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Summary 

 

1. A safe, clean water supply is critical for sustaining many important ecosystem services 

provided by freshwaters.  The development of cyanobacterial blooms in lakes and 

reservoirs has a major impact on the provision of these services, particularly limiting their 

use for recreation and water supply for drinking and spray irrigation.  Nutrient enrichment 

is thought to be the most important pressure responsible for the widespread increase in 

cyanobacterial blooms in recent decades.  Quantifying how nutrients limit cyanobacterial 

abundance in lakes is, therefore, a key need for setting robust targets for the management 

of freshwaters. 

 

2. Using a dataset from over 800 European lakes, we highlight the use of quantile regression 

modelling for understanding the maximum potential capacity of cyanobacteria in relation 

to total phosphorus (TP) and the use of a range of quantile responses, alongside World 

Health Organisation (WHO) health alert thresholds for recreational waters, for setting 

robust phosphorus targets for lake management in relation to water use. 

 

3. The analysis shows that cyanobacteria exhibit a non-linear response to phosphorus with 

the sharpest increase in cyanobacterial abundance occurring in the TP range from about 20 

µg L
-1

 up to about 100 µg L
-1

. 

 

4. The likelihood of exceeding the World Health Organisation (WHO) ‘low health alert’ 

threshold increases from about 5% exceedance at 16 µg L
-1

 to 40% exceedance at 54 µg 

L
-1

.  About 50% of the studied lakes remain below this WHO health alert threshold, 

irrespective of high summer TP concentrations, highlighting the importance of other 

factors affecting cyanobacteria population growth and loss processes, such as high 

flushing rate. 

 

5. Synthesis and applications. Developing a more quantitative understanding of the effect of 

nutrients on cyanobacterial abundance in freshwater lakes provides important knowledge 

for restoring and sustaining a safe, clean water supply for multiple uses. Our models can 

be used to set nutrient targets to sustain recreational services and provide different levels 

of precaution that can be chosen dependent on the importance of the service provision. 

 

Keywords:  algal bloom, blue-green algae, ecosystem services, freshwater, lake, nutrient, 

quantile regression, WHO 
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Introduction 

Currently there is much political drive to quantify ecosystem services provided by freshwaters 

(Millennium Ecosystem Assessment 2005) although there is still a great deal of debate as to 

what primary data can best be used to map the provision and quality of services (Eigenbrod et 

al. 2010).  In this respect, for freshwaters, a safe, clean water supply is a critical need.  

Cyanobacteria, specifically the toxins they produce, represent one of the most hazardous 

waterborne biological substances that produce a range of adverse health effects from mild 

skin irritations to severe stomach upsets and even fatal consequences (Codd et al. 2005).  The 

widespread development of large cyanobacterial populations, or blooms, in lakes and 

reservoirs, therefore, has a major impact on the provision of many ecosystem services, 

particularly limiting their use for recreational activities in and around freshwaters (WHO 

2003) and water supply for drinking and spray irrigation (WHO 2004).  A diverse array of 

cyanotoxins is produced with differing impacts on health (Codd et al. 2005). The 

concentration of particular toxins is dependent on both the species or strain of cyanobacteria 

present, and the environmental conditions (Dolman et al. 2012).  Currently many cyanotoxins 

are not routinely measured, so the majority of assessments of health risks associated with 

cyanobacterial blooms in lakes and reservoirs are based on the abundance of cyanobacteria as 

cell densities or biovolume, rather than cyanotoxin concentrations (WHO 1999; 2003; 2004). 

Their abundance can, therefore, be used as a direct indicator of the ‘functional quality’ of 

freshwater services. 

 

There is strong evidence that the development of cyanobacterial blooms has been increasing 

in recent decades (Smith 2003) and this is widely believed to be primarily due to nutrient 

enrichment, especially phosphorus (Downing, Watson & McCauley 2001; Schindler et al. 

2008), but also in response to warmer and drier summer conditions (Paerl & Huisman 2009; 

Weyhenmeyer et al. 2002) and more stable stratification (Wagner & Adrian 2009).  Nutrient 

concentrations in the water, often phosphorus, set the capacity for cyanobacteria standing 

crops and are probably the most manageable pressure affecting their abundance (Schindler et 

al. 2008).  Developing a more quantitative understanding of the effect of nutrients on 

cyanobacterial capacity within freshwaters would, therefore, provide important knowledge for 

restoring and sustaining a safe, clean water supply.  Having clear management targets for 

nutrients to limit cyanobacteria could also support mitigation strategies in relation to the less 

manageable pressure of climate change. 

 

There is a vast amount of quantitative empirical evidence demonstrating increasing 

phytoplankton abundance under increasing nutrient concentrations, with particularly strong 

relationships with total phosphorus (Dillon & Rigler 1974; OECD 1982; Phillips et al. 2008).  

There are also a few studies examining more specifically, the relative (%) abundance of 

cyanobacteria in relation to nutrients (Downing, Watson & McCauley 2001; Ptacnik et al. 

2008; Wagner & Adrian 2009).  There are, however, far fewer extensive empirical studies 

quantifying the actual abundance of cyanobacteria in relation to nutrients, despite this being 

directly relevant to water use.  Most studies of actual abundance are of individual or small 

groups of lakes (Mischke 2003; Nõges et al. 2008), although Carvalho et al. (2011), De 

Hoyos, Negro & Aldasoro (2004) and Dolman et al. (2012) examined cyanobacteria 

abundance in relation to nutrients in about 150 UK lakes, 47 Spanish reservoirs and 100 

German lakes respectively.  In this paper, we analyse the actual abundance of cyanobacteria 

from a dataset of over 1500 European lakes, substantially larger than any other analysis 

reported in the literature.  With this dataset we are able to provide robust quantification of the 

abundance of cyanobacteria in relation to total phosphorus (TP) concentrations.  In particular, 

we highlight the novel use of quantile regression modelling for understanding the maximum 
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potential capacity, or upper quantile response, of cyanobacteria in relation to phosphorus and 

the use of a range of quantile responses, alongside the World Health Organisation (WHO) 

cyanobacteria thresholds for recreational waters (WHO 2003), for setting robust phosphorus 

targets for lake management in relation to water use. The focus on phosphorus is because 

phytoplankton, and specifically cyanobacteria, appear to be more strongly related to total 

phosphorus concentrations, rather than total nitrogen (Phillips et al. 2008; Carvalho et al. 

2011).  For this reason, total phosphorus is the most widely targeted nutrient for management 

of eutrophication and particularly for minimising algal blooms. 

 

 

Materials and Methods 

Data 

The EC Water Framework Directive has enabled the collation of large biological datasets 

following standard sampling and counting methodologies. As part of the EC WISER Project 

(http://www.wiser.eu/), phytoplankton composition data were collated from >1500 lakes 

spanning 4 European biogeographical regions and 16 countries (Table 1 and Appendix S1 in 

Supporting Information) (Moe et al. 2012). The bulk of the data were from low and medium 

alkalinity lakes in Northern Europe (855 lakes) and high alkalinity lakes in Central-European 

or Baltic countries (599 lakes) (Table 1).  Both cyanobacterial abundance (biovolume) and 

nutrient data were summarised as a summer mean using data spanning the months July, 

August and September. For each lake, only the last year of available data was used in the 

analysis to avoid bias of lakes with many years of data.  Samples for phytoplankton and TP 

were predominantly collected by integrated tube samples from the middle of the lake.  

Phytoplankton samples were counted after preservation with Lugol’s iodine solution.  In 

general, 400 counting units were measured across magnifications usually using a combination 

of low magnification full-chamber counts, intermediate magnification transects and high 

magnification fields of view.  Counts and biovolume estimates of cells, colonies and filaments 

broadly followed the Utermöhl approach outlined by CEN (2004). TP analysis was carried out 

by spectrometric determination using ammonium molybdate (ISO 2004) 

 

Statistical Analysis 

The majority of biological response modelling approaches in current use [e.g. simple linear 

least squares regression, generalized linear models (GLM) or generalized additive modelling 

(GAM)] are based on the estimation of mean or median responses to environmental factors. 

One method which models the relationship of variables at different levels of a distribution is 

quantile regression (Koenker & Bassett 1978).  Quantiles can be estimated and can be used to 

identify relationships that least squares regression of mean responses may not effectively 

represent.  In this study we used quantile regression to model responses of cyanobacterial 

abundance (actual biovolume) against TP concentrations.  A number of percentile 

cyanobacterial responses were modelled, 10%, 25%, the median (50%), 75%, 90% and 95%. 

Modelling high quantiles, such as the 95%, may better represent the maximum capacity of 

cyanobacteria for a given TP concentration in comparison with lower quantiles.  Linear and 

non-linear parametric, and non-parametric quantile regression were all applied to the data in R 

(R Development Core Team 2010), using routines available in the quantreg package 

(Koenker 2009).  Non-parametric quantile regression was applied using the function rqss in 

the quantreg package which fits a smoothing spline using a roughness penalty term.  The 

parametric non-linear quantile regression models are described further below.  Simple linear 

regression and GAMs of the mean response (Wood 2006; 2008) were also examined for 

http://www.wiser.eu/
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comparison with the quantile models.  Cubic regression splines were used as the type of 

smooth function.  The GAM was fitted using a normal distribution and an identity link 

function.  

 

Non-parametric regression models are based on rank differences and, therefore, cannot, be 

used to describe or visualise the relationship and do not enable predictions from model 

equations.  Therefore, parametric, non-linear quantile regression was applied to the datasets to 

enable this using the interior point algorithm for finding the best fitting model solution 

(Koenker & Park 1994)  For the significant quantiles, the following 3-parameter asymptotic  

exponential equation was generally used: 

 

Log10(Cyanobacteria biovolume +1) = a/(1+b*exp(-c*Log10(TP)))  

 

Where, a = cyanobacteria biovolume where the fitted curve begins to reach a maximum 

 b = a - position on the y-axis where the convex curve starts 

 c = position of x-axis where the initial change in slope occurs i.e where the concave 

curve starts. 

 

For the 25% quantile model, a 2-parameter asymptotic exponential model was fitted to the 

data: 

Log10(Cyanobacteria biovolume+1) = (a * exp(b * log10(TP))) 

 

Where a is the intercept of the line and b is the slope of the line. 

 

Akaike's information criterion (AIC) values for the linear and the non-parametric quantile 

regression models were used to compare the different quantile model fits to the data to 

distinguish the best models for prediction purposes; the model having the lowest AIC being 

the best.  For parametric non-linear quantile regression, AIC values cannot be calculated for 

each quantile, therefore, deviance is reported as a measure of goodness of fit. For a 

continuous variable, such as cyanobacterial biovolume, deviance is calculated as: 

 

 
where n is the sample size, yi is the observed data point and µ is the mean of the y variable.  

The lower the deviance value then the better the fit of the model to the dataset. 

 

WHO Guidelines 

In this study, the quantile modelling approach is combined with WHO thresholds for 

cyanobacterial abundance in recreational waters to identify the likelihood of exceeding health 

alert thresholds. WHO (1999; 2003) recommend “a series of guideline values associated with 

incremental severity and probability of health effects” and these values are then defined for 

three health alert categories: low, moderate and high.  A high alert (or high probability of 

adverse health effects) is assigned when surface scums are present, where cell densities and 

toxin concentrations can be very high and severe health risks are possible.  Cyanobacteria cell 

densities of 20,000 and 100,000 cells ml
-1

, respectively, are associated with “low” and 

“moderate” probabilities of adverse health effects, associated with less severe symptoms such 

as skin irritations and gastro-intestinal illness.  These cell densities can be converted to a 

biovolume (mm
3
 L

-1
) by multiplying by a typical cyanobacterial cell volume.  We have 
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adopted here the equivalent biovolumes of 2 mm
3
 L

-1
 and 10 mm

3
 L

-1
, outlined in WHO 

(1999), based on a spherical cell with a diameter of 5.7 µm. 

 

 

Results 

Exploratory analysis of the data highlighted that cyanobacteria are generally absent, or in very 

low abundance, in low alkalinity lakes (< 200 µequiv. L
-1

) with the summer median 

abundance and upper percentiles all clearly increasing with increasing alkalinity class (Fig. 1). 

Low alkalinity lakes are predominantly found in Northern Europe, where only 5% of lakes 

have mean summer biovolumes exceeding the WHO low risk threshold of 2 mm
3
 L

-1
; a much 

higher proportion of lakes (37%) are at risk in Central Europe, where high alkalinity lakes 

predominate (Table 1).   

 

Mean response 

Considering the whole lake dataset together, there is a positive linear relationship between 

(log10) cyanobacterial biovolume and (log10) TP concentrations (r
2
 = 0.295, P<0.001, 

deviance 138.7).  Despite the significance, the relationship is still relatively weak.  Because of 

the general absence or low abundance of cyanobacteria in low alkalinity lakes, further 

analysis was, therefore, carried out on a sub-set of 807 medium and high alkalinity lakes 

drawn from all regions.  A GAM (Fig. 2; r
2

adj = 0.342, P = <0.001, deviance = 128.9) and a 3-

parameter non-linear model (Fig. 3; deviance = 129.4) of the mean cyanobacterial response fit 

the data better.  Both non-linear models indicate a take-off in the mean cyanobacterial 

response above a TP concentration of approximately 10 µg L
-1

.  For the GAM model a strong 

positive response is apparent up to about 300 µg L
-1

 (Fig. 3), whereas for the parametric non-

linear model, there is a flattening of the mean response at a threshold of about 100 µg L
-1

 (Fig. 

2). Below about 5 µg L
-1

 and above about 300 µg L
-1

, there are few data points and, therefore, 

less confidence in the modelled relationships outside this TP range (Fig. 2). 

 

Quantile responses – medium and high alkalinity lakes 

Comparison of AIC values for linear and non-linear non-parametric quantile regression 

models highlight the much poorer fit of linear models for most quantiles (Table 2). The 

exceptions to this were the models for the lowest quantiles examined (0.05, 0.10 and 0.25) 

which were linear and had the lowest AIC values (best fit).  This was, however, a statistical 

artefact due to the very large proportion of low or zero values for cyanobacteria biovolume.  

These lower quantile relationships between cyanobacteria biovolume and TP were more or 

less flat, and there was, therefore, no significant relationship between the two variables e.g. 

0.05 (P=0.98), 0.10 (P=1.00) quantiles.  For all higher quantiles examined (0.25 and above), 

non-linear, non-parametric regression models all had a highly significant relationship between 

cyanobacteria biovolume and TP (P<0.001). 

 

Three-parameter asymptotic exponential models were the best fit for the 0.50–0.95 quantile 

models and the non-linear mean response, whereas only a 2-parameter model was selected for 

the 0.25 quantile (Table 3). The resulting non-linear parametric regression models for 

quantiles 0.5–0.95 are shown in Figure 3 and deviance values and parameter estimates are 

given in Table 3. The models shown are those with the deviance minimized. Like the non-

linear model for the mean response, all the quantile models indicate a take-off in the 

cyanobacterial response above a threshold TP of approximately 10 µg L
-1

 and a flattening of 
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the response at a threshold of about 100 µg L
-1

 (Fig. 3). The biggest difference between the 

different quantiles is in the slope of the increase, with the 0.95 quantile showing the steepest 

increase, whilst the 0.50 quantile the shallowest increase.  Additionally the quantiles differ 

greatly in terms of parameter a: the estimated cyanobacteria value where the fitted curve 

begins to reach a maximum (Table 3, Figure 3).  For example, the 0.50 quantile plateaus at 

just below 2 mm
3
 L

-1
, the WHO (1999) low risk threshold, at TP concentrations of 100 µg L

-1
 

or greater. 

 

Application of quantile responses for predicting bloom capacity 

The upper quantiles (e.g. 0.95) provide estimates of the potential maximum capacity of 

cyanobacteria in response to increasing TP concentrations (Table 4).  The capacity for 

cyanobacteria increases with increasing TP, with the relationship levelling off at TP 

concentrations >150 µg L
-1

.  The 95% quantile model indicates that at 16 µg L
-1

, 5% of lakes 

will exceed the low risk threshold and at 32 µg L
-1

 5% of lakes will exceed the medium risk 

threshold (Table 4). 

   

Nutrient targets in relation to health thresholds 

The equations in Table 3 can be used to determine the proportion of lakes exceeding the low 

and medium risk WHO thresholds for cyanobacteria for a given TP concentration (Table 5; 

Figure 4).  Only significant quantile curves which pass through these risk threshold levels can 

be used. The results indicate that at a TP concentration of about 22 µg L
-1

 10% of lakes 

exceeded the WHO low risk threshold, at 31 µg L
-1

 this increased to 25% of lakes, and at 41 

µg L
-1

 33% of lakes were above the WHO low risk threshold.  Similarly 10% of lakes 

exceeded the WHO medium risk threshold, at TP concentrations of 48 µg L
-1

. 

 

 

Discussion 

Despite the wide variety of life strategies between different cyanobacterial species and the 

consequent variety of environmental factors shaping their abundance (Dokulil & Teubner 

2000; Reynolds 2006), it is still of great importance to understand more fully the response of 

this whole group of algae in relation to nutrient pressures.  The reason for this is that many 

cyanobacterial species produce hazardous toxins and this has led to the WHO guidance for 

recreational and drinking waters that outline threshold densities of cyanobacteria as a whole, 

rather than for individual species, in relation to threats to water usage (WHO 1999; 2003; 

2004).  There is widespread acceptance amongst freshwater ecologists that cyanobacteria 

increase in abundance with increasing nutrient concentrations.  Most published literature 

quantifying the relationship has, however, focused on the relative percentage abundance of 

cyanobacteria (e.g. Downing, Watson & McCauley 2001; Ptacnik et al. 2008).  It is, however, 

the actual biomass of cyanobacteria that affects the provision of safe, clean water for 

recreation and water supply (WHO 2003; 2004).  Our study specifically addresses this, 

providing robust quantitative relationships between TP and actual cyanobacterial biovolume 

in European lakes and reservoirs.  The exploratory analysis highlighted that cyanobacteria are 

generally absent, or in very low abundance, in low alkalinity lakes, particularly in Northern 

Europe. The preference of cyanobacteria for neutral to alkaline waters is generally recognised 

and has been nicely demonstrated in previous in-lake experimental studies (Reynolds & Allen 

1968; Shapiro 1984), but our exploratory analysis highlights effectively that this is a broad 

pattern that holds true for many lakes. It was for this reason that our further analysis was 

carried out on data from medium and high alkalinity lakes only.  A previous study (Carvalho 
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et al. 2011) of lakes in the UK, of which 97 were medium and high alkalinity lakes, indicated 

that the mean response of cyanobacteria to TP was linear, although with cyanobacteria largely 

absent below 20 µg L
-1

.  Our current more extensive analysis of more than 800 medium and 

high alkalinity lakes also covers a broader nutrient gradient than that of Carvalho et al. 

(2011). In this study, the mean response indicated a non-linear relationship with TP. One 

reason for the better fit of the non-linear model to the mean response in this study appears to 

be because there were more lakes included with very low (<10 µg L
-1

) and very high (>100 

µg L
-1

) TP concentrations, and the response appears to flatten out at these extremes. Dolman 

et al. (2012) also show a flattening out of the median cyanobacteria response above 100 µg L
-

1
 TP, in a study of 102 German lakes.  Even though the relationship between TP and the mean 

response of cyanobacteria biovolume was highly significant, it was evident that there was a 

large amount of scatter in the data.  For this reason, modelling the mean response is not the 

ideal approach to adopt; quantile regression is more appropriate when several factors may 

limit a population at many sites (Cade & Noon 2003).   

 

Quantile models 

There are many possible factors limiting cyanobacteria abundance in freshwaters and many of 

these, such as water retention time or water colour are not routinely recorded.  Given this 

reality, there will be unequal variation across a dataset when describing the relationship 

between a population response and only one of these factors. Examining a number of quantile 

responses allows us to compare how a range of cyanobacteria responses, from the minimum 

to maximum response, are affected by TP.  This range in responses was demonstrated by the 

fact that linear models fitted the lower quantiles, a 2-parameter non-linear model was the best 

fit for the 25% and 3-parameter non-linear models were the best fit for mean, median and 

higher quantiles. The fact that the lower quantile relationships between cyanobacteria 

biovolume and TP were more or less flat, and not significant, indicates that a small percentage 

of lakes always have no, or little, cyanobacteria, irrespective of TP concentrations.  Clearly 

other factors limit cyanobacteria populations in the summer months in these lakes.  This could 

include factors limiting population growth (e.g. competition with macrophytes or other algae 

for light), or factors affecting population loss processes (e.g. flushing, grazing, parasitism) 

(Reynolds 2006; Carvalho et al. 2011).  For example, long-term monitoring of individual 

lakes has demonstrated that cyanobacteria are never abundant in lakes or reservoirs with a 

retention time <30 days (Reynolds & Lund 1988). 

 

Variability may also reflect the fact that a number of cyanobacterial genera, that contribute 

significantly to total biovolume in European lakes, may be affected by TP, or other limiting 

factors, differently from each other and also differently in different lake types.  For example, 

colonial gas-vacuolate genera, such as Microcystis, are known to migrate vertically in 

response to nutrient limitation, potentially allowing them to exploit deep, hypolimnetic 

sources of P, irrespective of epilimnion concentrations (Brookes & Ganf 2001).  The slopes 

and plateaus of the different quantile models all vary, although all models show that the 

biggest increase in cyanobacterial abundance occurs in the TP range from about 20 µg L
-1

 up 

to about 100 µg L
-1

.  This is an important finding for achieving successful restoration, as it 

indicates that nutrient concentrations need to be within this range before any significant 

declining response is likely to be observed in cyanobacterial abundance. The use of these 

different quantile responses to two specific applications for lake management in relation to 

recreational services are described further below. 
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Application of quantile responses for predicting bloom capacity 

In the context of harmful cyanobacterial blooms, it is important to know the maximum 

cyanobacterial abundance that a lake could potentially support, rather than the mean or 

relative % abundance.  Modelling the upper bounds of species–environment relationships 

relates much more to the most limiting resource (Cade & Noon 2003; Vaz et al. 2008), for 

phytoplankton in many temperate lakes this is often phosphorus (Phillips et al. 2008; 

Schindler et al. 2008).  The wide scatter of points around the mean or median responses 

clearly indicate that TP is not the single dominating factor limiting cyanobacterial abundance 

in lakes, but the higher quantile models may still better represent the capacity for 

cyanobacterial abundance in relation to phosphorus, given a lack of other limiting factors, 

such as loss rates to grazing or flushing.  Using the 95% quantile to represent the potential 

maximum capacity, our results clearly demonstrate that there are small probabilities for quite 

substantial cyanobacterial populations that exceed WHO (1999) health thresholds at relatively 

low TP concentrations.  The fact that 5% of medium and high alkalinity lakes exceeded the 

low and medium risk thresholds at TP concentrations less than 35 µg L
-1

 supports anecdotal 

accounts of blooms in relatively nutrient poor waters that often cause surprises to local lake 

managers.  At the other extreme, the 95% quantile shows that, in medium and high alkalinity 

lakes, cyanobacterial populations reach a maximum capacity of about 30 mm
3
 L

-1
 at TP 

concentrations of about 150 µg L
-1

.  Further increases in TP have little effect on capacity, 

indicating that some other factor is limiting their abundance, in particular light-limitation 

(self-shading) (Reynolds & Maberly 2002) or nitrogen (Dolman et al. 2012). 

 

Nutrient targets in relation to recreational health thresholds 

Given our extensive dataset, the quantiles can also be used to represent the likelihood of 

cyanobacterial abundance exceeding the WHO recreational health alert thresholds for a given 

TP concentration.  Although only a small proportion of lakes exceed the low risk threshold at 

low TP concentrations, the steepest rise in % exceedance occurs between TP concentrations 

of about 20 and 30 µg L
-1

 TP (approximately 10% to 25% exceedance).  It was also clear that 

in about 50% of lakes the low risk threshold is not exceeded, irrespective of summer TP 

concentrations above 100 µg L
-1

.  What level of precaution is chosen in terms of nutrient 

management is a local, social or economic decision and will be affected by the use of the 

water body.  A TP target of 20 µg L
-1

 should result in a low probability of risk (<10% 

exceedance) and may be appropriate for lakes or reservoirs of high importance for recreation 

or water supply.  It is, however, important to point out that the nutrient targets outlined here 

are based on the analysis of a population of medium and high alkalinity lakes and reservoirs 

and are, therefore, most applicable for setting nutrient targets in these lake types at a national, 

regional or European landscape scale. Given the approach used to derive them, these models 

are less certain for individual lake management, as discussed by Reynolds (1980) in relation 

to the limitations of Vollenweider models for predicting chlorophyll concentrations in lakes. 

For individual lake management, it is advisable that these targets are considered in relation to 

other site-specific factors that can affect sensitivity to cyanobacteria (e.g. retention times). For 

example, Wagner & Adrian (2009) in a detailed single lake study highlighted that climatic 

factors had significant positive effects on cyanobacterial dominance when TP concentrations 

rose above 70 µg L
-1

.  This further emphasises the value of setting nutrient targets that 

minimise the potential capacity for cyanobacterial blooms to help mitigate future climate 

changes. 
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Application for assessing recreational quality of freshwaters 

Currently inland bathing water quality in the European Union (EU), and many other countries 

around the world, is formally assessed using only microbiological parameters (e.g. intestinal 

enterococci and E. coli concentrations).  Article 8 of the EU Bathing Water legislation (EC 

2006) does mention that appropriate monitoring should be carried out to enable timely 

identification of cyanobacterial health risks, but provides no formal guidelines on how this 

should happen. Our study highlights the magnitude of the number of European lakes 

exceeding WHO health thresholds, with 7 countries reporting over 25% of monitored lakes 

exceed the WHO low risk threshold (Table 1).  There is clearly, therefore, a need for more 

informed assessment of bathing water quality or other recreational activities involving water 

contact.  The WHO thresholds adopted in this study (WHO 1999; 2003; 2004) are not the 

only targets that exist.  For example, recent guidelines from Australia (NHMRC 2008) have a 

level 1 alert threshold set at a total cyanobacterial biovolume equivalent of 4 mm
3
 L

-1
, 

although they do recognise that skin irritations have been observed at densities as low as 0.4 

mm
3
 L

-1
 (Pilotto et al. 2004) and that swimmers wearing wetsuits often accumulate more 

algae and are more prone to skin irritations.  The parameterised quantile models can be 

applied to any agreed cyanobacterial thresholds, to indicate the likely risk of exceedance of 

the specific threshold for a given TP.  This is particularly useful for current or future 

predictions of recreational quality at broad geographical scales.  Nutrient data are much 

widely available than phytoplankton data for many lakes and reservoirs, and can also be 

readily modelled from catchment data (Duethmann et al. 2009).  So, based on an agreed risk 

level of exceeding the cyanobacterial threshold, the parameterised models can also be used to 

assess recreational quality across broad geographical scales.  One example where this could 

be applied is in current attempts at mapping ecosystem services of different habitats, 

including recreational quality, across Europe (Maes et al, 2011).  Irrespective of specific uses, 

developing a more quantitative understanding of the effect of phosphorus on cyanobacterial 

abundance in freshwaters, provides important knowledge for restoring and sustaining a safe, 

clean water supply for multiple uses. Our models can be used to set phosphorus targets for 

sustaining the delivery of services and provide different levels of precaution that can be 

chosen dependent on the importance of the service provision. 
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Table 1. Number of lakes with cyanobacteria and total phosphorus (TP) data, by region, 

country and alkalinity type (L = Low, M = Medium, H = High and U = Unknown) and 

percentage of these lakes where recreational use is at risk (mean summer biovolume 

exceeding the World Health Organisation (WHO, 1999) low risk threshold of 2 mm
3
 L

-1
) 

 
 

Region Country L M H U Total % at 
risk 

Central Belgium   9  9 33% 

 Germany   223  223 47% 

 Denmark  1   1 0% 

 Estonia 3 5 46  54 17% 

 France  3   3 0% 

 Ireland  1 33 10 44 8% 

 Lithuania    39 39 15% 

 Latvia    63 63 32% 

 Netherlands   47  47 53% 

 Poland   49  49 27% 

 United Kingdom  3 64  67 17% 

Central Total  3 13 471 112 599 37% 

Eastern Hungary   18  18 22% 

Mediterranean Spain 9 8 16 1 34 23% 

Northern Finland 104 47  5 156 5% 

 Ireland 6 2   8 8% 

 Norway 308 147 44 3 502 3% 

 Sweden 97 21 7  125 3% 

 United Kingdom 51 12 1  64 17% 

Northern Total  566 229 52 8 855 5% 

Grand Total  578 250 557 121 1506 15% 
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Table 2. Akaike's information criterion (AIC) values for both linear and non-parametric 

quantile regression models relating cyanobacterial biovolume to TP concentrations in medium 

and high alkalinity lakes 

 

   Quantile 

Model type 0.05 0.10 0.25 0.50 0.67 0.75 0.83 0.90 0.95 

Linear 

quantile 
-185.5 -99.1 160.2 549.6 812.2 952.1 1110.1 1315.8 1560.9 

Non- 

parametric 

quantile 

6.5 20.4 205.1 496.4 685.4 798.6 962.2 1184.2 1427.4 
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Table 3. Parameter estimates derived using non-linear quantile regression for medium and 

high alkalinity lakes.  Estimates for non-linear mean response also shown. Coefficients in 

bold all highly significant (P<0.01), *=P<0.05, NS=not significant 

 
 Deviance Parameter a Parameter b Parameter c 

Model  ±SE ±SE ±SE 

0.25 61.95 -5.41 ± 0.42 1.04 ± 0.38  

0.50 97.23 0.47 ± 0.05 1500579 ± 0 8.97 ± 0.23 

mean (non-linear) 102.92 0.56 ± 0.03 9493 ± 
15020

NS 
6.23 ± 1.12 

0.60 100.91 0.64 ± 0.06 86850 ± 0 7.18 ± 0.18 

0.67 98.90 0.80 ± 0.05 99913 ± 0 7.38 ± 0.21 

0.75 90.22 0.92 ± 0.04 98649 ± 0 7.78 ± 0.16 

0.83 75.51 1.03 ± 0.05 17577 ± 0 6.79 ± 0.15 

0.90 55.48 1.28 ± 0.08 3695 ± 0.4 5.77 ± 0.17 

0.95 34.15 1.51 ± 0.07 1219 ± 529* 5.23 ± 0.36 
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Table 4. 95% quantile fitted values showing the changing cyanobacterial biovolume (mm
3
 L

-

1
) with change in total phosphorous (µg L

-1
).  The fitted quantile reaches an asymptote at 31.5 

mm
3
 L

-1
 of cyanobacteria biovolume 

 

Total Phosphorus 
(µg L

-1
) 

Cyanobacteria capacity 
(95%) (mm

3
 L

-1
) 

0 0 

10 0.5 

12 1 

16 2 

24 5 

32 10 

50 20 

150 30 

350 31 
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Table 5. Total phosphorus (TP) concentrations for a given likelihood (quantile) of being 

below low and medium risk World Health Organisation (WHO, 1999) threshold levels for 

cyanobacteria volume.  TP concentrations are obtained from the fitted quantile regression 

models to the medium and high alkalinity lakes 

 

WHO 

Threshold 

Quantile % 

exceeded 

TP 

Low 0.57 43 57.8 

 0.60 40 54.4 

 0.63 37 45.8 

 0.67 33 41.0 

 0.75 25 30.7 

 0.78 22 29.4 

 0.83 17 26.2 

 0.87 13 22.8 

 0.90 10 21.6 

 0.95 5 16.3 

 0.98 2 13.2 

Medium 0.87 13 58.3 

 0.90 10 47.7 

 0.95 5 32.4 

 0.98 2 22.7 
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Figure Legends 

 

Figure 1. Boxplot of cyanobacterial biovolume (log10 mm
3
 L

-1
) in lakes of low, medium and 

high alkalinity (<0.2, 0.2-1.0, >1.0 mequiv. L
-1

 respectively) 

 

Figure 2. Generalized additive model (GAM) for cyanobacteria biovolume in response to total 

phosphorus for medium and high alkalinity lakes (n=807) 

 

Figure 3. Scatter plot for log10 cyanobacteria and log10 total phosphorus for medium and high 

alkalinity lakes (n = 807). Quantile regression curves (0.50–0.95) using a fitted 3-parameter 

sigmoid non-linear model are displayed. nl = non-linear regression fit to mean of data. 

Thresholds relating to approximate WHO (2003) low and medium risk thresholds are also 

indicated 

 

Figure 4. Relationship between % lakes exceeding World Health Organisation (WHO, 1999) 

low/medium risk threshold for cyanobacterial biovolume (2 mm
3
 L

-1
) in relation to total 

phosphorus (TP) 
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