Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

    4 research outputs found

    A probabilistic model with parsinomious representation for sensor fusion in recognizing activity in pervasive environment

    Full text link
    To tackle the problem of increasing numbers of state transition parameters when the number of sensors increases, we present a probabilistic model together with several parsinomious representations for sensor fusion. These include context specific independence (CSI), mixtures of smaller multinomials and softmax function representations to compactly represent the state transitions of a large number of sensors. The model is evaluated on real-world data acquired through ubiquitous sensors in recognizing daily morning activities. The results show that the combination of CSI and mixtures of smaller multinomials achieves comparable performance with much fewer parameters.<br /

    Learning to Represent Haptic Feedback for Partially-Observable Tasks

    Full text link
    The sense of touch, being the earliest sensory system to develop in a human body [1], plays a critical part of our daily interaction with the environment. In order to successfully complete a task, many manipulation interactions require incorporating haptic feedback. However, manually designing a feedback mechanism can be extremely challenging. In this work, we consider manipulation tasks that need to incorporate tactile sensor feedback in order to modify a provided nominal plan. To incorporate partial observation, we present a new framework that models the task as a partially observable Markov decision process (POMDP) and learns an appropriate representation of haptic feedback which can serve as the state for a POMDP model. The model, that is parametrized by deep recurrent neural networks, utilizes variational Bayes methods to optimize the approximate posterior. Finally, we build on deep Q-learning to be able to select the optimal action in each state without access to a simulator. We test our model on a PR2 robot for multiple tasks of turning a knob until it clicks.Comment: IEEE International Conference on Robotics and Automation (ICRA), 201

    Integrating Human-Provided Information Into Belief State Representation Using Dynamic Factorization

    Full text link
    In partially observed environments, it can be useful for a human to provide the robot with declarative information that represents probabilistic relational constraints on properties of objects in the world, augmenting the robot's sensory observations. For instance, a robot tasked with a search-and-rescue mission may be informed by the human that two victims are probably in the same room. An important question arises: how should we represent the robot's internal knowledge so that this information is correctly processed and combined with raw sensory information? In this paper, we provide an efficient belief state representation that dynamically selects an appropriate factoring, combining aspects of the belief when they are correlated through information and separating them when they are not. This strategy works in open domains, in which the set of possible objects is not known in advance, and provides significant improvements in inference time over a static factoring, leading to more efficient planning for complex partially observed tasks. We validate our approach experimentally in two open-domain planning problems: a 2D discrete gridworld task and a 3D continuous cooking task. A supplementary video can be found at http://tinyurl.com/chitnis-iros-18.Comment: IROS 2018 final versio

    Learning Factored Representations for Partially Observable Markov Decision Processes

    No full text
    The problem of reinforcement learning in a non-Markov environment is explored using a dynamic Bayesian network, where conditional independence assumptions between random variables are compactly represented by network parameters. The parameters are learned on-line, and approximations are used to perform inference and to compute the optimal value function. The relative effects of inference and value function approximations on the quality of the final policy are investigated, by learning to solve a moderately difficult driving task. The two value function approximations, linear and quadratic, were found to perform similarly, but the quadratic model was more sensitive to initialization. Both performed below the level of human performance on the task. The dynamic Bayesian network performed comparably to a model using a localist hidden state representation, while requiring exponentially fewer parameters. 1 Introduction Reinforcement learning (RL) addresses the problem of learni..
    corecore