. In the right column we find the

OPTICS Cordillera and the plot of the clusteredness-representative ordering-reachability

pair for the representations in the left column. We use q = 1 here. The grey barplot shows

the r∗ρ(i) on the y-axis for the ordering R(X) of the xρ−1(ρ(i) on the x-axis. The OPTICS

Cordillera is proportional to the length of the black line (displayed up to a constant).

The longer this line is, the more clustered the representation is. The Cordillera reaches a

minimum if all points have equal r∗(s). The length of the bottom right absolute OPTICS

Cordillera is also the upper bound for maximal clusteredness for N = 4 and k = 2 (with

dmax = maxg maxi r
∗(g)
i , g = 1, . . . , 3).

Properties of the OPTICS Cordillera. The index in (2) has appealing properties for

measuring clusteredness.

First, the OPTICS Cordillera can be considered a non-parametric statistic as we define

an accumulation solely by the minimum number k of density-connected objects it comprises

(Definition 1). This frees the OC from making any stronger assumptions; it inherits from

OPTICS the property that the geometrical shape of the accumulations or distribution of

objects within the accumulation can be“arbitrary”beyond the effect the used distance mea-

sure may have (see Ester et al., 1996, for a discussion what constitutes an arbitrary shape in

this setting). Also, nested accumulations of varying density are considered simultaneously

(Ankerst et al., 1999).

Additionally, the OC has properties corresponding to the aspects of clusteredness (for

fixed meta-parameters) and is therefore suitable to quantify the concept from Section 2. We

only paraphrase the properties here; they are formalized and established in the document

in the supplementary material.

1. If the distances between the accumulations increase, the OC value does not decrease

and typically increases (“Emphasis property”).

2. A denser accumulation of objects around the object with minimal representative
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Figure 3: Differently clustered 2D representations of 8 points and their OPTICS Cordillera.

In the left column we find g = 1, . . . , 4 representations. The top left plot shows a case

of no clusteredness, the bottom left panel shows maximal clusteredness for N = 8 and

k = 2. The other two panels shows representations between these extremes. Clusteredness

increases from top to bottom. In the right column we find the corresponding OPTICS

reachability plots and with the black line an illustration of the derived clusteredness index,

the absolute OPTICS Cordillera (which is here proportional to the real value). The plots

are labeled with the numeric value for the normalized OPTICS Cordillera with individual

d
(g)
max = max{r∗(g)(s) }. It has been calculated with k = 2, ε = 2, q = 1.
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reachability will lead to a non-decreasing and typically increasing OC value (“Density

property”).

3. For an increase in the number of accumulations, the OC value does not decrease and

typically increases (“Tally property”).

4. For a norm induced metric and sufficiently large dmax, if X is radially expanded by a

factor |a| ≥ 1 and the expansion is not offset by change in cluster density, then the

OC value does not decrease and typically increases (“Spread property”).

It is important to note that these properties usually affect the OC simultaneously and

interdependently. Some properties can also work against each other. For example, the

spread property and the density property can work against each other as a change in the

spread of the points can lead to less dense accumulations and it is conceivable that the

decrease in density can offset the change induced by expansion. It is therefore difficult to

provide a general characterization of all possible ways the properties can work together in

the aggregation.

For local changes in X relating to only one property, however, we can give a rough

appraisal: The index can be viewed to comprise two things at once, (i) the aggregation

of the differences in representative reachability and (ii) the specific ordering of points by

OPTICS. For the effects on (ii) we refer to the original paper Ankerst et al. (1999) and

related publications. On the level of the aggregation and for a given ordering, the effect of

the properties on the numeric value of OC is governed by q. If q = 1 the combination is

additive and roughly linear (with an eventual cut-off effect of εmax or dmax). For example

(and all else equal), if the distance between two accumulations increases by |c1| the OC value

increases by |c1|. If the smallest representative reachability in an accumulation decreases by

|c2| the OC value increases by |c2|. If both change as described, then the OC value increases

by |c1| + |c2|. If an additional accumulation (with smallest representative reachability in

the cluster of c3) is placed at a distance of c4 from its closest neighbouring accumulation

(with smallest representative reachability in the accumulation of c5), then the OC value

increases by |(c4 − c5)| + |(c4 − c3)|. This assumes the new accumulation forms outside

the convex hull of the old accumulations, otherwise it is difficult to characterize the effect
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generally. If q > 1, the representative reachability differences get non-linearly transformed

and non-additively aggregated, see (2). On the scale of OCq(X) the aggregation is then

additive for the transformed differences. In general for q > 1 the differences are taken to

a power and thus larger differences have a higher influence, so more relative emphasis is

placed on emphasis, density and spread and relatively lower emphasis on the number of

accumulations.

Interpretation and Usage of the OPTICS Cordillera The Cordillera is the q−norm in the

vector space of differences in subsequent representative reachabilities over the clustering-

representative ordering. Interpretation can be guided by the fact that higher values en-

tail any combination of denser, more separated or more accumulations, or more spread

out points. Due to the nature of aggregating all of these properties into a unidimen-

sional statistic, the OC does not lend itself to the same detailed interpretation of the

overall clusteredness structure as the N−dimensional pair (R(X), {r∗(s)}) does. The OC

and ordering-reachabilities pair can be used in combination very much like the average

Silhouette (Rousseeuw, 1987) can be used together with the Silhouette plot.

The normalized Cordillera (3) uses as the upper bound the Cordillera value for the most

clustered appearance of the N points given k, dmax and all radii up to εmax to be in the

interval [0, 1], with 1 being the most clustered appearance if N/k ∈ N+. Accordingly, a

normalized OC value can be given the interpretation of a goodness-of-clusteredness statis-

tic, the amount of clusteredness achieved relative to the most clusteredness achievable for

a given dmax = maxi r
∗
i of a single representation. It also allows to normalize the index

so that one can meaningfully compare a series of representations X(1), . . . , X(G) with re-

spect to clusteredness if OCmax(X, dmax, k, q; εmax) is constant for all G results, e.g., set

dmax(X
(1), . . . , X(G)) = maxg maxi r

∗(g)
i for g = 1, . . . , G. In this case the ordering of the

Cordillera values entails an ordering of clusteredness. We show examples of these usages

in the next section. The third possibility is to set dmax to an a priori constant value, e.g.,

εmax or some other value above which winsorization takes place; then the interpretations

are analogous to the maximum allowed dmax. Both the absolute and normalized OC may

also be used for automation or as a criterion for optimization.

Another use is to apply the OC for one or more representations over a grid of hyperpa-
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rameters, particularly k and dmax but also different εmax (for defining noise regions). This

can help gain a rich understanding of the clusteredness of specific data representations for

different cluster definitions.2 We show an example of this in Table 1.

4 Application

To illustrate the usage of OC we look at a data set of 58 Californian counties for which

we have records on 48 observed and projected indicators for climate change related natural

hazards such as county averaged 95th percentile daily maximum temperature, projected av-

erage number of days where the daily maximum temperature exceeds the high-heat thresh-

old, percentage of a county’s census block area vulnerable to unimpeded coastal flooding,

projected annual actual evapotranspiration, projected annual baseflow, projected annual

wildfire risk, projected annual fractional moisture in the entire soil column and projected

annual precipitation. Projections were made based on the IPCC high emission scenario

(A2) and the moderate emission scenario (B1) (Nakicenovic and Swart, 2000) for years

from 2000 to 2099 by county. The data were compiled from Cooley et al. (2012), Califor-

nia Energy Commission (2008), Pacific Institute (2009). The data set is available in the

supplemental R package.

We subject the data set to six dimension reduction techniques for visualisation and

representation in two dimensions: PCA (e.g., Jolliffe, 2002), locally linear embedding (LLE;

Roweis and Saul, 2000), Sammon mapping (Sammon, 1969), Isomap (Tenenbaum et al.,

2000), Power-Stress MDS (POST-MDS; Buja et al., 2008, Groenen and De Leeuw, 2010)

and t-SNE (van der Maaten and Hinton, 2008) and explore the clusteredness structure in

these results.

We are particularly interested in clusters of at least three counties. For Isomap and

LLE we used 3 as the parameter for the neighbourhoods, POST-MDS was fitted with

κ = 1.7, λ = 4, ν = 1. Perplexity for t-SNE was 3. The points obtained from LLE were

slightly jittered for readability.

Figure 4 shows the plots from left to right in descending order based on the OC ′ value.

2This is similar to how the K and L functions (Ripley, 1976) for detecting deviations from spatial

homogeneity are used for different radii.
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In the bottom row are the corresponding reachability plots (grey bars) with an illustration

of the OPTICS Cordillera (black line) as well as the OC and OC ′ values for k = 3, εmax = 10

and q = 2 shown. For all situations dmax = 1.22 (the largest representative reachability for

the PCA result). The OCmax is 56.559.

The highest clusteredness we find for the LLE result with its four extremely dense,

spherical accumulations of at least three objects and one less dense accumulation of three

points (OC = 2.592, OC ′ = 0.345).

The next clustered result is obtained for t-SNE (OC = 4.488, OC ′ = 0.236) with a

higher number of appreciable accumulations of at least 3 points. While the number of

accumulations is higher, the accumulations are less dense (illustrated by the less deep

valleys in the OPTICS reachability plot) than for the LLE result—with q = 2 the density

and emphasis aspects get higher relative weight in the OC than the tally aspect leading to

this ranking. Note that there are some clusters here that are not spherical but linear - the

Cordillera picks them up nonetheless.

Isomap leads to the third clustered representation (OC = 1.202, OC ′ = 0.160). The

Isomap representation shows “bridges” between accumulations and thus lower separation of

clusters. This is reflected by the comparatively small peaks in the reachability plot. When

the reachability plot is cut at the level of 0.4, OPTICS suggests five clusters, including a

half moon shape in the middle right (the first valley in the reachability plot) and the four

“arms” (last four valleys). Again, this is picked up in the OC value even though the shapes

are different. Also note that there are two clusters nested within the half moon shape for

smaller ε. The OC also measures these valleys fully, so picks the nesting up as well (i.e.,

the OC is higher as compared to a single valley at this εmax).

The PCA result is next, being considered less clustered than the Isomap result according

to the Cordillera (OC = 1.177, OC ′ = 0.157). This is mainly because the accumulations

are less dense then in the previous results.

Next is the POST-MDS result (OC = 1.132, OC ′ = 0.151), which can largely be

explained by less separation between groups of three points, also illustrated by the small

peaks in the reachability plot. The POST-MDS result illustrates the effect of winsorizing to

dmax. In the 2D plot of the POST-MDS we can identify two large outliers at 0.4,−4.5 (San
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Francisco) and −4.3, 1.1 (Del Norte). With k = 3 their suitable reachabilities are > 2, more

than twice the largest suitable reachability of all other points 0.97. With setting dmax = 1.22

for the OC, we winsorize these two suitable reachabilities to representative reachabilities

of 1.22 reducing OC from 5.63 to 1.28. Not winsorizing the suitable reachabilities leads to

a higher OC value of the POST-MDS result over, say, the PCA result simply because of

these two outliers and their large suitable reachabilities.

The least clustered result is obtained by Sammon mapping (OC = 1.049, OC ′ = 0.140).

While being similar to the PCA result with respect to accumulation number and accumu-

lation separation, Sammon mapping produces a configuration that shows little density in

the accumulations. The core distances with k = 3 are rather large as can be seen in the

reachability plot and thus the valleys are not very deep. This reduces the OC value.

The ranking obtained by the OPTICS Cordillera is therefore LLE, t-SNE, Isomap, PCA,

POST-MDS and Sammon mapping. The two most clustered results are given with county

labels in Figure 5.

Similar to the teaser in the motivation section, we asked 37 subjects to rank order the

plots in Figure 4 by perceived clusteredness. A parallel coordinates plot of the rankings is

given in Figure 6. The human rankings are displayed with grey lines, the ranking obtained

by OC with q = 1 (dashed) and q = 2 (dotted) in black. The ordinate is ordered according

to the consensus ranking (maximum τX = 0.773; Emond and Mason, 2002) of the human

judges.

The rankings are variable but less so then in Figure 1. For q = 2 the consensus ranking

is largely reflected in the OC—only swapping POST-MDS with PCA. Regarding the latter,

POST-MDS had the highest variability in ranks of human judges and when looking at the

values of OC ′, PCA and POST-MDS are numerically rather close. This suggests that for

human observers as well as the OC, the two are similarly clustered. One reason for the

discrepancy between OC and consensus ranking may be that we used k = 3 with the OC,

whereas the human judges implicitly used varying k > 2. Another may be that dmax is set

too low so the higher spread and the outlier in POST-MDS bias its OC value downwards,

indicated by PCA having lower OC value than POST-MDS when dmax > 1.3.

Note that the judges were divided on whether LLE or t-SNE produces the most clustered
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Figure 5: The two most clustered results with county labels.
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Figure 6: Parallel coordinate plot of rankings (jittered for readability) of 37 subjects of

the results in 4 with respect to perceived clusteredness (grey) and the ranking obtained

with OC for q=1 (dashed black line) and q=2 (dotted black line). The order on the x-axis

reflects the consensus ranking of the human judges.
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representation. This can be explained by observing the OC behavior for different q. With

q = 2, LLE is considered more clustered than t-SNE by OC, but with q = 1 they swap

places. This can be attributed to a different weighting of the importance of the properties.

With q = 2 the density and emphasis properties have relatively more weight than the tally

property. These two properties have been named the most important aspects by those who

chose LLE over t-SNE. With q = 1 the larger number of accumulations has more weight—

which has been named as an important aspect by most people who chose t-SNE over LLE

(but not so much the other way round, see supplementary document). The differences of

the rankings obtained by OC when changing q mirrors these two groups of judges.

The choice of meta-parameters can influence the numeric value of OC. This may be

used to characterize clusteredness for a grid of hyperparameters. To illustrate these effects,

Table 1 lists values for the OC for different parameters k, εmax, dmax and q = 1, 2 for the

data representations in Figure 4.

For instance, εmax is the radius in which to search for neighbours and would be set to

a small value only in a very noisy setting (last two rows). When setting it to 0.5 for our

examples we naturally find a large reduction in the OC values throughout. In this situation

the LLE solution is identified as the most clustered when accumulations must comprise at

least k = 3 points and POST-MDS when accumulations must comprise at least k = 10

points.

For a setting where all points are considered as possible neighbours and we do not

treat observations as possible noise (εmax any large value, here 10), the first four rows of

Table 1 list the OC and OC ′ values for different k and q. We see that LLE produces the

most clustered results for k ≥ 3 and q = 2. For q = 1, k = 3 t-SNE is more clustered

which is due to LLE showing 3-4 very dense accumulations whereas t-SNE shows more

accumulations. In general, if q or k is reduced, OC will tend to favor representations that

show more accumulations.

The dmax parameter can be used to lessen the effect of outliers and make OC ′ more

robust by winsorizing r∗(s) (rows 6 and 7 in Table 1). POST-MDS produces a number of

more outlying points than, for example, the Sammon mapping. When using dmax = 2.5

these outliers get more or less full bearing in the normalization and the OC gets larger
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for POST-MDS. When dmax = 0.5 all representative reachabilities even those between

accumulations that are larger are cut at 0.5, effectively reducing the relative clusteredness

of POST-MDS.

Lastly, one can use the Cordillera as a goodness-of-clusteredness measure relative to

the largest representative reachability between any two points of the same representation.

In this case an individual dmax for each representation is used, which makes the OC in-

comparable for different representations. In Table 1 these are the rows 8–9. Here Sammon

mapping and POST-MDS are the farthest away from being maximally clustered relative to

the largest representative reachability attainable. For k = 3 it is t-SNE and for k = 10 the

POST-MDS result comes closest to the maximal clusteredness possible given the highest

observed representative reachability (the latter again due to the outliers).

5 Software

All computing was carried out in R (R Core Team, 2014); the package cordillera accompa-

nying this paper is described in the supplementary material. Further packages used were

base (for PCA), lle (Diedrich and Abel, 2012, for LLE), stops (Rusch et al., 2015, for POST-

MDS), MASS (Venables and Ripley, 2002, for Sammon Mapping), vegan (Oksanen et al.,

2016, for Isomap) and tsne (Donaldson, 2016, for t-SNE). The plots were created by base

graphics or with ggplot2 (Wickham, 2009) in combination with ggrepel (Slowikowski, 2016)

and plotrix (Lemon, 2006) for the ladderplots.

6 Conclusion and Discussion

For representations of data matrices the question of whether and how clusters of observa-

tions form and how well these clusters of observations are visible is often of high interest

in data analysis. To be able to do this demands that the appearance is somehow clustered,

i.e., there are some appreciable accumulations of observations. In low dimensions this is

often assessed by visual interpretation. We observed that the judgement of what makes

such a result appear clustered hinges on implicit assumptions which can be very different

for different observers. Therefore, the assessment of the clusteredness ultimately lies in
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the eyes of the beholder. If the representation is given for a higher number of dimensions,

the possibility of visualization is severely limited and judging clusteredness is even more

difficult.

To make the assessment of a clustered appearance more transparent and reproducible,

in this paper we introduced and defined clusteredness in a distance-density based frame-

work as a continuum of appearances between no clusteredness and maximal clusteredness,

characterized by a number of aspects used to assess how clustered such results appear

including that clusteredness increases when the objects accumulate closer together, the

distances between accumulations increases and the number of accumulations increases for

a given minimum number of objects in a cluster.

For this operational definition of clusteredness we suggested an index that quantifies

clusteredness. This index, the OPTICS Cordillera, is appealing for measuring clusteredness

in data representations within a density-distance based framework. It makes weak assump-

tions on the nature of a cluster including no assumptions on cluster number, cluster shapes,

cluster centroids and does not rely on a cluster assignment of observations. Furthermore,

the index adheres to the aspects of clusteredness. The index is parsimonious with the

number of mandatory parameters but also includes optional parameters that allow to tune

the index to different needs including making the index robust to noise points and outliers

or weighting the aspects of clusteredness differently. We derived bounds for the index and

use them to normalize the index.

For a single data representation, the index can be used as a descriptive goodness-of-

clusteredness statistic, e.g., to assess and quantify how close the result is to displaying no

clusteredness or maximal clusteredness, or to assess the change of clusteredness relative

to different cluster sizes or cluster density specifications. For a series of representations,

the index can be used to compare them with respect to their clustered appearance. For a

grid of hyperparameters the index can be used to characterize a data representation with

respect to clusteredness as a function of minimum number of points in a cluster, different

neighbourhood radii or maximum distances. The OPTICS Cordillera may also be used in

augmenting loss functions for different methods that inherently need or produce a clustering

or classification structure or for hyperparameter selection.
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We note that the Cordillera measure and the presented ideas can be extended beyond

the ordering obtained with OPTICS, say, to an ordering derived from a minimum spanning

tree (Forina et al., 2004). The Cordillera would then simply be measuring the length over

another clusteredness-representative ordering-distances pair and allow to capture clustered-

ness in a different clusteredness framework analogously.

The OC also has its limitations. It was developed for use in exploratory settings and

in conjunction with hierarchical, unsupervised procedures. Particularly with partitional

clustering, when a decision on what the actual clusters are has to be made or when cluster

labels are available, internal cluster validity indices are usually more appropriate. We see

our index only as complementary in this case; it may be used to gauge prior to running a

clustering algorithm if a density based clustering will lead to a useful result. Furthermore

the OC is meant to be interpreted and tuned relative to the situation at hand.

The OPTICS Cordillera is a versatile, flexible index to gauge the structure of clustered-

ness which might be of interest in many contexts where the tendency of point vectors to

accumulate in some space should be assessed. Such cases could be astronomy, where one

would want to assess the arrangement of stars in galaxies, or in neuroscience, where it might

be of interest to find out how the activation pattern of neurons in a brain is represented

for different tasks.

A Appendix A: Proof

Proof of Proposition 1 (Bounds for the OPTICS Cordillera). Proposition 1 can be shown

by establishing the upper and lower bound ofOC(X; εmax, dmax, k, q) for a given εmax, dmaxk, q,

so OC(X).

For the lower bound observe that OC(X) ≥ 0 as OC(X) is a sum of non-negative,

|r∗ρ(i) − r∗ρ(i)−1| so the left hand side in Proposition 1 follows.

For the upper bound, we first look at the q−th power of OC(X), OC(X)q which is

additive in |r∗ρ(i) − r∗ρ(i)−1|q. We use the arrangement described by Definition 3. From the

OPTICS algorithm there is a distinct seesaw pattern connected with Definition 3 after

applying Algorithm 1. The result is the pair (R(X), {r∗ρ(i)}) stemming from the determin-

istic Algorithm 1 which can be characterized in the following way (if Definition 3 applies):
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For points xi, xj in the same accumulation, rij = ci = cj = 0. When the xj get ordered

sequentially as in OPTICS, there are for all xj ∈ C(xi) then (k−1)×r̃ρ(j) = r∗ρ(j) = 0 as rep-

resentative reachabilities of xρ(j). After all points in an accumulation have been processed,

the algorithm turns to a point from the closest neighbouring accumulation. For points xi

and xl in neighbouring accumulations ril = dmax and thus r∗ρ(l) = dmax. Since all points in

a cluster again get processed sequentially by OPTICS the whole process repeats. The first

single linkage reachability r̃(1) is undefined, so we set r∗(1) = dmax, see (1). The ordering thus

consists of a repeating pattern of r∗(s) = dmax signalling the beginning of an accumulation,

followed by (k − 1) × 0, so r∗(s+1), ..., r
∗
(s+l−1) = 0 for points xρ−1(s), . . . , xρ−1(s+l−1) in the

same accumulation; this then gets repeated with the closest neighbouring accumulation,

so we have r∗(s+l) = dmax for xρ−1(s+l) in the closest neighbouring cluster and then again

r∗(s+l+1), ..., r
∗
(s+2l−1) = 0. This pattern of one dmax and (k− 1)× 0 repeats as often as there

can accumulations of size k be formed.

Note that this pattern is direct consequence from applying OPTICS to Definition 3 and

is unique only up to permutations of accumulations in R(X) or permutations of points for

a given accumulation in R(X). The OC however is invariant to these permutations.

For the differences of |r∗(s) − r∗(s−1)| to be maximal we must have either |dmax − 0| or

|0−dmax|. Under Definition 3 this can happen only for observations between accumulations;

within an accumulation this difference is 0. We thus need to count the maximum possible

number, o, of accumulations of k−1 points with r∗ρ(j) = 0 as for each of these accumulations

there must be at most two jumps from and to an observation xl with r∗ρ(l) > 0. Because of

the additivity of the elements of OC(X)q, in the maximally clustered case this must satisfy

N ≤ o(k − 1) + t

o ≤ t ≤ o+ 1

with t being the number of points with r∗ρ(l) > 0. Substituting the second equality into the

first leads after algebraic manipulation to

N − 1

k
≤ o

If OPTICS cannot order the points for these identity to hold exactly, then the above identity
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is an upper bound. Since o must be integer this means the next closest o fulfilling this is

o =

⌈
N − 1

k

⌉
This means the number of jumps in the reachability plot from a group of observations with

r∗ρ(j) = 0 to r∗ρ(l) > 0 or back is at most

2

⌈
N − 1

k

⌉
and since the maximum possible length of the jump is dqmax, with maximal clusteredness

we have

OC(X)q ≤ dqmax2

⌈
N − 1

k

⌉
This bound can be improved for the case where the last group has no last jump anymore

by subtracting a single dqmax. This means therefore

OC(X)q ≤ dqmax

(⌈
N − 1

k

⌉
+

⌊
N − 1

k

⌋)
Taking the q−th principal root of the above identity leads to

OC(X) ≤ q

√
dqmax

(⌈
N − 1

k

⌉
+

⌊
N − 1

k

⌋)

B Appendix B: The OPTICS Algorithm

OPTICS defines two distances:

Definition 5 (Core Distance). The core distance ci is the distance of a vector xi to the

k−th closest points

ci = c(xi; k, εmax) =

max(dij) : j ∈ Sk,εmax(xi) if Sk,εmax(xi) 6= ∅

undefined if card (Nεmax(xi)) < k
(4)

Definition 6 (Reachability Distance). The reachability distance rij between two points xi

and xj is the maximum of dij or ci, so

rij = r(xi, xj; k, εmax) =

max (ci, dij) if Sk,εmax(xi) 6= ∅

undefined if card (Nεmax(xi)) < k
(5)
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Figure 7: Two-dimensional illustration of the distances ci and rij used in OPTICS . The

parameters are k = 3 and ε = 0.82. We use point x9 as the reference. The region around

x9 in which to look for neighbours is defined by εmax and is illustrated by the dotted circle.

The core distance of x9, c9 is the distance to the k−th closest point including x9 (x3). The

core distance is roughly 0.34 (dashed line). The core region around x9 is illustrated by

the dashed circle. The reachability distance between x9 and any other point xj, r9j, is the

maximum of core distance or direct distance or is undefined if the point falls beyond the

εmax radius. The illustrated as solid lines for a few examples, r93 = c9, r97 = c9, r96 = d96,

r95 = d95 and r94 = undefined.
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A graphical representation of these distances is shown in Figure 7. The parameters are

k = 3 and εmax = 0.82, x9 is the reference point. The region around x9 in which to look for

neighbours is defined by εmax, the dotted circle. The core distance of x9, c9, is the distance

to the k−th closest point (including x9) which is point x3. The core distance is roughly

0.34, the length of the dashed line. It is also r∗9. At k = 3 and εmax ≥ c9 all points including

x9 within the distance c9 around x9 are core points and are directly density reachable from

x9. The core region around x9 is illustrated by the dashed circle. The set of these points is

S3,εmax(x9) = {9, 7, 3} and the core distance is the maximum distance to any of the points

in S3,εmax(x9).

The reachability distance between x9 and any other point xj, r9j, is the maximum of

core distance of x9 or direct distance of d9j or is undefined if the point falls beyond the εmax

radius. This is illustrated as the length of the solid lines for a few examples. For example

for r97 it is max(c9, d97) which is c9, for r96 it is max(c9, d96) which is d96 and for r94 it is

undefined as x4 is more than εmax = 0.8 distant from x9. This illustrates the function and

optionality of εmax: Any εmax will contain the defined distances of any smaller ε (i.e., denser

accumulation) which enables the simultaneous characterization of many accumulations with

different densities between objects up to εmax. Thus, εmax needs not necessarily be set but

can be just large. Setting εmax will lead to treating points further away as noise instead of

a neighbour (here, x8 and x4).

The algorithm is then:
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Algorithm 1 A pseudo code representation of the main OPTICS algorithm (upper part)

and the update function (after Ankerst et al. (1999) and Wikipedia (2015)).
OPTICS(Data, epsilon, k)

empty ordered list

FOR i FROM 1 to N of Data

x=x_i

IF (processed(x) == FALSE)

S = neighbors(x, epsilon)

set x as processed

x.reachability-distance = UNDEFINED

x.core-distance = core-distance(S,epsilon,k)

output x to ordered list

IF (x.core-distance != UNDEFINED)

OrderSeeds = empty priority queue

update(OrderSeeds, S, x)

WHILE (empty(OrderSeeds)==FALSE) DO

y = next(OrderSeeds)

S'= neighbors(y, epsilon)

set y as processed

y.core-distance = core-distance(S',epsilon,k)

output y to the ordered list

IF (core-distance(y, epsilon, k) != UNDEFINED)

update(OrderSeeds, S',y)

END

update(OrderSeeds, S, x)

coredist = x.core-distance

FOR EACH y IN S

IF (processed(y) == FALSE)

new-reach-dist = max(coredist, distance(x,y))

IF (y.reachability-distance == UNDEFINED)

y.reachability-distance = new-reach-dist //y not in OrderSeeds

insert(OrderSeeds, y, new-reach-dist)

ELSE // y is in OrderSeeds, check for improvement

IF (new-reach-dist < y.reachability-distance)

y.reachability-distance = new-reach-dist

moveup(OrderSeeds, y, new-reach-dist)

END
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SUPPLEMENTARY MATERIAL

Supplementary Document: A supplement with the results from the qualitative study

on clusteredness perception and with details and proofs of the clusteredness properties

of the OPTICS Cordillera. (cordillera-supplement.pdf, PDF file)

R Package: R-package cordillera containing an implementation of the OPTICS Cordillera

described in the article. The package also contains all data sets used as examples in

the article. (cordillera_0.6-0.tar.gz, GNU zipped tar file)

R Script: A file to reproduce the results, tables and figures of the paper. (cordillera-

script.R, text file)

README: A README file. (README, text file)

All supplemental files are contained in a single archive. (cordillera-supplement.zip,

ZIP file)
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