

Introduction

Capture the electromagnetic emanations of a device with state of the art radio equipment to use them for a side channel attack.

Experimental Setup - Hardware

- 2 Antennas: Log-P and Bi-Quad
- ESN test receiver with preamplifier
- High-end setup using USRP N210 connected to IF of ESN
- DVB-T stick as low-cost alternative

Experimental Setup - Software

- GNURadio to process and record data
- Octave for offline post-processing

Device under Test - Software

Simple Square & Multiply Algorithm implemented with Android NDK using functions provided by OpenSSL.

Device under Test - Hardware

- Android-based smartphone with ARM architecture
- Removed shielding plate for stronger emanations

Finding Emanations

- Measurements using Frequency Sweep (left diagram)
- Measurements using Nearfield Probe (right diagram)
- Educated Guessing

Display Dependent

- Changes of display content and contact with display can be measured from a distance of ~ 3 m.
- No correlation with program flaw.

CPU Dependent

- A signal which correlates with the program flow can be found when the clock frequency of the CPU is set to a fixed value.
- No SPA possible.

Post-Processing of Signals

Steps:

- Record signal with multiple S&M executions with same secret key d
- Extract each trace t where algorithm is executed (automated)
- Compute $y(t) = mean(t_1(t), t_2(t), t_3(t), ...)$

Automated averaging of multiple signal blocks makes it possible to extract key of S&M algorithm.

Evaluation - Number of Traces

- $y(i) = corr[mean(t_1, t_2, ..., t_{500}), mean(t_1, t_2, ..., t_i)]$
- $ightharpoonup \sim 170$ traces are sufficient to reconstruct key

Evaluation - Distance & Shielding Plate

- Signal measurable up to a distance of 1.5 m.
- Number of traces increases, reconstruction succeeded at a maximal distance of 80 cm using 1894 traces.
- Reaffixing shielding plate results in similar effects.

Number of Traces II

- Shielding: Correlation of 0.999 with 276 traces (\approx factor 1.6)
- Distance: Correlation of 0.999 with 1530 traces (\approx factor 9)

Evaluation - Lowcost Setup

- Reduced costs of under 30 €
- Signal-to-noise ratio decreased from 13.94 dB to 11.82 dB
- Correlation of 0.999 with 346 traces (\approx factor 2)

Evaluation - Miscellaneous

Device	OS	CPU	Attack	Remove	Orientation
Device			possible?	Shielding?	Officiation
		Frequency			
DUT 1	Android	900 MHz	Yes	Yes	\rightarrow
Smartphone					
DUT 2	Android	1000 MHz	Yes	No	7
Smartphone					
DUT 3	Android	1000 MHz	Yes	Yes	1
Smartphone					
DUT 4	Android	1000 MHz	Yes	No	\rightarrow
SBC					
DUT 5	Linux	900 MHz	Yes	No	\rightarrow
SBC					

- 5 different devices were tested, all with the same results.
- The smartphone also emits signals when disassembled.

Summary

- SCA on smartphones and embedded devices are feasible using standard radio equipment.
- The experimental setup can be built for less than 30 €.
- A private key can be extracted with only 170 traces.
- Attack was successfully conducted on multiple devices.

Demo - Lowcost Setup

```
function square—and—multiply(c, d, N)
    result = 1
    for each bit(d)
             from (number of bits(d) -1)
              downto 0
        result = square(result) mod N
        if bit(d) == 1
        result = (c * result) \mod N
        end if
        sleep()
    end for
    return result
end function
```