
Feature-based Device Selection in Heterogeneous
Computing Systems

Ayman Tarakji Niels Ole Salscheider Stephan Alt Jan Heiducoff
Faculty of Electrical Engineering and Information Technology, RWTH Aachen University

Aachen, Germany
{tarakji,salscheider,salt,heiducoff}@lfbs.rwth-aachen.de

ABSTRACT
With the advent of accelerator-based heterogeneous parallel
systems, the need for a solution of the task-device matching
problem is increasing. Due to the enormously growing di-
versity in existing computing architectures, optimal match-
ing promises to deliver high performance at reduced energy
costs. By means of OpenCL and particularly the LLVM
compiler infrastructure, our approach makes the task-device
matching decisions taking into account the characteristics
and particularities of the different processing hardware. We
evaluate our approach using a set of OpenCL based real-
world applications and well established benchmarks, which
are run on different hardware platforms and architectures.
Our results indicate highly accurate predictions made by our
model during the matching procedure.

Keywords
OpenCL, GPGPU, LLVM Compiler, static code analysis,
heterogeneous parallel systems, GCN, Kepler

1. INTRODUCTION
In the field of GPU-based heterogeneous computing, in-

vestigating the load characteristics of applications on the one
hand, and analyzing the properties of the processing devices
on the other are both necessary to ensure highly efficient
execution. For instance, the number of stream operations
indicates on which device (CPU, GPU) a computation task
will execute faster [6]. Thus, the need for a unified pro-
gramming model is increasing, which can deal with the het-
erogeneity problem of existing computing architectures and
achieve high performance and maximal utilization of existing
resources. Besides being an open standard, the unified par-
allel programming model OpenCL provides a unique benefit
due to its ability to target a variety of devices. A group of
properties is provided in this context allowing the program-
mer to specify which types of devices they are interested in
(CPUs, GPUs or ACCELERATORs) [13].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CF’14, May 20 - 22 2014, Cagliari, Italy
Copyright 2014 ACM 978-1-4503-2870-8/14/05... $15.00.
http://dx.doi.org/10.1145/2597917.2597927
.

This paper presents a technique to automatically achieve
the task-device mapping [8] in a heterogeneous computing
environment. It uses a machine-learning method based on
code features of OpenCL programs, which are extracted dur-
ing compile time. At first, a static code analysis is performed
on the intermediate representation of LLVM (Low Level Vir-
tual Machine) [11], which is a modular compiler framework
written in C++ and deployed by the OpenCL driver. LLVM
represents a collection of compiling and tool chain technolo-
gies, containing libraries, compilers, and code generators.
Thus, LLVM’s accessory suits our project’s requirements
and demands very well. In the following step, using a sta-
tistical model and based on the extracted code features, a
machine-learning predictor determines the optimal device
for a given task.

In order to give a realistic evaluation, we show that our
model is able to predict the device’s suitability of a set of
real-world applications, even when only few programs are
involved in the training. With outstanding accuracy, we
demonstrate the ability of our predictor to classify a variety
of programs as “CPU-only” or “GPU-only”. In addition, the
well established Parboil benchmark suite [14] is considered
in our experiments.

To emphasize the portability of our approach, we run the
same tests on different groups of programs deploying two
different computing platforms and GPU architectures. On
the one hand, the use of the different platforms should bring
the evidence, that the machine-learning technique used by
our predictor is adaptive to a variety of accelerator-based
computing machines. On the other hand, the consideration
of different groups of programs shows, that our predictor is
not limited to a certain class of algorithms.

This paper is organized as follows: In the following, a re-
view of the motivation and related work are provided. In
section 4, we present the design and methodology of our
feature-based predictor. After a summary of contribution
in section 5, section 6 includes a variety of experiments
achieved on our predictor, and section 7 concludes the paper.

2. MOTIVATION
In general, a great distinction among computing archi-

tectures exists. In order to always use available resources
to the full potential, appropriate methods are required to
accurately determine the optimal work distribution among
the different execution units in a heterogeneous system. We
believe, that due to the architectural diversity and the ef-
ficiency issue in such systems, the decision where to run a
given task should be made a priori.

PCIe

Host Interface

CU CU CU CU

global memory global memory

Device2Device1

Many-core
Processor

Core Core

Core Core

Context Context Context

Device3

Context

CU CU

CU CU

global memory

DRAM

M
a
tc
h
in
g

Ti ... Tj Ty ... TzTk ... Tr

S
V
M

C
o
d
e
A
n
a
ly
si
s

locallocal local local

Prog Prog Prog Prog

Figure 1: An exemplary OpenCL-based model including task-device mapping in a heterogeneous environment.

We introduce a predictor that performs the task-device
matching in a highly diverse computing environment, pro-
viding for a broad definition of modern accelerator architec-
tures. In fig. 1, an example of the matching procedure is
illustrated in connection with such a heterogeneous system
mapped to the OpenCL platform model.

In the context of this paper, we are currently in the process
of discussing our predictor’s usage with two GPU architec-
tures: NVIDIA’s Kepler and AMD’s Graphics Core Next
(GCN), both represent the latest innovation in the field of
general purpose computing accelerators. However, although
the most widely studied variant thus far has been a certain
mixture of CPU+GPU system architecture (as will be seen
from the following discussion in section 3), the long term goal
of this approach is to extend the predicting method to exist-
ing accelerators other than GPUs. For instance, an interest-
ing comparison of GPU architectures would be with the In-
tel Many Integrated Cores (MIC) architecture regarding the
task-device mapping decisions. We have already performed
several tests on the Intel Xeon Phi accelerator, however, we
let this discussion for future work.

In a relevant context [16], we introduced a preemptive
scheduling method OCLSched for the purpose of utilizing
the computing resources of any existing OpenCL device in a
heterogeneous system, as soon as they become available. Its
major function is to manage the execution of multiple tasks
on different OpenCL devices in a system-wide view, and
to provide for multi-user by means of the well established
server-client model. A combination of such a time-sharing
scheduler with the predictor presented in this paper, would
provide a comprehensive unit that runs in background and
manages the distribution and execution of tasks centrally,
exhausting the available computing units in any accelerator-
based heterogeneous system. Such a combination will be
discussed in future work.

3. RELATED WORK
In the CPU-GPU heterogeneous computing era, many ef-

forts have been taken to provide robust and efficient com-
puting environments. Several dynamic methods to predict
the run-time behavior of a variety of applications have been
proposed [8, 10, 18]. These were based on either analytic
benchmarking or code profiling. The concept treats the ex-
ecution time of a task as a random variable and makes a
prediction based on past observations.

Similarly, a further approach to estimate execution time
by means of a hybrid method was presented [8]. Using an-
alytic benchmarking, performance discrepancies of multiple
computing devices were characterized on the basis of a se-
ries of special benchmarks. Then, in combination with past
observations, these characteristics were used in a statistical
method to obtain the execution time estimates for each task.
In that strategy, a lot of past observations were required in
order to improve the accuracy of predictions, but at very
high computation costs of the prediction algorithm. Other-
wise, the prediction errors ranged around 50%, although the
evaluation was restricted to a small set of applications. An-
other dynamic approach Harmony [4] explored the matching
of a kernel program to a device based on their conformity.
Using a profiling model to predict the performance of a pro-
gram during runtime, the approach scheduled the entire task
to a certain device.

In contrast to dynamic methods, run-time overhead is
pull-forwarded to compile time if static techniques are used.
In the related work, such an approach was proposed for clas-
sifying whether an OpenCL kernel should run on a CPU or
a GPU [7]. Additionally, in case a task was suitable for both
the CPU and the GPU, an estimate how to distribute the
work between them was given. For this purpose, a machine-
learning technique was used in order to predict the optimal
partitioning p = f(c) ∈ [0, 10] based on a feature vector c.
The features in c were extracted from a kernel using a static
code analysis on the compiler level.

In this paper, we similarly introduce a static approach
based on predictive modeling of device suitability, but, in
contrast to [7]:

• instead of the AST (Abstract Syntax Tree) generated
by CLang (LLVM’s front-end for C-like languages), we
focus on strengthening the portability of our method,
thus, our predictor uses the LLVM’s IR (Intermedi-
ate Representation) to extract code features indepen-
dently from any special front-end.

• since our focus is on providing for a wide range of ex-
isting computing devices and involving a variety of ac-
celerator architectures, we use a single model approach
building predictions for “CPU-only” or “GPU-only”, in
other words, we focus on matching the entire task to
the appropriate device.

• our intention is to extend the feature-space and the

training data of our predictor corresponding to the in-
creasing heterogeneity when considering multiple com-
puting devices. However, the necessity for a third clas-
sification choice ”mix ” (as proposed in [7]) should be
investigated only after achieving the intended exten-
sions, because then such an investigation would be
meaningful for our model.

• particularly in regard to the energy consumption issue,
involving multiple devices to perform a certain compu-
tation task could result in less energy efficiency in some
cases. Fur this purpose, we plan to develop different
predicting modes, which will be added to our model
supporting different policies: maximal performance and
minimal energy consumption. This might be infeasible
if tasks are split among multiple accelerators.

4. APPROACH
In the context of this work, we introduce a method for

predicting the suitability of a computation task to be run
on a selective device in a heterogeneous computing environ-
ment. In the prediction procedure, a set of properties are ex-
tracted from OpenCL kernel programs at compile time. The
extracted features need to carry enough information about
the behavior of programs, in order to classify them concern-
ing the execution hardware. It is possible to quantify these
features as a vector of numeric parameters xT = [x1x2...xn].
Thus, the optimal matching of a task can be modeled as
a function g(x) of this parameter vector. By means of a
machine-learning technique that uses a statistical model,
predictions are systematically created. In this way, our
predictor can adapt to any new hardware using such tech-
niques, and thus our method becomes platform-independent.

Well established benchmarks are useful to understand the
computer architecture on the one hand, and to evaluate and
compare different innovative methods on the other. For
this reason, an important part of our research would be
conducting a thorough evaluation of our predictor on the
basis of several benchmarks and applications. As the Par-
boil benchmark suite includes a variety of heterogeneous ap-
plications emphasizing throughput-oriented computing, we
deploy these benchmarks besides a set of real-world appli-
cations in the evaluation part. Involving this suite in the
feature-extraction procedure enriches our evaluation during
the machine learning phase greatly.

In order to explore and verify the system portability of our
approach, we run our tests on different machines deploying
a variety of very recent GPUs from the two major vendors
in the GPU market: AMD and NVIDIA. A performance
comparison between the different GPUs would be an inter-
esting point in such a device-task mapping model, especially
when also considering other modern computing architectures
(such as Intel Xeon Phi). But, that will not be treated in the
context of this work due to the abstract analysis intended
in the context of code feature extraction.

The need for a comprehensive practice with modern ac-
celerator architectures treated by such a predictor has been
the initial spark of the contribution of another study [15],
in which we disclose architectural characteristics of different
processing devices. An extensive evaluation of performance
is introduced while running a variety of applications using
OpenCL. This investigation should help us to further ex-
tend the functionality of our feature-based predictor, and to

Table 1: List of extracted source code features. Both further
columns contain the level of impact on the decision-making
with regard to the target device. The impact values are de-
termined as either low or high.

feature CPU GPU

f1: Mem. accesses per transmitted Bytes low high
f2: FLOPs – –
f3: FLOPs per transmitted Byte low high
f4: IOPs – –
f5: IOPs per transmitted Byte low high
f6: Work-items low high
f7: Basic blocks high low

selectively extend its feature space in future work.

4.1 Feature-based Predictor
Estimation-based techniques for task-device matching in

heterogeneous systems use either profiling-based or statis-
tical methods. While code-profiling methods use past ob-
servations obtained from executed instances of a program,
feature-based statistical methods make use of extracted prop-
erties to give a statement about the run-time behavior. With
the former method, a lot of past observations are usually re-
quired in order to improve the accuracy of predictions, and
even worse, high computation costs of profiling are to be
expected. Furthermore, accurate predictions are only possi-
ble for regular computation patterns, which is not the case
for many real-world applications. For these reasons, we use
a feature-based statistical model to give an estimate of the
task’s suitability, and hence a decision about where to run
a given task can be made autonomously. This model is able
to treat regular as well as irregular computation patterns at
low overhead costs.

When using such a model, as the number of the extracted
features increases, the estimation accuracy of the predictor
improves. But at the same time, the more features are con-
sidered, the more sample programs are required during the
learning phase of the predictor. However, according to our
approach, we currently extract the most decisive features
(f1 – f7) of computation tasks as shown in table 1, with
the intention of extending the feature space of our model in
future work.

Each of the extracted features has a different level of im-
pact on the matching decision regarding the target device
(as shown in the CPU and GPU columns of table 1). De-
pending on run-time aspects in a heterogeneous system, the
extracted features can be classified into two categories: f1
– f6 describe the complexity of the computation problem
and the amount of involved mathematical operations, the
last feature f7 is a measure for the control flow complexity
in the kernel program. In the assessment of feature-based
prediction, it is not just a question of the individual fea-
tures but also their combinations that are required in order
to provide all useful information they contain. In this con-
text, we use a statistical model due to its advantage that no
prior knowledge about the deployed hardware is required. It
can compensate for many different parameters, without re-
quiring a distinct model for each of the device architectures.
This achieves the portability of our model across systems as
well as implementations.

4.2 LLVM Compiler Infrastructure
The feature extraction of kernel programs takes place at

compile time. We propose a modified version of the LLVM
compiler which accomplishes this task efficiently. The LLVM
infrastructure has many advantages. Besides its simplicity,
it has a language-agnostic design resulted in a variety of
front ends for different programming languages. Most com-
mercial and free OpenCL implementations are based on both
components, LLVM 1 and Clang 2.

We have developed a custom LLVM pass that extracts a
set of code features from a given kernel program. In order to
extract the number of memory accesses and floating point
as well as integer operations, an analysis is performed on the
application’s Control Flow Graph (CFG) that is generated
by LLVM. This analysis iterates over all basic blocks in the
given code. The recorded parameters are then multiplied by
the frequency of the corresponding basic blocks in order to
get the total amount of instructions that will be executed.

Fortunately, different types of LLVM’s analysis passes are
provided in the compiler infrastructure. One important anal-
ysis with regard to our objectives estimates the frequency of
a basic block, that is how often a certain basic block in a
program’s work-flow will be executed. LLVM provides two
different passes that can be used for this analysis: The first
is the BlockFrequencyInfo pass which relies on the Branch-
ProbabilityInfo pass. The latter deploys heuristics (and
profiling information when available) to determine the prob-
ability that a given execution path (branch) of the program
will be taken. The BlockFrequencyInfo pass uses this in-
formation to estimate the frequency of a basic block. The
second pass that can be used to analyze the frequency of a
basic block is ScalarEvolution. This pass calculates closed
form expressions for all scalar integer variables in a program
code [2], including induction variables. Therefore, it can be
used to determine loop bounds (when it is possible).

Since BranchProbabilityInfo does not analyze the value
range of an induction variable to determine the exact loop
count even when it is possible, we decided to use the Scalar-
Evolution pass. In contrast to BlockFrequencyInfo, the
other pass ScalarEvolution does not provide any other es-
timations for the block frequency. Thus, as an intermediate
workaround, we consider each basic block to be executed
exactly once if no further information is available.

Although our predictor in the current state, delivers highly
accurate decisions without using BlockFrequencyInfo as
will be seen later in section 6.2, it would be very inter-
esting to observe the improvement in the predictor’s accu-
racy when deploying the information from the BlockFre-

quencyInfo pass. In other words, we are going to combine
both BlockFrequencyInfo and ScalarEvolution to obtain
more accurate information about the basic block’s frequency.
However, this belongs to the intended feature-space exten-
sion.

4.3 Machine Learning
Our predictor uses a machine-learning technique to deter-

mine the optimal task-device matching of an OpenCL pro-
gram. Each considered program is characterized as a fixed
vector of features, which are extracted using a static analysis
method and fed into the predictor. A feature-map function is

1http://www.llvm.org/
2http://clang.llvm.org/

built upon the training data (from the considered programs),
which consists of a set of pairs <code features,predictions>
obtained from the other programs. The learnt function de-
scribes a binary classification problem. In order to solve
this kind of problem, statistical classification methods are
required. In the following, we explain the mathematical
background of these methods based on previous work [9],
and discuss the implementation of these methods in our ap-
proach in details.

4.3.1 Reduction of Dimensionality
In our model, when the feature extraction process has

terminated, the dimensionality of the feature space should
be reduced in order to make the features specific for each
program. Then, the resulting vectors can be passed to the
predictor. The statistical procedure Principal Component
Analysis (PCA) can be used to get a reduced set of orthog-
onal linear projections from a random vector. This random
vector can be represented as follows: X = (X1, . . . , Xr)T ,
while X consists of possibly correlated random variables [3].
In other words, PCA performs a linear transformation of
input data into a new coordinate system. The linear pro-
jections given by PCA are ordered by decreasing variance.
The basic idea is, that the variance is an indication of the
information content of a variable. Thus, the first princi-
pal component generally carries a major part of information
while the following components carry less. Since the result-
ing random variables are orthogonal (see fig. 2), PCA decor-
relates X during the construction. PCA is mainly used as a
dimensionality-reduction technique, but, it can also be used
to discover features of a data set (e. g. by plotting the data
set given by PCA).

−2 0 2 4
−4

−2

0

2

4

6

8

x

y

Figure 2: PCA of a multivariate Gaussian distribu-
tion, µX = (2, 3)T , ΣXX = (1, 1.5; 1.5, 3). The vec-
tors in the plot are the eigenvectors of the covari-
ance matrix ΣXX , scaled by the square root of the
corresponding eigenvalue.

Let X = (X1, . . . , Xr)T a random vector with mean µX

and covariance matrix ΣXX .
PCA transforms the (possibly correlated) input variables

Xi to a set of t uncorrelated linear projections ξ1, . . . ξt,

where t ≤ r:

ξj = bTj X

The total variance of the input variables can be computed
as:

r∑
j=1

var(Xj) = tr(ΣXX)

PCA only works well when the data lies in an approxi-
mately linear manifold M, i. e. a linear subspace of input
space Rr. If it is likely that the data lies in a nonlinear man-
ifold, further techniques such as kernel PCA are required.
kernel PCA transforms the input data points Xi ∈ Rr to
points Φ(Xi) ∈ H. In this case, H is called feature space,
the map Φ : Rr → H is called feature map. The dimen-
sionality NH of H is higher than the dimensionality r of the
input space. Thus, after performing this transformation, a
linear PCA can be carried out in the feature space.

We have already implemented PCA in our approach, how-
ever, in the current state of our feature-space, there is no
need for it. In the following development of our model when
the feature-space grows, we are going to reactivate PCA to
get its performance advantages.

4.3.2 Binary Classification
There exist standard techniques for supervised learning

models that allow binary classification of data. Due to its
simplicity, Support Vector Machine (SVM) is one of the most
used mathematical methods for solving such problems. In
the case of data linearity, SVMs provide the optimal solu-
tion at high performance if compared to other mathematical
algorithms like Artificial Neural Network (ANN) [17], which
is better suited for modeling a non-linear space than SVMs.
One example is the feature-based performance predictor [5]
included in the related work.

An exemplary SVM model for a linearly separable data set
is depicted in fig. 3. Given a set of training data, the idea
behind such methods is to find a hyperplane in the vector
space spanned by the features, so that the distance between
the hyperplane and the closest training data point of each
class becomes maximal. To give a quantified description of
the SVM used in our model, let L = {(xi, yi) : i = 1, . . . , n}
be a set of training data where xi ∈ Rr and yi ∈ {−1,+1}.
The classification of each program is taken within a binary
space: Given L, construct a function g : Rr → R so that

C(X) = sign(g(x))

is a classifier. That is, g partitions a test set T in two
disjunctive classes, Π+ and Π−:

Π+ = {x : C(x) = +1}, Π− = {x : C(x) = −1}

Consider the case where the data set L is linearly separa-
ble, i. e. by a hyperplane H:

H = {x : g(x) = β0 + xTβ = 0}

β is called weight vector and β0 is the bias.
The margin is defined as d = d− + d+ where d− is the

shortest distance from the hyperplane to the nearest nega-
tive data point and d+ is the shortest distance to the near-
est positive data point (see fig. 3). The problem to find the

Figure 3: A SVM exemplary model for a linearly
separable data set L. The red points belong to class
Π−, the blue points belong to class Π+ (taken from
[9]).

maximal margin classifier H can be formulated as:

minimize
1

2
‖β‖2

subject to yi · (β0 + xT
i β) ≥ 1, i = 1, . . . , n

This is a convex optimization problem that can be solved us-
ing Lagrangian multipliers. The dual problem can be writ-
ten as follows:

maximize FD(α) = 1T
nα−

1

2
αTHα

subject to α ≥ 0

αTy = 0

where y = (y1, . . . , yn)T and H = (Hij),
Hij = yiyj(x

T
i xj).

Let S = {i ∈ N : yi · (β0 + xT
i β) = 1, 1 ≤ i ≤ n}. Then

β̂0 and β̂ can be expressed as:

β̂ =
∑
i∈S

α̂iyixi

β̂0 =
1

|S|
∑
i∈S

(
1− yixT

i β̂

yi

)

4.3.3 Training Data Separation
In general, the training data set L might be not linearly

separable due to existing noise in the training data, so that
the data can not be clearly classified, or that the data points
are separable, but not in a linear fashion. In the first case,
additional slack variables can be used to get a soft-margin
solution. This allows that some data points can violate the
constraint yi · (β0 + xT

i β) ≥ 1, accounting for out-liners.
When the data is non-linearly separable, a technique sim-

ilar to the idea used for kernel PCA can be employed. That
is, a nonlinear transformation is applied to the training data
points xi ∈ Rr, so that a linear SVM can be constructed us-
ing samples {Φ(xi), yi}.

In conclusion, a given OpenCL kernel can belong to one
of two categories: “CPU-only” or “GPU-only”. The fea-
ture extraction of program code occurs at kernel’s compile
time, however, the prediction itself has to be done at run-
time of the application, because both the hardware platform

and the program code are not defined a priori (due to the
machine-learning approach). In the current state, the linear
separation of feature data has achieved the objective of our
predictor. However, methods that are better suited for mod-
eling a non-linear space (such as ANN), might be valuated
for further development in future work.

5. SUMMARY OF CONTRIBUTIONS
In contrast to the related work [7], we focus on matching

entire computation tasks to the appropriate device in a het-
erogeneous system. Using a single model approach building
predictions for “CPU-only”or“GPU-only”, our predictor de-
ploys the LLVM’s IR (Intermediate Representation) for the
purpose of code analysis. This has the advantage that we can
extract code features of any kernel independently from any
special front end. While the feature extraction of OpenCL
kernel programs takes place at compile time, the prediction
itself is performed at runtime.

The contributions of this paper can be described as fol-
lows:

• We provide a hardware-independent as well as com-
piler front-end independent predictor, which simplifies
the process of adding new devices to the deployed com-
puting machine. Thus, other accelerator architectures
(i .e. Intel Xeon Phi) can profit the establishment of
such a strategy.

• With the use of a feature-based matching model, highly
accurate predictions are obtained for several applica-
tions and benchmarks (as will be seen in the evalua-
tion), although no profiling is used by our predictor.

• From a programmer point of view, for applications
on multiple processing the programmer should write
a kernel once and it will be automatically mapped to
the suitable computing device.

• These benefits may reduce power consumption in het-
erogeneous parallel systems and leverage the combined
capabilities of multi-core CPU and many-core GPU
architectures. In the case, if the wrong device (in
terms of energy consumption) is repeatedly selected
to perform a certain computation task in a heteroge-
neous system, this would result in less energy efficiency.
A specially developed predicting mode ”minimal en-
ergy consumption” would build the optimal decisions
concerning the energy efficiency performance per watt.
This predicting mode is currently in development as an
alternative policy to the currently used one (maximal
performance).

• While the focus of this paper is tending to avoid the
waste of resources in a heterogeneous system by means
of prediction, we believe, that these experiences might
be advantageous for high performance computing sys-
tems’ developers in the early stages of processor design.

• In future work, several measures will be taken to ex-
tend the feature space of our predictor, such as break-
ing the extracted FLOPs and IOPs down into different
types of mathematical operations and combining the
output data of both LLVM passes BranchProbability-
Info and ScalarEvolution.

6. EXPERIMENTS
Experimental evaluations of our approach were performed

using the Parboil benchmark suite as well as own implemen-
tations of several real-world applications written in OpenCL.
These implement well-known algorithms in mathematics and
physics. The experimental part is divided into two parts,
each of them uses a different test platform and a different
group of benchmarks and applications. In the first part,
we consider applications, which primarily implement matrix
algorithms.

In the second experiment, we extend the application range
of the training data in order to demonstrate the improve-
ment potential of the machine-learning technique used by
our predictor, when several benchmarks with similar prop-
erties are taken into account. Further, the accomplishment
of our tests on completely different hardware platforms is
clear evidence of the predictor’s adaptivity to a variety of
accelerator-based computing machines.

6.1 Experiment – Part I.
The test set of applications selected for this experiment

represent a wide range of algorithm behaviors and computa-
tion patterns. These include: Matrix-Matrix multiplication,
Matrix-Vector multiplication, Laplace, Convolution, Elec-
trical Field, MergeSort and Mandelbrot. For the purpose of
extending the training data required in the machine-learning
when considering transcendental functions, we also use a
modified implementation of the Matrix-Matrix multiplica-
tion algorithm Matrix-sqrt, that additionally calculates the
square root of each element in the resulting matrix deploying
the sqrt function.

6.1.1 Platform I.
This experiment was carried out on a computing system

with an AMD’s FirePro S7000 GPU. This device is based
on the AMD Graphic Core Next architecture [12] and con-
sists of 20 compute units (64 processing elements for each)
and 4 GB global memory. It delivers 2.4 TFLOPS of theo-
retical peak single precision floating point performance and
624 GFLOPS for double precision. It is connected through
PCI Express 3.0 to a quad-core Intel CPU (i5-3550).

6.1.2 Evaluation
In this experiment, we demonstrate the ability of our

predictor to classify given programs as“CPU-only”or“GPU-
only”. Since the execution time of an application is a func-
tion of the size and properties of input data, we performed
a quantity of experimental tests on several applications by
varying the workload. Prediction values are then repre-
sented each as an average of all those when executing the
corresponding application with different input sizes. With
the use of a standard cross-validation technique, the training
data is partitioned into complementary subsets performing
the statistical analysis on each subset and validating the
analysis on the other subsets.

In order to solve the binary classification problem using
SVM, the weight vector β and the bias β0 in the equation
above must be determined first. As explained previously,
the extracted features taken from table 1 generate a vector
xT = [f1, f2, f3, f4, f5, f6, f7]. Generated by means of SVM,
we measured the individual elements of the hyperplane H
for the considered features. The weight vector (β) as mea-

M
at

rix
-M

at
rix

m
ul

t.

M
at

rix
-s
qr

t

M
at

rix
-V

ec
to

r
m

ul
t.

Lap
la
ce

C
on

vo
lu

tio
n

Ele
ct

ric
al

Fie
ld

M
er

ge
So

rt

M
an

de
lb

ro
t

20

40

60

80

100

benchmark

su
cc

es
s

ra
te

[%
]

Figure 4: Predictor’s results (presented in the form of success rates) of a set of applications. The test
platform deploys an AMD’s FirePro S7000 GPU connected through PCI Express 3.0 to a quad-core Intel
CPU (i5-3550). The dotted line indicates the success rate of 50%.

sured using the experimental machine is:

β = [0.2213, 0.0291, 0.2448, 0.0258, 0.1986, 0.0285,−0.0001]

and the measured bias is: β0 = -0.7378.
The most expressive features having the highest weight

values are marked with a different color.
In fig. 4, the predictions for several real-world applica-

tions are illustrated. The prediction of each application is
expressed as a percentage between 0 - 100. In the most cases
of our tests, a reasonably accurate prediction with a rate of
70% (error rate of 30%) or higher is achieved, except for
Electrical Field3 and Matrix-sqrt. Both algorithms involve
a high amount of special transcendental functions, which are
still not sufficiently supported by our predictor.

However, it is easily achievable to further increase the
confidence of our machine-learning technique regarding this
type of applications, by extending the feature space and the
training data (considered algorithms) of our model. Espe-
cially in regard to the feature space, the memory access pat-
tern in program code constitutes an indicative parameter
when predicting matrix algorithms like Laplace and Matrix-
Matrix multiplication. Similarly for the Laplace test, since
this algorithm involves several calls of the same kernel, the
slightly lower confidence (compared to the others) can be
explained by the lack of training data. Considering more
applications with similar computation pattern will surely
lead to a further rise in its confidence. The extension of the
training data and its impact on the predictions’ accuracy
will be explored in the second experiment section 6.2.

6.1.3 Validation of Results
In order to establish the fidelity of our predictor and to

know if the predicting matching is successful, we give a re-
alistic evaluation of the predictions of selected applications.

3http://physics.bu.edu/ duffy/py106/Electricfield.html

This is achieved through the observation of the actual execu-
tion times while using different input sizes. Each experiment
was repeated 15 times and the average execution time was
taken. During the validation, we focus on choosing input
sizes that may have an impact on the matching procedure.

As shown in fig. 5, by increasing the workload (input sizes
are shown on the x-axis), the device’s suitability of both
Matrix-Matrix multiplication and Electrical Field changes
correspondingly. Since the overhead of transferring data to
the GPU is not worthwhile for small workloads, the amount
of computation per data item represents the main criteria in
the matching decision. This is confirmed by the measured
values of the weight vector, whereby the highest weight val-
ues correspond to features that focus on the computation’s
amount per transfer.

As depicted in fig. 5(a), our predictor classifies the Elec-
trical Field up to input size 4×4×4 as“CPU-only”and from
than on as “GPU-only” (see the dashed line in the graphic).
This estimate complies with the run-time measurements of
both CPU and GPU, which change drastically from the in-
put size 8× 8× 8. When increasing the input size, the run
time on the CPU increases continuously while that of the
GPU changes only a little. The situation is similar for the
Matrix-Matrix multiplication in fig. 5(b) with the only dif-
ference, that the run time of the CPU increases much more
dramatically with the increased input size above 512× 512.
Our predictor gives its estimate for “GPU-only” one step
later in the input scale (as shown on the dashed line). Since
the execution time of Matrix-Matrix multiplication as many
matrix algorithms depends on the size of the matrix, the
computation amount describes a major factor in the deci-
sion regarding such applications. This factor is sufficiently
represented in the feature space of our predictor.

To summarize, it may be surprising that even such a small
feature space is sufficient to predict such a variety of appli-
cations, achieving a quite accurate predictor. Further, for

2
3

4
3

8
3

16
3

32
3

64
3

27.5

27.6

•

•

input size [element]

ru
n
ti

m
e

[m
se

c]
GPU CPU

CPU GPU

(a) Electrical Field

8
2

16
2

32
2

64
2

12
8
2

25
6
2

51
2
2

10
24
2

20
48
2

40
96
2

102

103

104

105

•

•

input size [element]

ru
n
ti

m
e

[m
se

c]

GPU CPU

CPU GPU

(b) Matrix-Matrix multiplication

Figure 5: The CPU and GPU run times of two ap-
plications under varying loads (log scale). The test
platform deploys an AMD FirePro S7000 GPU con-
nected through PCI Express 3.0 to a quad-core In-
tel CPU (i5-3550). The dotted lines indicate the
threshold for the classification, which is defined by
our predictor.

still not fully trained computation patterns we also see good
opportunities in the long term development of our model,
though highly accurate predictions can be made for such
algorithms when extending both the feature space and the
training data.

6.2 Experiment – Part II.
In this experiment, we extend our test benchmarks con-

sisting of almost the same applications from the previous
experiment by the Parboil benchmark suite and additional
applications. Three real-world applications are included in
the test set besides those from the first experiment. While
the first application implements the N-body simulation [19]
from astrophysics, the second one Euclidean Distance calcu-
lates the distances between two n-dimensional vectors, and
the third one implements the Jacobi method used in the
numerical linear algebra. Jacobi is an iterative algorithm
for determining the solutions of a system of linear equations
with largest absolute values in each row and column domi-
nated by the diagonal element. During the first experiment,
a special implementation of the Matrix-Matrix multiplica-
tion “Matrix-sqrt” was used for the purpose of extending
the training data of the machine learning when considering
transcendental functions. Since, we consider a wider range

of applications in this experiment, “Matrix-sqrt” is not re-
quired anymore.

The Parboil benchmark suite includes several through-
put computing applications, which are widely used to eval-
uate computer architectures, studying the performance of
throughput computing devices and exploring new compila-
tion and runtime techniques. A few of these benchmarks
constitute common library routines with broad applicabil-
ity, such as SGEMM or sparse-matrix, others represent spe-
cific analyses, such as the MRI sample gridding. Besides
their simplicity, through its diversity and relevance the Par-
boil suite offers great opportunities for researchers to explore
also accelerator-based computing systems.

6.2.1 Parboil Benchmarks
Since it fulfills the requirements of our research, we con-

sider the baseline accelerated version of the Parboil suite
based on [14]. The baseline suite version comprises decisions
by which the algorithms are computationally parallelized
and accelerated. Associated with the higher development
costs, specially optimized versions of the benchmark suite
also exist. However, in our exploration we focus on those
versions, which are similar to what the average programmer
would write. In the context of our investigation, the list
of chosen benchmarks from the Parboil suite as illustrated
in [14] includes:

• Sparse Matrix-Dense Vector Multiplication (SpMV):
Sparse Matrix-Vector multiplication is the core of many
iterative solvers. SpMV is memory-bandwidth bound
when the matrix is large. Sparse matrix data can be
stored or transformed into many data layout patterns
(e .g. compressed sparse row (CSR) and Jagged Diag-
onal Storage (JDS)). Particularly, the JDS format is
well-designed for parallel or vector processors, due to
its better load balance characteristics. Thus, the cho-
sen version in this benchmark is based on JDS format.

• Breadth-First Search (BFS): The Breadth-first Search
algorithm is commonly used in graph problems such
as finding the shortest path between two nodes. It is
specifically optimized for a particular EDA application
finding the shortest paths between a source node and
every other node in a graph. Every node is taken in
the current frontier and all unexplored neighbors are
enqueued to the next frontier. This process iterates
until all the nodes in the graph have been visited.

• Mri non-Cartesian Q matrix calculation (MRI-Q): This
benchmark calculates in the GPU-based MRI recon-
struction. An MRI image reconstruction is a conver-
sion from sampled radio responses to magnetic field
gradients. The Q matrix in an MRI image is a pre-
computable value based on the sampling trajectory,
the plan of how points in k-space will be sampled.
The algorithm examines a large set of input repre-
senting the intended MRI scanning trajectory and the
points that will be sampled. MRI-Q is a fundamentally
compute-bound application, as trigonometric functions
are expensive and the regularity of the problem allows
for easy management of bandwidth.

• Two-Point Angular Correlation Function (TPACF):
TPACF is a measure of the distribution of massive
bodies in space. The benchmark builds a histogram of

Sp
M

V
B
FS

M
R
I-
Q

T
PA

C
F

St
en

ci
l

SG
EM

M

Ja
co

bi

M
at

rix
-M

at
rix

m
ul

t.

M
at

rix
-V

ec
to

r
m

ul
t.

Lap
la
ce

C
on

vo
lu

tio
n

Ele
ct

ric
al

Fie
ld

M
er

ge
So

rt

M
an

de
lb

ro
t

Euc
lid

ea
n

D
ist

an
ce

N
-b

od
y

20

40

60

80

100

benchmark

su
cc

es
s

ra
te

[%
]

Figure 6: Predictor’s results (presented in the form of success rates) of Parboil benchmarks and several
applications. The test platform deploys an NVIDIA’s Tesla K20Xm GPU connected through PCI Express
3.0 to an eight-cores Intel CPU (Xeon E5-2650). The dotted line indicates the success rate of 50%.

angular distances between all pairs of observed objects
in space.

• Stencil: Due to the numerically and computationally-
intensive nature of this class of applications, partial
differential equations (PDE) solvers became an inter-
esting candidate for accelerators. In this benchmark,
the stencil code implements an iterative Jacobi solver
of the heat equation on a 3D structured grid, which
can also be used as a building block for more advanced
multi-grid PDE solvers.

• SGEMM: The SGEMM dense matrix operation is an
important building block in numerical linear algebra
codes. Due to its comprehensibility, it is often the first
studied and the most heavily tuned application on any
new architecture.

6.2.2 Platform II.
The tests are run using exactly the same structure and

methods as in the previous experiment. But in contrast
to that, another hardware platform is used deploying the
modern NVIDIA’s Tesla K20Xm GPU. The GPU is con-
nected through PCI Express 3.0 to an Intel CPU (Xeon
E5-2650) with eight cores. Tesla K20Xm is based on the
Kepler architecture [1], and consists of 14 compute units
(192 processing elements for each) and 6 GB global memory.
It delivers 3.52 Teraflops of theoretical peak single precision
floating point performance and 1.7 Teraflops for double pre-
cision.

6.2.3 Evaluation
In order to further increase the confidence of our machine-

learning technique regarding the different computation pat-
terns of existing applications on the one side, and to verify
the adaptivity of our approach to various computing ma-
chines on the other, we duplicate the first experiment from

section 6.1 by extending the training data and deploying a
completely different hardware platform in the context of this
experiment. We demonstrate the potential improvement of
our predictor while taking into account further real-world
applications, these are: Jacobi, Euclidean Distance and N-
body. Furthermore, the Parboil benchmark suite is involved
in this experiment. By varying the input size, our tests car-
ried out several hundreds in total. Each of the tests was
repeated 20 times in order to increase the reliability of the
results, whose averages are shown in fig. 6.

As shown with Laplace during the first experiment, the
slightly lower confidence of our predictor when compared
to the other applications can be explained by the iterative
nature of this algorithm. Hence, the lack of training data for
such computation patterns resulted in especially imprecise
predictions. For this reason, we extend the application range
during this experiment considering more applications with
a similar computation pattern.

In this experiment, we show that the decisions’ accuracy
of our predictor improves reasonably when extending the ap-
plication range. Running a variety of benchmarks from the
Parboil suite next to the real-world applications rises the
confidence of our predictor (see fig. 6). Predicting the con-
sidered matrix algorithms (i.e Laplace and Matrix-Matrix
multiplication) has also improved drastically in terms of ac-
curacy by the extension of the training data. Similarly, the
machine-learning technique shows highly accurate results for
most of the other considered real-world applications. Fur-
ther, these tests show that our predictor is adaptive to a
variety of hardware platforms. By using completely differ-
ent experimental environments and GPU architectures, and
repeating exactly the same tests on two different set of appli-
cations and benchmarks without any required change in its
structure, the portability of our approach has been proven.

In contrast to the previous work presented by Grewe and
F.P. O’Boyle [7], using a relatively smaller set of features

was sufficient to obtain similarly high accurate predictions
in whole. A realistic comparison with their results would
be very interesting in the context of this paper, however,
such a comparison is unfortunately not possible, because
those results were obtained by means of a two-step approach.
For such a comparison, only the results of their first-level
predictor would be required.

7. CONCLUSION AND FUTURE WORK
The focus of this work lies on distributing several tasks

among different devices in a heterogeneous computing sys-
tem. We presented a feature-based static predictor that
takes over the decision making in regard to where to run a
certain task. During the evaluation, we have shown that our
matching algorithm delivers highly accurate predictions for a
variety of real-world applications and well established bench-
marks. Future work will focus on further improving the ac-
curacy of our predictor concerning algorithms with special
computation patterns. This might be achieved through the
extension of the feature space used by the machine-learning
technique, for instance, breaking the extracted FLOPs and
IOPs down into different types of mathematical operations.

We have performed a variety of tests on the Intel Xeon Phi
accelerator, however, we let the presentation of these results
for future work, when deploying multiple CPUs, GPUs and
Xeon Phis in a single computing system. The simultaneous
support of multiple devices will be especially attractive for
many researchers and programmers, due to the increasing
heterogeneity in modern systems. We believe that build-
ing a base for executing programs on heterogeneous devices
autonomously could create an evolutionary path for the de-
ployment of accelerators in the field of high performance
computing research.

8. REFERENCES
[1] NVIDIAs Next Generation CUDA Compute

Architecture: Kepler GK110, 2012.
www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.

[2] O. Bachmann, P. S. Wang, and E. V. Zima. Chains of
recurrences–a method to expedite the evaluation
of closed-form functions. In Proceedings of the
International Symposium on Symbolic and Algebraic
Computation, ISSAC ’94, pages 242–249. ACM, 1994.

[3] C. M. Bishop. Neural Networks for Pattern
Recognition. Oxford University Press, 2005.

[4] G. F. Diamos and S. Yalamanchili. Harmony: an
execution model and runtime for heterogeneous many
core systems. In Proceedings of the 17th International
Symposium on High Performance Distributed
Computing, volume 4 of HPDC ’08, pages 197–200,
New York, NY, USA, 2008. ACM.

[5] C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. F.
O’Boyle, and O. Temam. Fast compiler optimization
evaluation using code-feature based performance
prediction. In Proceedings of the 4th International
Conference on Computing Frontiers, volume 12 of CF
’07, pages 131–142, New York, NY, USA, 2007. ACM.

[6] F. Feinbube, P. Tröger, and A. Polze. Joint Forces:
From Multithreaded Programming to GPU
Computing. IEEE Software, 28(1):51–57, 2011.

[7] D. Grewe and M. F. O’Boyle. A static task
partitioning approach for heterogeneous systems using
OpenCL. In Proceedings of the 20th International
Conference on Compiler Construction: Part of the
Joint European Conferences on Theory and Practice of
Software, number 20 in CC’11/ETAPS’11, pages
286–305, Berlin, Heidelberg, 2011. Springer-Verlag.

[8] M. A. Iverson, F. Özgüner, and G. J. Follen. Run-time
statistical estimation of task execution times for
heterogeneous distributed computing. In High
Performance Distributed Computing, 1996.,
Proceedings of 5th IEEE International Symposium on,
pages 263–270, August 1996.

[9] A. J. Izenman. Modern Multivariate Statistical
Techniques, chapter Support Vector Machines.
Springer, 2008.

[10] J.-K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski,
T. D. Braun, M. Schneider, S. Tideman, R. Chitta,
R. B. Dilmaghani, R. Joshi, A. Kaul, A. Sharma,
S. Sripada, P. Vangari, and S. S. Yellampalli. Dynamic
Mapping in a Heterogeneous Environment with Tasks
Having Priorities and Multiple Deadlines. In Parallel
and Distributed Processing Symposium, 2003.
Proceedings. International, IPDPS.2003, pages 22–26,
April 2003.

[11] C. Lattner. The LLVM Compiler Infrastructure. open
source License, Jan 2014. http://www.llvm.org/.

[12] M. Mantor and M. Houston. AMD Graphics Core
Next. developer.amd.com/wordpress/media/2013/
06/2620_final.pdf.

[13] A. Munshi, B. R. Gaster, T. G. Mattson, J. Fung, and
D. Ginsburg. OpenCL Programming Guide.
Addison-Wesley Pearson Education, 2011.

[14] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid,
L.-W. Chang, N. Anssari, G. D. Liu, and W. mei
W. Hwu. Parboil: A revised benchmark suite for
scientific and commercial throughput computing.
Technical report, IMPACT, March 2012.

[15] A. Tarakji and N. O. Salscheider. Runtime Behavior
Comparison of Modern Accelerators and Coprocessors.
In 2014 IEEE 28th International Parallel &
Distributed Processing Symposium Workshops, HCW
2014. IEEE Computer Society Press, 2014. (to
appear).

[16] A. Tarakji, N. O. Salscheider, and D. Hebbeker. OS
Support for Load Scheduling on Accelerator-based
Heterogeneous Systems. Procedia Computer Science,
Proceedings of the 2014 International Conference on
Computational Science, 2014. (to appear).

[17] H. White. Learning in Artificial Neural Networks: A
Statistical Perspective. Neural Computation,
(1):425–464, 1989.

[18] V. Yarmolenko, J. Duato, D. K. Panda, and
P. Sadayappan. Characterization and Enhancement of
Dynamic Mapping Heuristics for Heterogeneous
Systems. In Parallel Processing, 2000. Proceedings.
2000 International Workshops on, pages 437–444,
2000.

[19] S. P. Zwart, R. Belleman, and P. Geldof. High
Performance Direct Gravitational N-body Simulations
on Graphics Processing Unit I: An implementation in
Cg. Technical report, Cornell University Library, 2007.

