Iterative Record Linkage for Cleaning and Integration

Indrajit Bhattacharya
Department of Computer Science
University of Maryland
College Park, MD 20742, USA

indrajit@cs.umd.edu

ABSTRACT

Record linkage, the problem of determining when two records
refer to the same entity, has applications for both data clean-
ing (deduplication) and for integrating data from multiple
sources. Traditional approaches use a similarity measure
that compares tuples’ attribute values; tuples with similarity
scores above a certain threshold are declared to be matches.
While this method can perform quite well in many domains,
particularly domains where there is not a large amount of
noise in the data, in some domains looking only at tuple
values is not enough. By also examining the context of the
tuple, i.e. the other tuples to which it is linked, we can
come up with a more accurate linkage decision. But this
additional accuracy comes at a price. In order to correctly
find all duplicates, we may need to make multiple passes
over the data; as linkages are discovered, they may in turn
allow us to discover additional linkages. We present results
that illustrate the power and feasibility of making use of join
information when comparing records.
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errors, for example typographical errors, or data may have
multiple representations, such as abbreviations, so an ex-
act comparison does not suffice for detecting duplicates in
those cases. In data cleaning, deduplication [12, 18] is im-
portant for both accurate analysis, for example determining
the number of customers, and for cost-effectiveness, for ex-
ample removing duplicates from direct mailing list. In infor-
mation integration, determining approximate joins [5] is im-
portant for consolidating information from multiple sources;
most often there will not be a unique key that can be used
to join tables in distributed databases, and we must infer
when two records from different databases, possibly with
different structures, refer to the same entity. Traditional
approaches to duplicate detection are based on approximate
string matching criteria, in some cases augmented with do-
main specific rules. More recently, there have been adaptive
approaches which make use of multiple attributes and use
labeled data [24, 2, 1, 3].

Our approach also makes use of attribute similarity mea-
sures, but in addition, it takes into account the similarity of
linked objects. For example, if we are comparing two census
records for ‘Jon Doe’ and ‘Jonathan Doe’, we should be more
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1. INTRODUCTION

One of the fundamental problems in data cleaning and
information integration is determining when two tuples re-
fer to the same real-world entity. Often times data contains
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Doe’ and they both have dependents ‘James Doe’, ‘Jason
Doe’ and ‘June Doe’. In other words, the string similarity
of the attributes is taken into account, but so too is the sim-
ilarity of the people to whom the person is related. This is
similar in spirit to the approach taken by [1, 3]. However
in our case, we do not assume that the linked objects have
already been deduplicated. In fact, in our case the links are
among objects of the same type, so that when we determine
that two records refer to the same individual, that may in
turn allow us to make additional inferences. In other words,
the deduplication process is iterative.

Making the process iterative has the potential benefit that
we may produce more accurate results; in particular, as
noted by [1], we may be able to decrease our false positive
rate because we can set our string match threshold more
conservatively. But it has the down-side that the process is
more expensive computationally; first, as we go beyond sim-
ply comparing attributes to comparing references, the simi-
larity computation becomes more expensive and second, as
we iterate, we must continue to update the distances as new
duplicates are detected.

In this paper, we formulate the problem of iterative dedu-
plication and present efficient algorithms. Since typically
we do not have ground truth to compare against, evaluation
of the results of deduplication is difficult. Here we use a



parameterized data generator and present a thorough inves-
tigation of our iterative deduplication algorithm, showing
the performance for a range of parameter settings for both
the generator and the deduplication algorithm.

2. RELATED WORK

There has been a large body of work on deduplication,
record linkage, and co-reference detection.! Here we review
some of the main work, but the review is not exhaustive.
For summary reports on deduplication and record linkage,
see [28, 11, 4].

Within the statistics community, the earliest work was
done by Newcombe [21]. He describes methods for limiting
the number of comparisons required. Fellegi and Sunter [9]
define a statistical framework for predicting “match” and
“not match”. Roughly speaking, record linkage is viewed as
classification of pairs as “matched” and “unmatched”, based
on certain computed features of the pairs. Fellegi and Sunter
describe how to estimate the parameters of their model and
how to use it for classification. More recently, Winkler [26,
27, 29] builds upon the work by Fellegi and Sunter and uses
a probabilistic approach with a latent match variable which
is estimated using EM.

There has been extensive work on defining approximate
string matching algorithms [18, 19, 20, 7] and adaptive algo-
rithms, for example algorithms that learn string similarity
measures [23, 6, 2, 8] and use active learning [24]. An im-
portant focus is on efficient data cleaning; examples include
Hernandez and Stolfo [12] and Monge and Elkan [18]. An-
other area of related work is the work on identity uncertainty
[22], object identification [25] and co-reference resolution in
natural language processing. The work on co-reference res-
olution [15] is typically done with unstructured text; here
our focus is on structured data.

One of the domains commonly used as a testbed is the
citation domain [13, 16, 22, 24]. This is also the domain
that we use as motivation, however as we will see, we focus
on identifying authors rather than papers. The work most
closely related to ours is the work of Chaudhuri et al. [3, 1].
They also make use of join information to aid in dedupli-
cation; as mentioned in the introduction, a key difference is
that they assume that the secondary tables are themselves
duplicate-free. Ananthakrishna et. al. [1] use co-occurrence
in dimensional hierarchies to identify duplicates. Specifi-
cally, to resolve whether two entities are duplicates, they
check for co-occurrence in the children sets of the entities.
We work in a more general setting where there is no hier-
archy within the groups/tuples and use the entire group to
check for co-occurrences. As a result, instead of the eas-
ier problem of having to match sets, we are faced with the
problem of matching sets of sets. Also, we use an iterative
framework for our algorithm, motivated by our recursive
definition of duplicates.

3. MOTIVATING EXAMPLE

Consider the problem of trying to construct a database
of papers, authors and citations, from a collection of pa-

'The term deduplication is used more commonly within
the database community, record linkage is the term used
by statisticians and co-reference resolution is the term used
more commonly by the Al and natural language processing
community.

per references, perhaps collected by crawling the web. A
well-known example of such a system is CiteSeer [10], an
autonomous citation indexing engine. CiteSeer is an impor-
tant resource for CS researchers, and makes searching for
electronic version of papers easier. However as anyone who
has used CiteSeer can attest, there are often multiple refer-
ences to the same paper, citations are not always resolved
and authors are not always correctly identified [24, 22].

A related, even more difficult problem, is the task of inte-
grating several citation services. While multiple references
are not as much of an issue for a curated citation index
such as DBLP [14], determining when entries from different
sources refer to the same entity is still a problem.

In the context of our motivating example, there are sev-
eral potential references that must be resolved. The first
is the paper resolution problem; this is the most commonly
studied bibliographic entity resolution task. The second is
the author resolution problem; this task is less commonly
studied, and is the focus of this paper.

3.1 The paper resolution problem

Consider the following example from [24]:

e R. Agrawal, R. Srikant. Fast algorithms for mining as-
sociation rules in large databases. In VLDB-94, 1994.

e Rakesh Agrawal and Ramakrishnan Srikant. Fast Al-
gorithms for Mining Association Rules. In Proc. of
the 20th Int’l Conference on Very Large Databases,
Santiago, Chile, September 1994.

Sometimes, the paper resolution can be done based simply
on the title. We can use one of the many existing methods
for string matching, perhaps even tuned to the task of ti-
tle matching. There is additional relational information, in
terms of the venue, the authors of the paper, and the cita-
tions made by the paper; this additional information may
help add evidence to the fact that two references are the
same. This type of entity resolution has been the focus of
much of the work in citation matching [13, 16, 22, 24].

3.2 The author resolution problem

A more novel example of entity resolution is the case of
author resolution. Suppose that we have two different pa-
pers, and we are trying to determine if there are any authors
in common between them. We can also do a string similar-
ity match between the author names, but often references
to the same person vary significantly. The most common
difference is the variety of ways in which the first name and
middle name are specified. For an author entity “Jeffrey
David Ullman”, we may see references “J. D. Ullman”, “Jeff
Ullman”, “Ullman, J. D.”, and so on. For the most part,
these types of transformations can be handled by specialized
code that checks for common name presentation transforms.
However, we are still presented with the dilemma of deter-
mining whether a first name or middle name is the same
as some initial; while the case of matching “J. D. Ullman”
and “Jeffrey D. Ullman” seems quite obvious, for common
names such as “J. Smith” and “X. Wang” the problem is
more difficult. Existing systems take name frequency into
account and will give unusual names higher matching scores.
But this still leaves the problem of determining when two
references to “J. Smith” refer to the same individual.

We propose to make use of additional context information
in the form of coauthor relationships. If the coauthors of “J.



Smith” for these two papers are the same, then we should
take this into account, and give the two references a higher
matching score. But in order to do this we must have already
determined that the other two author references refer to the
same individual; thus it becomes a chicken and egg problem.

Consider the example shown in Figure 1, where we have
four paper references, each with a title and author refer-
ences. Figure 2 shows the final result after all the author
references have been correctly resolved. We begin by exam-
ining the author references to see which ones we consider
to be the same. In the first step, we might decide that all
of the Aho references refer to the same individual, because
Aho is an unusual last name. This corresponds to identify-
ing r1,74,76 and rs as duplicates. However, based on this
name information alone, we are not quite sure whether the
Ullman references (rs,rs,77 and r10) are to the same in-
dividual, and we are certainly not sure about the Johnson
references (rz and r9). But, having decided that the Aho
references are the same gives us additional information for
the Ullman references. With high-confidence we consolidate
the first two Ullman references; we may also consolidate the
other Ullman references, although we may not be as cer-
tain that this is correct. And, at this stage, based solely
on the Aho entity consolidation, we may decide we do not
have enough evidence to consolidate the Johnson references.
However, after having made the Ullman consolidations, we
may decide that having two common coauthors for the two
references is enough evidence to tip the balance, and we
decide that they refer to the same Johnson.

Thus the problem of author resolution is likely to be an
iterative process; as we identify common authors, this will
allow us to identify additional potential co-references. We
can continue in this fashion until all of the entities have been
resolved.

4. FORMULATION OF THE ENTITY RES-
OLUTION PROBLEM

In the entity resolution problem, we have some collection
of references to objects and from this set of references we
would like to identify the (unique, minimal) collection of
individuals or entities to which they should be mapped. In
other words, we would like to find a many-to-one mapping
from references to entities. But the problem is that we don’t
know the set of entities. Because references themselves may
be many-many, such as the authorship relationship between
papers and authors, we may be in the sticky situation of
trying to identify more then one class of entities at the same
time. Here, for simplicity, we consider the case where we
have a single entity class to consolidate.

In the single entity consolidation problem, we have a col-
lection of references R = {ri,r2,...,rn}. Each reference r
corresponds to a unique entity, E(r) € {e1,e2,...,er} and
conversely R(e) = {r;|E(r;) = e}. The references may be
partitioned into groups G = {g1,92,...,9m}; a reference
appears in only one group. Our task is, given R and G, to
correctly determine both the entities (including the number
of entities k) and the mapping from references to entities.

To make this more concrete, consider our earlier citation
example. Figure 2 shows the correspondence between ob-
jects and variables. The references correspond to author-
ship relationships, such as (J. D. Ullman, Paperl). Let’s
call this r3. Then E(r3) = es, where es corresponds to the
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Figure 1: An example author/paper resolution
problem. Each box represents a paper reference (in
this case unique) and each oval represents an author
reference.

Figure 2: The single entity resolution problem cor-
responding to the example author/paper resolution
problem.

entity “Jeffrey David Ullman”. The groups correspond to
the set of author references for each of the papers. We as-
sume that there is one group per paper entity and that there
is a one-to-one mapping between groups and papers. For ex-
ample, in our earlier example, paperl defines the group g1 =
{r1,r2,73}, where r1 = A. V. Aho, ro = S. C. Johnson, and
rg = J. D. Ullman. Note that this is a group of references,
not entities. Once we have correctly constructed the entity
set for the authors, then we will be able to map from a pa-
per to the actual authors of the paper. Thus, we want to
learn that the entity sets are ei, es and es. The references
belonging to ey are {ri,74,76,7s}, €2 = {rs,rs,77,710} and
e3 = {7“2, ’r‘g}.

Not surprisingly, we do this by clustering references that
are similar to each other. The key to the success of this clus-
tering algorithm is the similarity measure (or, equivalently,
the distance measure). We define a distance measure that
takes into account both the attributes of the objects and the
links between objects.

The attribute similarity of two references measures the
similarity of the attributes of two references. For references
r; and rj;, it measures the similarity between two author
names. If there are other attributes known, such as the
author’s institutions, then these can be factored in as well.
There has been significant work on computing attribute sim-
ilarity, several packages, such as [17], that implement this are



available, so we assume that this is given.

In addition, to compute the similarity of the relation-
ships that two objects participate in, we must compare their
groups. But if we simply compare whether the references
are the same, then we will not find any overlap — as we
defined them, references correspond to authorship relations.
Instead, we are interested in the authors themselves. But
these are the entities that we are trying to find.

Instead, we compare two groups by looking at which ref-
erences are currently known/believed to be duplicates. So
clearly, this notion of similarity is bound to the current set
of duplicates and will change as new duplicates are found.
In the following section, we describe an iterative clustering
algorithm that leverages this dynamic nature of the similar-

ity.

S. ITERATIVE DEDUPLICATION

Our definition of duplicates is based on a distance mea-
sure between references. Our aim is to construct the rela-
tion dup(r;,r;) over the set of references given to us. This
relation is symmetric and also reflexive, meaning that every
reference is its own duplicate. Our definition of duplicates is
based on a distance measure between references. We define

dup(ri,r;) = true if d(ri,r;) <t

for a given threshold ¢ and false otherwise. This distance
measure is a weighted combination of the attribute distance
of the references as well as distance between their groups.
We define the distance measure in the following subsection.
The definition of duplicates is recursive in that the distance
between references is tied to the current set of duplicates.

5.1 Distance Measure
The distance between two references is defined as

d(ri, ;) = (1 — a) X dater(ri, 75) + @ X dgroup(G(13), G(75))

where dqir() is the distance between the attributes and
dgroup() is the distance measure between group sets of ref-
erences and « is a weighting of the two neighbors. For the
attributes of the references, we assume a vector representa-
tion that forms a metric space. This further allows us to
assume numeric attribute values and an Euclidean metric
for the attribute distance.

Now we define the group sets of references and the dis-
tance between them. For a reference r, G(r) is all the
groups that r or its duplicates occur in. G(r) = {g|r’ €
g and dup(r,r’)}. There may be many possible ways to de-
fine distance between sets of sets. We build the definition of
distance between group sets on the basic notion of distance
between two groups of references. The similarity of two
groups is defined as the ratio of the number of duplicates
they share and the length of the longer group. Formally, for
two groups g1 and g2,

sim(g1,92) = [common(gy, g2)| /maz(|g1], |g2|) where

common(gi, g2) = {(r1, r2)|dup(r1,r2),71 € g1,72 € g2}

The distance is then d(gi1,g92) = 1 — sim(g1,92). Now we
take the distance of a group g from a group set G to be the
shortest distance from g to some group ¢’ in G. d(g,G) =
mingecd(g,g’). Finally, for the distance between two group
sets G1 and G2, we find the mean distance of groups in G to

G2 and of groups in G2 to G1 and take their average. This
we choose to call the group detail distance dgroup between
two references.

We can now see the recursion in the definition of dupli-
cates and appreciate the need for an iterative algorithm. As
new duplicates are discovered, the distances between group
sets of references are going to change, potentially leading
to the discovery of more duplicates. We represent the cur-
rent set of duplicates as clusters. We associate with each
cluster the set of groups that its references occur in. This
is the group set of the cluster. Formally, for a cluster cy,
G(ck) = {g(ri)|ri € cx}. Also, with each cluster, we main-
tain a representative attribute value of all its references.?
Once we have these two features for a cluster, we can eas-
ily extend the definition of distance between references to
the distance between clusters. At each step, the algorithm
re-evaluates the distances between clusters and merges the
‘nearest’ cluster-pair to represent the same entity. The iter-
ations continue until there are no more candidates worthy
of merging.

The group detail distance, as we have defined it, is com-
putationally expensive since it involves pairwise comparison
of the group sets in the two clusters. An approximate al-
ternative that is computationally more tractable is to main-
tain and compare group summaries. The group summary
gsum of a reference is the set of all unique references in
its group set. Defining it in terms of the cluster, it is
the set of all cluster labels in the group set of the clus-
ter. gsum(ck) = {cilei € g5,9; € G(ex)}. Since the group
summary is a set of cluster labels of references, our defini-
tion of distance between two groups carries over to distance
between group summaries. This we call the group summary
distance dgsum between two clusters. If the references in
the summaries are kept sorted by their cluster labels, this
distance is computable in time that is linear in the group
summary lengths. Finally, we define the summary distance
between two clusters ¢; and c; as a weighted combination
of the distance dga++ of the representative attributes and the
group summary distance dgsum.

d(ci; cj) = (1 — @) X daser(ci, ¢5) + @ X dgsum (i, ¢5)

5.2 Iterative Group Clustering

It should be noted that at the start of the algorithm, when
each reference is believed to be a distinct entity, the distance
between all group summaries will be zero. Thus, in order to
jump-start our group clustering algorithm, we start off by
merging together references that ‘obviously’ correspond to
the same entity, or, in other words, are separated by negli-
gible attribute distance. Once the initial clusters have been
formed, we choose the candidate cluster-pairs that are likely
to be the same entity. The candidate set is chosen using
a distance threshold. At each iterative step, the algorithm
re-evaluates distances for the candidates, selects the closest
pair according to the distance measure, merges the clusters
and updates the attribute means and group sets and sum-
maries. This procedure continues until the candidate set is
exhausted.

6. EXPERIMENTAL EVALUATION

2For numeric attribute values, we use the mean. For ordinals
or string attributes, we can use domain specific knowledge to
decide the representative value or use the mode or medoid.



A difficulty with evaluating record linkage performance is
the lack of gold standard for real-world data sets. Here we
report a systematic evaluation of our iterative record linkage
system on synthetic data, where we can model associations
among authors, quantify the amount of noise and evaluate
the recall-precision profiles for our algorithm.

6.1 Data Generator and Evaluation Measure

Since our goal is to evaluate the importance of co-occurrence

information for deduplication, our data generator incorpo-
rates structure in the author domain by mimicking a real-
life scenario where authors affiliated with a research group
or a department in a university co-author papers. We create
cliques of entities, where an entity belongs to a clique with
some probability. We may imagine the cliques to represent
groups of authors with similar research interests. Since any
author can be associated with multiple research groups or
have multiple research interests, we allow an entity to belong
to multiple cliques. Each entity has fixed attribute values,
corresponding to the true identity of the author. However,
when it appears as an author name in any paper, it is likely
to look different, which is why author identification is diffi-
cult. We mimic this phenomenon by probabilistically adding
noise to the author identity when generating the author in-
formation for any particular paper. The parameters for the
generator include the number of groups, cliques and authors,
the degree of overlap between the cliques and the mean size
of the cliques and the groups. The degree of overlap controls
the extent to which entities belong to multiple cliques. Two
other parameters control the noise in the attribute values
of the references in each group — the error probability pe,r
and standard deviation oerr. Each group g in our dataset
is generated independently. First, a preference clique c is
selected according to the prior probabilities of the cliques.
Then the number of references for the group is chosen from a
normal distribution. Each reference r is chosen by selecting
an author a from the clique ¢ according their probabilities of
belonging to c¢. Each reference also has a small probability
of being selected from any random clique ¢’ different from
c. The attribute values of the reference r, as they appears
in the group, are generated by modifying by attributes of a
with probability perr, the magnitude of modification being
determined by o¢rr. While this procedure does not exactly
capture the actual generative process for author-names in
a paper, we believe ours is a simple and reasonable model
that considers relationships among authors. We start off
with each reference in a distinct cluster, which results in a
cluster diversity of 1 but the entity dispersion is high since
all references corresponding to the same entity are scattered
across different clusters.

We evaluate our algorithm by measuring the quality of the
clusters generated. We use two measures of cluster quality.
Entity dispersion reflects the number of different clusters
that references corresponding to the same entity are spread
over. Lower dispersion is better; a perfect deduplication has
dispersion 1. Cluster diversity quantifies the number of dis-
tinct entities that have been put in the same cluster. Lower
diversity is also preferable; a perfect clustering has diversity
1. There is an inherent tradeoff between improving diversity
and dispersion; an improvement in one will usually adversely
affect the other. We consider the weighted average of the
dispersion over entities and of the diversity over clusters as
a measure of the quality of deduplication achieved.

6.2 Results

We compare the entity dispersion and cluster diversity
achieved using group summary clustering against those us-
ing attribute clustering for varying data characteristics and
algorithm parameters. The two algorithm parameters are
the mixing weight a and the candidate selection threshold
ts. The data parameters that we experiment with are the
error probability perr and standard deviation oerr, the mean
clique size gmean and the mean group size gmean. As default
values, we choose 1000 entities, 5000 groups with gmean = 4,
100 cliques with ¢mean = 10 and minimal overlap between
cliques, perr = 0.1 and ¢ = 0.03.

The dispersion-diversity plots in Figure 3 show how the
performance of the two algorithms varies with o and t¢,.
The plots show that the best (dispersion,diversity) com-
bination achievable with group summary clustering is much
better than attribute clustering. They also demonstrate the
intrinsic trade-off between low dispersion and low diversity.

The results on experiments with data parameters are shown
in Figures 4 and 5. It should be noted that time flows from
left to right in our plots and the number of clusters decreases
with each iteration. The conclusions that we draw from the
plots are that the gains with group clustering are more when
the mean size of the groups is larger, the cliques of authors
are more in number and smaller in size and the error prob-
ability and standard deviation are higher for the attribute
values.
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Figure 7: Execution times of attribute clustering
and group summary clustering for varying data sizes

The above plots for data parameters show that group clus-
tering is able to discover duplicates that are not easy to iden-
tify with fixed threshold attribute similarity approaches. It
should be noted that our algorithm is not a substitute for at-
tribute similarity algorithms. We present an iterative frame-
work for combining attribute distances and group distances.
While sophisticated attribute similarity measures already
exist, we have presented a simple measure for quantifying
distances between groups. Our algorithm should produce
better results with improved attribute and group distance
measures.

In Figure 6, we compare clustering using group detail dis-
tance and group summary distance against attribute clus-
tering. We recall that group detail distance uses all the
groups in a cluster for measuring distances while the group
summary distance is a computationally more tractable but
approximate alternative that considers a summary repre-
sentation of the groups. While both of them do significantly
better than attribute clustering, group detail clustering ex-
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Figure 4: Entity dispersion and cluster diversity for varying group and clique sizes.

pectedly shows bigger improvements.

Figure 7 shows the execution times of group summary
clustering and attribute clustering for increasing number of
references. The plots show that group summary clustering
scales gracefully with increasing data size. It is expectedly
more costly than performing attribute similarity and for our
datasets it takes roughly twice the time. However, the added
cost clearly reaps bigger benefits, as shown by the perfor-
mance plots. Database cleaning is not an operation that is
likely to performed very frequently and the increased com-
putation time is not expected to be too critical. There may
of course be situations where this approach is not likely to
prove advantageous, for example where distinctive cliques
do not exist for the entities or if references for each group
appear randomly. There the user has the choice of falling
back on traditional attribute similarity or choosing « to set
a low weight for group distances.

7. CONCLUSION

In this paper, we have defined an iterative deduplication
algorithm and shown extensive evaluations on synthetically
generated bibliographic data. We have found iterative dedu-
plication to be a powerful and practical approach that per-
forms better than attribute-based clustering. In future, we
plan to work on real world data and investigate multiple
entity consolidation and scaling issues.
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