
RGCL at GermEval 2019: Offensive Language Detection with Deep
Learning

Alistair Plum, Tharindu Ranasinghe, Constantin Orăsan, Ruslan Mitkov
Research Group in Computational Linguistics

University of Wolverhampton, UK
{a.j.plum, tharindu.ranasinghe, c.orasan, r.mitkov}@wlv.ac.uk

Abstract

This paper describes the system submit-
ted by the RGCL team to GermEval 2019
Shared Task 2: Identification of Offensive
Language. We experimented with five dif-
ferent neural network architectures in or-
der to classify Tweets in terms of offensive
language. By means of comparative eval-
uation, we select the best performing for
each of the three subtasks. Overall, we
demonstrate that using only minimal pre-
processing we are able to obtain competi-
tive results.

1 Introduction

The use of offensive language in open and public
actions is a facet of the internet that calls for auto-
matic detection for some kind of monitoring. The
fact that people use language that can cause offence
to other people is in no way a novel phenomenon.
However, with the rise of online platforms such as
Twitter, Facebook, Reddit and so on, along with
the annonymity these platforms offer, offensive
language can be viewed and read by millions of
people in an instance. While the scale of the of-
fence caused by such language can vary, it is clear
that there is some language which causes offence
to many people publicly. Therefore, it is desirable
to be able to automatically detect the use of such
language, in order to flag it and take further action.

Recently, efforts in the field of natural language
processing (NLP) relating to the detection and clas-
sification of offensive language have been gaining
attention. This is not only evidenced by an in-
crease in offensive language datasets, but also a
shift in approach from support vector machine clas-
sifiers to more modern neural networks (Schmidt
and Wiegand, 2017). More evidence for the rising
attention to offensive language detection lies in the
fact that the topic has been featured at shared tasks.

The most prominent example is probably SemEval
2019 Task 6, which dealt with the identification
and categorisation of offensive language in social
media for English, and attracted around 800 teams
with 115 submissions (Zampieri et al., 2019).

Another example of a shared task for offensive
language is GermEval 2019 Task 2. It deals with
the detection and classification of offensive lan-
guage in German Twitter posts. The task itself
is divided into three classification subtasks, with
the first dealing with a binary classification, i.e.
whether a tweet is offensive or not. Subtask II is
a more fine-grained classification, including three
levels of granularity, profanity, insult and abuse.
These two subtasks were featured at GermEval
2018, meaning that data from two years was avail-
able (Wiegand et al., 2018). The final subtask,
aimed at classifying implicit and explicit offensive
language, was newly introduced this year.

This paper describes our submission to the Ger-
mEval shared task. We propose a simple, low-effort
approach, with minimal data processing. We em-
ploy five different neural network architectures in
order to perform the three classification subtasks,
evaluate each network and select the three best per-
forming architectures for our final submissions.

The paper is structured as follows. Section 2
describes the system that was submitted, split into
a description of the dataset (Section 2.1), how the
data was processed (Section 2.2) and the architec-
ture of the classifier that was used (Section 2.3).
Section 3 presents an analysis of the results of our
evaluation of the five different architectures (Sec-
tion 3.1), as well as of the final submission (Section
3.2). Finally, Section 4 offers some final remarks
and a conclusion.

2 System Description

This section describes the shared task data, as well
as the system that was used to classify the data.
The dataset is grouped in two parts, and we use

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

423

https://creativecommons.org/licenses/by-nc-sa/4.0/


minimal preprocessing in order to use the data. For
classification, we used and compared five differ-
ent neural network architectures suited to this task.
Our implementation has been made available on
Github.1

2.1 Dataset

The data provided by the task organisers was split
into subtasks I & II, and subtask III, which where
in turn split into training and test sets. For sub-
tasks I & II we concatenated the 2018 training set
(Wiegand et al., 2018) with the 2019 training set,
resulting in 9004 training instances for subtasks I
& II. Subtask III was introduced for the first time
this year, providing 1958 training instances.

Different tags are used for each subtask. The
binary classification uses OTHER and OFFEN-
SIVE to distinguish non-offensive and offensive
text. Subtask II extends the last tag into PROFAN-
ITY indicating the use of offensive words without
being aimed at anyone specific, INSULT which is
like the previous but aimed at a specific person or
entity, and ABUSE which combines the last two
tags. The final subtask uses the EXPLICIT and
IMPLICIT tags.

2.2 Text Preprocessing

As mentioned previously, the data preprocessing
for this task was kept fairly minimal. More specifi-
cally, we perform only three specialised tasks for
this data, followed by tokenisation. The tasks in-
clude removing usernames, converting to lower
case and removing punctuation marks. The motiva-
tion for a minimal approach was mainly to demon-
strate the effectiveness of the neural network ar-
chitectures used. A secondary motivation is the
portability to other languages, as the tasks carried
out here should be relatively simple to perform
in other languages. This does, however, highlight
the importance of solid word embeddings, as the
approach is completely reliant on them.

First, we completely remove all usernames from
the texts, without inserting a placeholder. This is
carried out quite simply by removing all strings
beginning with the @ symbol, as this is how user-
names are denoted on Twitter. The reasoning be-
hind this step is mainly to remove noisy text, as it
is highly unlikely that there would be any embed-
dings for the usernames. In addition, it stands to

1https://github.com/TharinduDR/
Germeval-Task-2

reason that these usernames do not add any seman-
tic meaning. Moreover, if, for instance, a majority
of offensive tweets were written by one user, this
could lead to bias in the system against one user.
However, this task is targeted at offensive language,
not offensive users.

Next, we convert the text to lower case let-
ters. This step may seem counter intuitive for Ger-
man, as capitalisation is used to differentiate nouns,
which can cause a difference in meaning. For in-
stance, Rennen can mean the race (noun), whereas
rennen can mean to run (verb). Therefore, our first
intuition was to keep capitalisation, however, after
running with and without capitalisation our results
indicated that all lower case text works better. We
found that this leads to a smaller number of words
for which no embedding is found, and higher preci-
sion and recall values. This finding is in line with
previous findings using a similar approach based
on neural networks (Stammbach et al., 2018).

Finally, we remove all kinds of punctuation
marks and mathematical symbols. We insert a
place-holder that indicates to the system that a
punctuation mark would have been at this place.
With this approach, we can handle each word in
the same way, as leaving punctuation marks would
lead them to be read together with a word, leading
to no embedding being available.

2.3 System Architecture

After data processing each text is encoded using
German fasttext (Mikolov et al., 2018) embed-
dings.2 The encoded tweets are then classified
by one of the neural network architectures. We
evaluated five different neural network architec-
tures for the classification tasks: pooled Gated Re-
current Unit (GRU) (Section 2.3.1), Long Short-
Term Memory (LSTM) and GRU with Attention
(Section 2.3.2), 2D Convolution with Pooling (Sec-
tion 2.3.3), GRU with Capsule (Section 2.3.4) and
LSTM with Capsule and Attention (Section 2.3.5).

The parameters of each architecture were op-
timised using 5-fold cross-validation considering
binary cross entropy loss function and using adam
optimiser (Kingma and Ba, 2015). The motiva-
tion for using 5-fold cross-validation was mainly
the size of the data available for subtask III. Us-
ing a higher number of folds for cross-validation
results in a low number of training and evaluation

2https://dl.fbaipublicfiles.com/
fasttext/vectors-wiki/wiki.de.vec

424



instances affects the performance of the architec-
ture (Stone, 1974). We used the reducing learning
rate on plateau technique when a deep learning
architecture stopped improving. Deep learning ar-
chitectures often benefit from reducing the learning
rate by a factor once learning stagnates (Ravaut
and Gorti, 2018). We monitored validation loss
and if no improvement was seen for 2 epochs, the
learning rate was reduced by a factor of 0.6, since
this value seemed to offer the best improvement.

These architectures were successfully applied to
a number of classification tasks such as GRU for
sequence labeling (Chung et al., 2014), GRU with
capsule for toponym detection (Plum et al., 2019),
and their success in these tasks inspired us to use
them for the task at hand.

2.3.1 Pooled GRU

In this architecture, after the embedding layer, em-
bedding vectors are fed to the bi-directional GRU
(Chung et al., 2014) at their respective timestep.
The bi-directional GRU-layer has 80 units. The fi-
nal timestep output is fed into a max pooling layer
and an average pooling layer in parallel (Scherer
et al., 2010). After this, the outputs of the two
pooling layers are concatenated and connected to
a dense layer (Huang et al., 2017) activated with
a sigmoid function. Additionally, there is a spa-
tial dropout (Tompson et al., 2015) between the
embedding layer and the bi-directional GRU layer
to avoid over-fitting. This architecture has been
discussed in (Kowsari et al., 2019) as a common
architecture to perform text classification tasks.

2.3.2 LSTM and GRU with Attention

With this architecture, the output of the embed-
ding layer goes through a spatial dropout (Tomp-
son et al., 2015) and is then fed in parallel to
a bi-directional LSTM-layer (Schuster and Pali-
wal, 1997) with self attention and a bi-directional
GRU-layer (Chung et al., 2014) with self atten-
tion (Vaswani et al., 2017). Both the bi-directional
LSTM-layer and the bi-directional GRU-layer have
40 units. The output from the bi-directional GRU-
layer is fed into an average pooling layer and a
max pooling layer. The output from these layers
and the output of the bi-directional LSTM-layer are
concatenated and connected to a dense layer with
ReLU activation. After that, a dropout (Srivastava
et al., 2014) is applied to the output and connected
to a dense layer activated with a sigmoid function.

2.3.3 2D Convolution with Pooling
The fourth architecture takes a different approach
than the previous architectures by using 2D convo-
lution layers (Wu et al., 2018), rather than LSTM
or GRU layers. The outputs of the embedding lay-
ers are connected to four 2D convolution layers
(Wu et al., 2018), each with max pooling layers.
All the 2D convolution layers were initialised with
normal kernel initialiser. The outputs of these are
concatenated and connected to a dense layer ac-
tivated with a sigmoid function after applying a
dropout (Srivastava et al., 2014). This architecture
has been used in the Quora Insincere Questions
Classification Kaggle competition3.

2.3.4 GRU with Capsule
Most of the previous architectures rely on a pool-
ing layer. However, this architecture uses a capsule
layer (Hinton et al., 2018) rather than pooling lay-
ers. After applying a spatial dropout (Tompson
et al., 2015) the output of the embedding layer is
fed into a bi-directional GRU-layer (Chung et al.,
2014). The bi-directional GRU-layer has 100 units
and was initialised with the Glorot normal kernel
initialiser and orthogonal recurrent initialiser with
1.0 gain. The output is then connected to a cap-
sule layer (Hinton et al., 2018). The output of the
capsule layer is flattened and connected to a dense
layer with ReLU activation, a dropout (Srivastava
et al., 2014) and batch normalisation applied, and
re-connected to a dense layer with sigmoid acti-
vation. This architecture has been used to detect
locations within word windows (Plum et al., 2019).

2.3.5 LSTM with Capsule and Attention
The final architecture uses combination of a cap-
sule layer (Hinton et al., 2018) and a self atten-
tion layer (Vaswani et al., 2017). After the embed-
ding layer a spatial dropout (Tompson et al., 2015)
is applied to the output, which is then fed into a
bi-directional LSTM-layer (Schuster and Paliwal,
1997) with 80 units. The layer is initialised with
the Glorot normal kernel initialiser and orthogonal
recurrent initialiser with 1.0 gain. The output of
the bi-directional LSTM-layer is fed into a capsule
layer and to a self attention layer in parallel. Then
each output of both capsule layers and the self atten-
tion layer goes through a DropConnect (Wan et al.,
2013). They are concatenated before connecting

3https://www.kaggle.com/c/quora-
insincere-questions-classification

425



to a dense layer with sigmoid activation. This ar-
chitecture has been used in the Jigsaw Unintended
Bias in Toxicity Classification competition.4

3 Results

This section presents the results of the evaluation
of the five architectures, as well as the evaluation
of the final submission. As outlined in the previ-
ous sections, we compare the performance of five
different neural network architectures in order to
select the best for each task. Therefore, an evalua-
tion of each architecture was performed, the results
of which are presented in Section 3.1. In Section
3.2 we present the results of the final submission as
carried out by the organisers of the task. Although
we submitted the runs of the three best performing
systems, we only present the best performing here.
The full results have been added to Appendix A.

3.1 Architecture Evaluation
This section describes how we selected the architec-
tures for the final submissions in each subtask. For
subtask I, all of the architectures were trained on
the 2018 and 2019 training data. The architectures
were evaluated on the 2018 test data. GRU with
Capsule, 2D Convolution with Pooling and Pooled
GRU had the best F1-scores with 0.743, 0.740 and
0.728, respectively.

Again, for subtask II all of the architectures were
trained on the 2018 and 2019 training data, and
evaluated on the 2018 test data. GRU with Cap-
sule, 2D Convolution with Pooling and LSTM &
GRU with Attention were selected for final sub-
mission, with F1-scores of 0.698, 0.695 and 0.684,
respectively.

As subtask III was organised for the first time
this year, we did not have 2018 training data for
architecture training or 2018 testing data for evalu-
ation. Nonetheless, for subtask III we used 20% of
the available 2019 training data for the evaluation,
and used the rest of the data for training. For sub-
task III, GRU with Capsule, Pooled GRU and 2D
Convolution with Pooling were used for the final
submission, as they had F1-scores of 0.887, 0.840
and 0.817, respectively.

It is interesting to note that the GRU with Cap-
sule and 2D Convolution with Pooling architectures
were always among the top three performing archi-
tectures.

4https://www.kaggle.com/c/jigsaw-
unintended-bias-in-toxicity-
classification

Subtask P R F1 Acc.
I 79.49 67.94 73.26 77.96
II 58.64 36.53 45.02 72.35
III 65.55 72.55 68.87 80.11

Table 1: Results of the evaluation. All values are
reported as percent.

3.2 Submission Results

This section presents the results of the evaluation
of our submission. The evaluation was carried out
by the task organisers, and at the time of writing
the paper the results and rankings of other groups
are not available. Therefore, we report only the
evaluation provided to us by the task organisers.
We report precision, recall and f-measure averaged
overall for each classification subtask. Separate
values for each group of each individual classifica-
tion task are presented in the full results, as well
as the results for the other two architectures. Ta-
ble 1 shows the results of the evaluation of the
best performing architecture, 2D Convolution with
Pooling.

4 Conclusion

In this paper, we have presented our system for
identifying offensive language in tweets. The sys-
tem uses minimal preprocessing, and relies on word
embeddings. We experimented with different neu-
ral network architectures in order to determine the
most suitable for this task. Going by our evaluation,
and the results provided by the task organisers, it
is clear that 2D Convolution with Pooling scores
highest overall.

While our system should be quite portable to
other languages, due to non language-specific pre-
processing, it is also clear that this aspect could
potentially improve the performance of our system.
Moreover, a detailed look into the results of the
fine-grained classification of subtask II could yield
good indications of how to improve the system for
this kind of classification. Nonetheless, for future
research we would like to see how well this system
could perform in other languages on similar tasks.

References

Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical Evaluation
of Gated Recurrent Neural Networks on Sequence
Modeling. CoRR.

426



Geoffrey E. Hinton, Sara Sabour, and Nicholas Frosst.
2018. Matrix capsules with EM routing. In Proceed-
ings of ICLR 2018.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger.
2017. Densely Connected Convolutional Networks.
In Proceedings of IEEE CVPR 2017.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of CoRR 2015.

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Hei-
darysafa, Sanjana Mendu, Laura E. Barnes, and Don-
ald E. Brown. 2019. Text Classification Algorithms:
A Survey. Information, 10(4).

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in Pre-Training Distributed Word Represen-
tations. In Proceedings of LREC 2018.

Alistair Plum, Tharindu Ranasinghe, Pablo Calleja,
Constantin Orasan, and Ruslan Mitkov. 2019.
RGCL-WLV at SemEval-2019 Task 12: Toponym
Detection. In Proceedings of SemEval-2019.

Mathieu Ravaut and Satya Gorti. 2018. Gradient de-
scent revisited via an adaptive online learning rate.
arXiv preprint arXiv:1801.09136.

Dominik Scherer, Andreas C. Müller, and Sven Behnke.
2010. Evaluation of Pooling Operations in Convolu-
tional Architectures for Object Recognition. In Pro-
ceedings of ICANN 2010.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection using Natural Lan-
guage Processing. In Proceedings of the Fifth Inter-
national Workshop on Natural Language Processing
for Social Media.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Sig-
nal Processing, 45:2673–2681.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. 2014. Dropout: a simple way to prevent
neural networks from overfitting. Journal of
Machine Learning Research, 15:1929–1958.

Dominik Stammbach, Azin Zahraei, Polina Stadnikova,
and Dietrich Klakow. 2018. Offensive language
detection with neural networks for GermEval task
2018. In Proceedings of GermEval 2018.

Mervyn Stone. 1974. Cross-validatory Choice and As-
sessment of Statistical Predictions. Journal of the
Royal Statistical Society: Series B (Methodological),
36(2):111–133.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann
LeCun, and Christoph Bregler. 2015. Efficient ob-
ject localization using Convolutional Networks. In
Proceedings of IEEE CVPR 2015.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In Proceedings of NIPS.

Li Wan, Matthew D. Zeiler, Sixin Zhang, Yann LeCun,
and Rob Fergus. 2013. Regularization of Neural
Networks using DropConnect. In Proceedings of
ICML 2013.

Michael Wiegand, Melanie Siegel, and Josef Ruppen-
hofer. 2018. Overview of the GermEval 2018
Shared Task on the Identification of Offensive Lan-
guage. In Proceedings of GermEval 2018.

Yunan Wu, Feng Yang, Ying Liu, Xuefan Zha, and
Shaofeng Yuan. 2018. A Comparison of 1-D and
2-D Deep Convolutional Neural Networks in ECG
Classification. In Proceedings of IEEE Engineering
in Medicine and Biology Society.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. SemEval-2019 Task 6: Identifying and Cat-
egorizing Offensive Language in Social Media (Of-
fensEval). CoRR.

427



428


