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Abstract

The modern financial system features complicated financial intermediation chains,

with each layer performing a certain degree of credit/maturity transformation.

We develop a dynamic model in which an entrepreneur borrows from overlapping-

generation households via layers of funds, forming a credit chain. Each interme-

diary fund in the chain faces rollover risks from its lenders. The model delivers

new insights regarding the benefits of intermediation via layers: by shortening

the maturity of liquidated assets, the chain structure insulates interim negative

fundamental shocks and protects the underlying cash flows from being discounted

heavily during bad times. We show that the equilibrium chain length minimizes

the run risk and that it is constrained efficient.
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1 Introduction

Since the mid-1980, the nature of financial intermediation has been changed in a dramatic

way by the emergence of securitization and secured lending techniques, giving rise to a more

market-based financial system. Shadow banking can be viewed as the product of this market-

based financial system; to take one of the most salient examples, it is widely acknowledged

that maturity and credit transformation in the shadow banking system contributed to the

U.S. real estate market boom prior to the 2007–09 financial crisis.

Although the underlying economic mechanism of shadow banking has been well studied

by many leading scholars since the onset of the 2007–09 financial crisis (Adrian and Shin,

2009, 2013; Gennaioli et al., 2013; Duffie, 2019), our paper focuses on one missing piece in

the literature on shadow banking. Adrian et al. (2012) explain it vividly:

Like the traditional banking system, the shadow banking system conducts credit

intermediation. However, unlike the traditional banking system, where credit

intermediation is performed “under one roof”—that of a bank—in the shadow

banking system, it is performed through a daisy-chain of non-bank financial inter-

mediaries in a multi step process. . . . The shadow banking system performs these

steps of shadow credit intermediation in a strict, sequential order with each step

performed by a specific type of shadow bank and through a specific funding tech-

nique. . . . The intermediation chain always starts with origination and ends with

wholesale funding, and each shadow bank appears only once in the process.

The thrust of the above description is the concept of a “chain.” The common theme

in the various shadow banking businesses anatomized by Adrian et al. (2012) is the step-

by-step maturity/liquidity and credit transformation, often initiated by loan origination.

This is then followed by so-called “loan warehousing,” which refers to the act of collecting a

significant volume of eligible loans in a special purpose vehicle (SPV), which then issues asset-

backed commercial papers (ABCP) to the public, as well as issues loans to the next layer

of asset-backed securities (ABS) warehousing. This process might further involve an ABS

collateralized-debt-obligation (CDO), but eventually reaches the wholesale funding markets

that are populated by money market investors as well as long-term fixed income investors

(say pension funds and insurance companies) (Adrian et al., 2012).

The concept of intermediation credit chain is more general than the stark example of

the shadow banking system prior-to the 2007–09 financial crisis. In most modern financial

systems, money market mutual funds (MMMFs) issue daily “debt” to households, but hold

commercial papers with maturity of one to six months; and these commercial papers are is-

sued by banks and other nonbank financial institutions to fund even longer-term and riskier
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projects. Regulators have increasingly expressed concerns over these nonbank financial in-

termediaries, which have grown significantly since the global financial crisis (Aramonte et

al., 2021). As a result, opaque layers of leverage have piled up among both banks and non-

banks; for example, banks today support funding to private debt funds, who then lend to

companies;1 loan mutual funds hold tranches of CLOs, who then hold baskets of leveraged

loans.2

Figure 1 plots the credit intermediation index over time, which is the ratio of total

liabilities of all sectors in the economy over the total end-user liability. Similar to the “money

multiplier” idea, Greenwood and Scharfstein (2013) argue that the credit intermediation

index approximates the average credit chain length in the economy, where they measure

the total end-user liability by domestic nonfinancial sector liabilities and the total liabilities

of all sectors by the sum of financial and nonfinancial sector liabilities. This ratio grew

significantly during the 1990s when structured finance and securitization became popular,

consistent with the view in Adrian et al. (2012) mentioned above. It decreased slightly

after the global financial crisis, but remains at a high level from a historical perspective.

During the last decade, each dollar from investors flows through about 2.2 layers of financial

intermediaries on average before reaching the final borrower.3

Despite the extensive literature on shadow banking and its policy implications, it still

remains an open question why market participants rely on layers of intermediaries instead of

just one (layer of) intermediary to take funding from households and lend it out directly to

firms, as envisioned by the classsic Diamond (1984). A long credit chain could lure unsophis-

ticated household investors in for potentially wrongly perceived “safety;” but professional

money market funds often invest on behalf of these households. Another often-mentioned

explanation is regulatory arbitrage; under this view, a long financing chain is intentionally

created to obscure certain financial activities conducted by financial institutions. The great

body of empirical studies (Acharya et al., 2013; Karolyi and Taboada, 2015; Demyanyk

and Loutskina, 2016) on regulatory arbitrage certainly lends support to this view, but it

does not explain the rapid growth of the securitization market in the first place around the

mid-1980’s. In fact, there is evidence that securitization is best explained as contracting

1Neil Callanan and Silas Brown, “Banking Crisis Raises Concerns About Hidden Leverage in the
System,” Bloomberg, March 27, 2023, https://www.bloomberg.com/news/articles/2023-03-27/

banking-crisis-raises-concerns-about-hidden-leverage-in-the-system?leadSource=uverify%

20wall.
2Laurie DeMarco, Emily Liu, and Tim Schmidt-Eisenlohr, “Who Owns U.S. CLO Securities? An Update

by Tranche,” Feds Notes, June 25, 2020, https://www.federalreserve.gov/econres/notes/feds-notes/
who-owns-us-clo-securities-an-update-by-tranche-20200625.html

3The increase in the credit intermediation index could also be due to intermediaries increasing their gross
exposure to each other, which is unfortunately masked in the Flow of Funds data.
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Figure 1: Credit Intermediation Index, 1960–2020

This figure plots the credit intermediation index, following the definition in Greenwood and Scharfstein
(2013). It is calculated as the ratio of the total liability of all domestic sectors to the total liability of
domestic nonfinancial sectors. Both series are obtained from the Flow of Funds at the annual level.

innovation instead of pure regulatory arbitrage (Calomiris and Mason, 2004).

We study the economics of credit chains by considering a dynamic model, in which a

long-lived entrepreneur borrows from overlapping generations (OLG) of households. The

impatient entrepreneur is endowed with a project that matures with certain probability each

period and only produces cash flows upon maturity. Households, on the other hand, are born

with endowments and live for two dates; and different from the impatient entrepreneur, they

do not discount their consumption in the second date.

The relative impatience wedge implies that the (impatient) entrepreneur would like

to pledge out future cash flows and borrows from (patient) households. Suppose the en-

trepreneur borrows from households directly. Because households are OLG, their trading in

the secondary market needs to be facilitated by financial intermediaries. We call these inter-

mediaries, who are impatient, “experts;” and we assign the same discount rate to experts as

the entrepreneur. These experts facilitate liquidation and trading in the secondary market,

a process that is costly due to the experts’ impatience relative to households.

These experts are also managing funds, via which the entrepreneur can borrow (indi-

rectly) from OLG households. These layers of funds are linked with each other with debt

contracts, forming a credit chain with an endogenous chain length. To facilitate analysis,

we focus on debt contracts that are with an exogenous contract maturity rate and debt face

value; but each layer can adjust the interest rates to rollover its debt, taking as given other

layers’ contracts and households’ strategies. When contracts mature, the borrower—whether

the entrepreneur or an intermediary fund—needs to rollover its debt. Rollover fails when

the cash-flow realization falls below an endogenous threshold which triggers defaults. Cred-

itors liquidate this borrower’s assets in the secondary market, where experts serve as buyers
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who then resell to the next cohort of households. In addition, households pay an exogenous

(dead-weight) bankruptcy cost per layer.

We abstract away from modeling information frictions explicitly. This allows us to focus

on the credit chain’s role in facilitating maturity transformation, and underscores how our

mechanism is distinct from the established literature on asset pooling and tranching (De-

Marzo, 2004). Central to our mechanism are the transaction costs associated with secondary

market trading and liquidation, facilitated by experts as financial intermediaries (He and Kr-

ishnamurthy, 2013; Brunnermeier and Sannikov, 2014). This stems from the fact that experts

are impatient, but can also be viewed in the context of intermediaries’ inventory costs.

Given the transaction cost in the secondary market on trading long-term securities, the

entrepreneur could potentially borrow more from OLG households by using short-term debt

(compared with long-term debt), if the entrepreneur can always rollover the debt. Short-term

contracts are therefore preferred because they minimize the maturity mismatch between the

OLG households and the financial assets they hold. Essentially, our model captures the

growing appetite for money-like assets in recent decades, as well documented in Greenwood

et al. (2015) and Carlson et al. (2016). However, when cash flows are uncertain, short-term

debt exposes the borrowers to too much rollover risks, limiting their debt capacity.

We demonstrate that a credit chain can further increase the entrepreneur’s borrowing

capacity by reducing liquidation losses when rollover fails. Section 2 presents a three-period

example to illustrate the key mechanism. When the entrepreneur borrows directly from

households using one-period short-term debt, a negative date-1 interim shock forces the

entrepreneur’s project, which matures in two periods, to be liquidated. Now suppose the en-

trepreneur borrows (using two period long-term debt) from a fund who then borrows (using

one-period short-term debt) from households, i.e., forming a credit chain. Following a date-1

interim negative fundamental shock, it is the fund’s asset—which is the long-term debt issued

by the entrepreneur maturing in one period—that is being liquidated. Because in our model

long-term assets (the project) are more costly to liquidate than short-term assets (debt issued

by entrepreneur), which arises endogenously due to OLG households and secondary market

trading frictions, credit chains increase the entrepreneur’s borrowing capacity. Fundamen-

tally, it is because the layered credit chain structure helps preserve the subsequent short-term

debt claims over the entrepreneur’s project, potentially avoiding secondary market trading

frictions in the continuation game if rollover in the future is successful.

In sum, our model features a stylized trade-off: the impatient entrepreneur would like to

pledge out future cash flows, but the associated secondary market trading and liquidation loss

will be high. By comparing the borrowing capacities induced by direct-borrowing and the

layered chain structure, our example highlights that the layered credit chain structure helps
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shorten the maturity of assets if liquidated, thereby supplying more money-like securities.

In this way, the credit chain structure reduces the tension between maximizing the cash flow

pledged out and minimizing liquidation losses, just like what special purpose vehicles (SPVs)

achieve in practice.

One of the key assumptions of our model is that debt issuance costs in the primary

market are lower than i) liquidation costs and ii) secondary market transaction costs. Two

points are noteworthy. First, the assumption of frictional secondary market trading and

liquidation is common in the money and banking literature (say, Bryant (1980)), leading to

demand for money (which corresponds to short-term debt in our model). Second, although

ii) does not apply universally for all markets, it does hold for many instruments observed in

the shadow banking system. For example, Friewald et al. (2017) document that the average

secondary market transaction costs for asset-backed securities (ABS) and mortgage-backed

securities (MBS) are 43 bps and 58 bps respectively. They are much higher compared with

ABCP issuance costs, which are around 10 bps (Kacperczyk and Schnabl, 2010). As we

later explain in Section 2.3, it is the correct comparison between the issuance cost of ABCP,

which is the liability side of SPVs, and the transaction cost of ABS or MBS, which sits on

the asset side of SPVs.4 The SPVs that are issuing ABCPs are set up in order to streamline

the process of debt rollovers, which minimizes issuance costs.5

Section 3 generalizes the three-period example (with two layers) to infinite periods and

multiple layers, and Section 4 characterizes the equilibrium credit chain in our model. We

show that the equilibrium contracts are both time-invariant and layer-independent. The

time-invariance comes from the assumption that the fundamental is i.i.d. over time, while

the competitiveness of intermediary funds delivers layer-independence. Both contract fea-

tures are important for tractability, which allows us to study the equilibrium chain length

analytically.

We show that the equilibrium chain length minimizes the interest payments given the

borrowing amount. The benefit of borrowing via layers is best illustrated by considering

the extreme case without exogenous dead-weight bankruptcy cost on layers; in such a case,

the equilibrium chain length is infinity. Similar to the intuition in Section 2’s example,

a longer chain formed by more layers of financial intermediaries delivers shorter maturity

assets during liquidation. Intermediating via credit chains meets the liquidity needs of the

households and simultaneously reduces liquidation losses. Finally, Section 4.5 shows that

4ABS and MBS are with longer maturity than ABCP. But the correct comparison should be the per-time
transaction cost and per-time issuance cost, regardless of the maturity of securities. By issuing short-term
debt, investors and issuer save on the secondary market transaction cost but incur additional issuance cost.

5There is no role of monitoring performed by creditors in our model, which makes the model more
applicable to cases such as MBS.
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the equilibrium chain length emerged in a decentralized market, despite of various trading

frictions in the network structure, is constrained efficient from the social perspective. This is

because the fund in the last layer, which determines the equilibrium chain length, internalizes

the trade-offs of longer chains through the interest rate it pays to the households.

As detailed in the literature review, our paper differs fundamentally from the literature

of asset trading chains. Oftentimes, these papers focus on certain market frictions that

prevent the asset seller (with a relatively low valuation) from directly selling to the first-best

buyer (with the highest valuation), and an intermediary who holds the asset temporarily

ensues. Our focus, instead, is on intermediation credit chains where one agent’s liability is

another agent’s asset, which is missing in the literature of asset trading chains. Compared to

the financial network literature, we study a simple network structure, i.e. chains, but focus

on the endogenous formation of chains and the strategic interaction of agents in the chain.

Literature Review

Our paper belongs to a recent literature that studies the role and frictions of credit chains,

motivated by the growing intermediation chain in the modern financial system, particularly

in the shadow banking sector (Adrian and Shin, 2010; Adrian et al., 2012). Di Maggio and

Tahbaz-Salehi (2017) study how the distribution of collateral along the credit chain matters

for the intermediation capacity and systemic stability. In Donaldson and Micheler (2018),

credit chains arise when banks rely more on non-resaleable debt, i.e., repos, which is similar

to borrowing via layers in our setting. In both papers, liquidation losses are smaller in

defaults when the borrowing is done via layers; the difference is that, instead of assuming

exemption of automatic stay, we start with a common type of frictions and show that having

a layer in the middle—by shortening the maturity of liquidated assets—endogenously results

in smaller default losses. More recently, Glode and Opp (2021) and Mayer and Gryglewicz

(Forthcoming) study the externality of economic agents’ decisions in an exogenously given

intermediation chain.6

There is a long literature on the theory of financial intermediation; we focus on the ben-

efit of having multiple layers of intermediaries instead of just one. One-layer intermediation

is the robust prediction in leading models in this field; for instance, Diamond (1984) shows

that banks reduce monitoring cost through diversifying projects’ idiosyncratic risks, which

are absent in our model.

6Focusing on strategic debt renegotiation when agents are connected through liabilities in an exogenously
given debt chain, Glode and Opp (2021) analyze externalities in renegotiation because even though bargaining
is bilateral, it affects renegotiation outcomes in other parts of the chain. Relatedly, Mayer and Gryglewicz
(Forthcoming) study the contracting problem where intermediaries are tasked with both designing contracts
for the subsequent layer and exerting effort to monitor it; the incentive provision to one layer affects other
layers as well.

6



Conceptually our paper is closer to Diamond and Rajan (2001). There, an intermediary

is necessary—but a single layer is enough—as it has specific skill in collecting repayments

from firms and can also commit to repaying its creditors by offering demand deposits. Like

our paper, Diamond and Rajan (2001) micro-founds the continuation game after asset liqui-

dation, and show that intermediaries increase recovery value if default happens. But inalien-

able human capital (of entrepreneurs/bankers), which is the backbone of Hart and Moore

(1998) and Diamond and Rajan (2001), plays no role in this paper; instead, our mechanism

rely on the households’ short-term liquidity needs combined with secondary market trading

frictions.

We built upon the literature on bank runs and instability of short-term debt (Diamond

and Dybvig, 1983; Calomiris and Kahn, 1991; Goldstein and Pauzner, 2005; Acharya et al.,

2011), by adopting a dynamic debt run setting akin to He and Xiong (2012).7 We differ from

the existing literature by studying runs in an endogenous multi-layer structure.

On the literature of network and contagion,8 we focus on a simple form of network, i.e.

chains, and endogenize both the contracts among layers as well as the length of the credit

chain. In other words, we endogenize network formation within the simple chain network

structure. Recently, Donaldson et al. (2022) show the usage of long-term debt in financial

networks can be stabilizing, as banks hit by liquidity shocks can raise additional funding

using interbank long-term debt as collateral and dilute existing long-term creditors. We rule

out debt dilution and focus on maturity transformation along the credit chain.

In addition to credit chains, a recent literature has also investigated asset trading chains,

where an asset is bought and re-sold by a sequence of dealers before it reaches the final buyer.

Glode and Opp (2016) show trading via a sequence of moderately informed intermediaries can

reduce allocation inefficiency caused by asymmetric information.9 The literature has also

examined the length and price dispersion of intermediation chains in an over-the-counter

(OTC) market with search frictions (Atkeson et al., 2015; Hugonnier et al., 2019; Sambal-

aibat, 2021; Shen et al., 2021). Our focus is on credit chains where one agent’s liability is

7Similar to Qi (1994), we consider an OLG setup where intergenerational transfers through financial
institutions improves welfare but could lead to runs. The runs between layers in our model capture the repo
market and commercial paper runs by institutional investors during the global financial crisis, which has
been well documented (Gorton and Metrick, 2012; Copeland et al., 2014; Krishnamurthy et al., 2014; He
and Manela, 2016; Schmidt et al., 2016).

8To name a few, Allen and Gale (2000) and Elliott et al. (2014) show how financial networks provide
diversification and insurance against liquidity shocks, but on the other hand, lead to fragility and cascades
of failures. A similar point is delivered by Acemoglu et al. (2015). Allen et al. (2012) also consider rollover
risks of short-term debt in clustered structures, where banks share common assets.

9In a follow-up paper, Glode et al. (2019) show that A sufficient long intermediation chain can also
eliminate trading inefficiencies caused by agents with monopoly power screening counterparties. In a general
equilibrium context, a recent paper by He et al. (2023) studies the role of information technology and
intermediation in an economy with asset origination and distribution.
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another agent’s asset, which is the key for “credit chains.”10

2 An Example: Model Mechanism and Intuition

This section provides a simplified example to illustrate the key intuition of our paper.

2.1 Set-up

Consider a four-date-three-period setting t = 0, 1, 2, 3, with timeline given in Figure 2a.

(This is the simplest setting to illustrate our mechanism). All agents are risk neutral.

Project and entrepreneur. There is a long-term project that produces cash flows ỹ ≥ 0

only at the end of period t = 3. Good news could arrive with probability p ∈ (0, 1) in period

t = 1, 2. If good news arrives in either period, then ỹ = 1; otherwise, ỹ = 0. The arrival of

good news is independent across periods.

The project is owned by an impatient entrepreneur (he); entrepreneur and firm are used

interchangeably in this section. In the example, for illustration purpose we take the extreme

assumption that he leaves the economy at the end of period 0, implying that he maximizes

the payment of cohort-0 households by pledging out his entire cash flows to households. We

will relax this assumption in the main model.

OLG households. Cohort t households are born at the beginning of period t, endowed

with 1 unit of consumption goods, and have access to a storage technology with zero net

return. This cohort can consume ctt > 0 or invest in financial markets (storage technology or

securities issued by the firm or funds, as explained shortly), and leave the economy in period

t+ 1 after consuming ctt+1 > 0, with a utility of ctt + ctt+1. Importantly, there is no discount

between periods.

Debt refinance/rollover and secondary market. We consider debt contracts with

different maturities. In period t, if the contract has matured, then the entrepreneur/firm

will refinance the debt payment to cohort-(t− 1) households from cohort-t households. We

call this event “rollover the debt,” and throughout the paper we use the word “refinance”

and “rollover” interchangeably. If refinance/rollover succeeds, there is no cost involved.

Otherwise, the firm has to liquidate its asset at a discount, which is αl fraction of next

10With a slightly broader interpretation, our model also sheds light on “rehypothecation,” i.e., the reuse
of collateral in secured financing transactions, which is also called “collateral chains” and is a widespread
practice to enhance market functioning between banks and nonbanks (Infante and Saravay, 2020). As most
repo transactions in the U.S. are conducted on an “outright” basis with complete ownership transfer at each
leg, rehypothecation in a collateral chain is closer to asset trading chains.
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Figure 2: Illustration of the Example

(a) Timing

(b) Direct Financing via Two-Period Debt

(c) Direct Financing via One-Period Debt

(d) Two-Layer Credit Chain

This figure illustrates the timing and different financing structures in Section 2. Panel (a) illustrates
timing. Panel (b) illustrates the flow of money in Case 1: direct financing using a two-period debt followed
by a one-period debt. Panel (c) illustrates the flow of money in Case 2: direct financing using only
one-period debt. Panel (d) illustrates the flow of money in Case 3: two-layer financing.
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cohort’s valuation of the asset. The micro-foundation is that the firm has to sell the asset

first to experts (with specialty in dealing with distressed assets), who then sell it to the

cohort-t households. Suppose that experts have discount rate αl ∈ (0, 1), implying that the

proceeds received by the departing cohort is αl fraction of cohort-t’s endogenous valuation

in equilibrium. We rule out debt renegotiation, as in many cases, the debt is held by a

dispersed set of households and the renegotiation cost is too high.

If instead the contract has not matured yet, the existing households (the t− 1 cohort)

can sell it to a specialized intermediary sector, who then sells the securities to cohort-t at

the end of period t. The intermediary has a discount rate of αs ∈ (0, 1), implying that if

cohort-t is willing to pay 1 unit for the security, cohort-(t − 1) can only receive αs units.

If short term investor holds long term asset, then this transaction cost αs will be incurred

repeatedly (Amihud and Mendelson, 1986).

Conceptually, assets being liquidated are eventually sold on the secondary market, im-

plying a tight connection between these two discount factors. However, empirically, they of-

ten differ; we allow αs 6= αl in the example to show that our mechanism does not rely on the

relative magnitudes of the two. In the main model (Section 3), we set αl = αs = α ∈ (0, 1).

Two-layer financing structure with intermediary fund. We depart from the existing

literature by studying a two-layer financing structure. Other than issuing debts directly to

households, the firm can also adopt a two-layer financing structure where the entrepreneur

issues long-term debt to an intermediary fund, who then finances itself by issuing one-period

debt to OLG households. (The intuition of how one layer adds value is new to the literature,

and importantly carries through to multiple layers so that two layers are better than one

layer.) When rollover fails, either at the fund layer or the firm layer, the corresponding

creditors liquidates their debt holdings issued by the layer above.

2.2 Comparison of Financing Structures

To illustrate the model mechanism, we provide a numeric example with αl = 0.5, αs = 0.8

and p = 0.6. We assume that all debt contracts are with zero coupon and a face value

(denoted by Dt if the debt matures in period t) of 1; Appendix A verifies that they indeed

are optimal in our numerical example, thanks to the binary distribution of cash-flows and

that entrepreneur maximizes period 0 proceeds. We denote the market price of the debt at

time t by Pt.

As a benchmark case, the entrepreneur issues a three-period debt to cohort-0 households,

who then sell it to future cohorts later. Due to repeated transaction costs, the entrepreneur

here is only able to raise P0 = 0.538. (We leave the detailed calculation to Appendix A.) In
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Figure 3: Illustration of Case 1: Long-Term Two-Period Debt

y = 1

p p

1− p 1− pt = 1 t = 2t = 0

Entrepreneur/firm

P0

Households

D3P2D2

Sell at αsP1

P1 = 1

Rollover entrp’s debt
at no discount

Rollover fails
Liquidate at 0

Rollover entrp’s debt
at no discount

Sell at αsP1

P1 = p× 1

This figure illustrates the cash flow exchanges between the households and the entrepreneur in Case 1.

the rest of this section, we compare three financing structures: direct financing using two-

period debt, one-period debt, and a two-layer credit chain. Our discussion focuses on why

the two-layer financial intermediation can increase the entrepreneur’s borrowing capacity,

though the comparison between long-term contracts and short-term debt is also useful in

delivering the intuition.

Case 1: Long-Term Two-Period Debt The entrepreneur first issues to households a

two-period debt that matures in t = 2 with face value D2. Given a three-period project,

the entrepreneur then issues another one-period debt from t = 2 to 3, with face value D3.

Figure 2b illustrates this direct financing structure, with cash flows shown in Figure 3.

We work backwards. At t = 2, the entrepreneur can raise P2 = 1 if good news has

arrived, otherwise P2 = 0. Given period 2 debt has face value 1,11 following good news a

successful rollover delivers 1 to cohort-1 households. (There is no discount applied in the

good state, which contributes to Case 1’s advantage over the case with three-period debt.) If

no good news has arrived, the entrepreneur is forced into liquidation with liquidation value

equal to 0.

At the beginning of period 1, following good news cohort-1 households know that they

receive D2 = 1 for sure at t = 2; otherwise, they receive D2 = 1 with probability p = 0.6

at t = 2. Hence cohort-1’s valuation for debt is 0.6 × 1 + 0.4 × 0.6 × 1 = 0.84. As a

result, in period 1, departing cohort-0 households sell the debt contract to cohort-1 (via

11As explained in Appendix A this maximizes the payout to cohort-1 households (and in turn, that to
cohort-0 households). In general, setting a lower face value could help avoid liquidation; in our binary cash-
flow case, however, liquidation is not costly because the expected output is zero anyway in the liquidation
state in period 2.
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intermediaries) with a discount rate of αs = 0.8, at price of

P0(two-period debt) = 0.8× 0.84 = 0.672. (1)

This dominates 0.538 the case when issuing three-period debt. Unlike the three-period debt

case, not all cash flows here are discounted by αs: when rollover is successful in period 1,

the debt payment flowing to cohort-2 does not involve any discount.

Case 2: Short-Term One-Period Debt This direct financing structure is illustrated

in Figure 2c, with cash flows shown in Figure 4. The calculation of t = 2 is the same as

before: we have P2 = D2 = 1 if good news has arrived. At t = 1, P1 can be calculated as

the expected payment at t = 2. If good news arrives in period 1, then P1 = 1, otherwise

the expected payment is 0.6. Again, rollover is successful only in the good state, where

the departing cohort-0 receives the full face value D1 = 1. In the bad state, the firm is

forced into liquidation, with a liquidation value of αl times the t = 1 market value of the

project P1.12 But this market value P1 equals the secondary market discount αs multiplied

by the expected cash flow 0.6; therefore the liquidation value at the bad state of t = 1

is 0.5 × 0.8 × 0.6 = 0.24. (Note, when liquidation happens in period 1, the subsequent

short-term debt claims in period 2 are destroyed.) The project gets traded repeatedly in the

secondary market as a long-term asset, which is why we multiply by 0.8 to obtain 0.24. We

then calculate the t = 0 price of D1 to be:

P0 (one-period debt) = 0.6× 1 + 0.4× 0.24 = 0.696. (2)

By issuing short-term debt, the entrepreneur can raise 0.696 in period 0. This is larger than

the 0.672 in (1) raised by two-period debt (and then another one-period debt).

In this example, if good news arrives in period 1, short-term debts transfer wealth across

cohorts in the most efficient way. But given bad news in period 1, short-term debt results

in liquidating the project, destroying the subsequent short-term claims. Here we implicitly

assume that households cannot issue short-term debt in period 2, since it is generally difficult

for households to issue debt against real assets. Households may not have the expertise or

resources to issue financial claims against the project. In the dynamic model in Section 3,

we relax this assumption and allow issuances of short-term debt even after liquidation, by

considering chain restoration. However, it is important that there is some friction such that

chain restoration gets delayed by one period with positive probability.

12With face value D1 = 1, the short-term debt holders have the full claim over the entire project. Setting
a significantly lower face value (D1) could help avoid liquidation in the bad state, but the payout of this
riskless debt is too small.
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Figure 4: Illustration of Case 2: Short-Term Debt

y = 1

p p

1− p 1− pt = 1 t = 2t = 0

Entrepreneur/firm

P0
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D3P2D2P1D1

Rollover no discount

Rollover no discount

Rollover fails
Liquidate proj. at αlP1

P1 = p× αs Sell at αs × 0

Sell at αs × 1

This figure illustrates the cash flow exchanges between the households and the firm in Case 2.

Case 3: Two-Layer Credit Chain We now show that the two-layer structure can reduce

the liquidation losses in the absence of good news in period 1. In this case, the entrepreneur

issues a two-period debt—at a t = 0 price P0—to the fund from period 0 to period 2, with

a face value D2 = 1. The fund then issues one period debt to households, with face value

D1 = 1 in period 1 and D2 = 1 in period 2. This structure, which combines Case 1 and

Case 2, is illustrated in Figure 2d, with cash flows shown in Figure 5. In this example, the

intermediate layer also features a maturity transformation, i.e., the debt contract between

the entrepreneur and the fund is longer than the one between the fund and households.

The calculation of t = 2 is the same as before: P2 = D2 = 1 if good news has arrived,

otherwise P2 = 0. Similarly, D1 = 1 and rollover is only successful if good news arrives in

period 1. When rollover fails in period 1, the fund’s asset, which is a debt claim with face

value D2 over the project, is liquidated at the secondary market.13 The value of that claim

is 0.6×1 = 0.6, hence the liquidation proceeds is 0.5×0.6 = 0.3. Therefore, P0 which equals

the expected payment to be received in period 1 is

P0 (two-layer) = 0.6× 1 + 0.4× 0.3 = 0.72. (3)

This is larger than 0.696 in (2) raised using one-period debt in Case 2.

13In Case 2, it is as if the entire project gets liquidated in this scenario; there we rule out the possibility
that the entrepreneur sells its liquidated asset to funds, which we allow in the formal model.
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Figure 5: Illustration of Case 3: Two-Layer Credit Chain

y = 1

p p
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This figure illustrates the cash flow exchanges between the households, the funds and the firm in Case 3.

2.3 Intuition

Compared with long-term contracts (two-period debt in Case 1), the benefit of issuing short-

term debt (in Case 2) comes from the fact that successfully rolling over debt avoids trans-

action costs in the secondary market. Appendix A shows the difference between Case 2 and

Case 1 as:

P0 (one-period)− P0 (two-period) = p︸︷︷︸
g

(1− αs)− (1− p)p︸ ︷︷ ︸
bg

αs(1− αl). (4)

In Eq. (4), the first term captures the benefits of short-term debt: if rollover is successful

in period 1 (good news), then there is no discount applied to the final cash flow for one-period

debts. The second term captures the cost of short-term debt: if rollover fails in period 1

(bad news), then the entrepreneur’s asset has to be liquidated, even if good news eventually

arrives (with probability p in period 2); this corresponds to the event “bg,” which occurs

with probability (1− p)p. In this sample path, for one-period debt, αl (αs) is applied in the

first (second) period; while for two-period debt, if rollover is successful in period 2, then only

αs is applied in t = 1 (i.e., αl at t = 2 can be avoided). The term 1−αl in the second term in

Eq. (4) hence captures this difference. Overall, the benefit of short-term debt dominates the

cost under our parameterization. The benefit of short-debt over three-period debt is even

larger, with a similar mechanism.

We move on to the main result of the paper. The difference between the short-debt

case and the two-layer case comes from the fact that liquidating the entrepreneur’s asset,
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which is the project with a two-period remaining maturity, is more costly than liquidating

the fund’s asset, which is the one-period debt backed by the firm. One can show that

P0 (two-layer)− P0 (one-period debt) = (1− p)p︸ ︷︷ ︸
bg

αl(1− αs). (5)

As shown in Eq. (5), the difference lies in the “bg” event, which happens with probability

(1−p)p. In this event, rollover fails in t = 1 for both cases. So there is an liquidation discount

αl common to both cases. In the short-debt case, the entrepreneur fails to rollover, and the

project is liquidated; this implies that the project’s final cash flows will be discounted in

both period 1 and 2 no matter what happens in the subsequent period t = 2. In contrast,

in the two-layer case, after rollover failure, it is the fund’s asset—a one-period debt backed

by the firm—that is being liquidated. There, if good news arrive at t = 2, because the two-

layer structure preserves subsequent short-term debt claims, the firm can still successfully

rollover the short-term debt without secondary market trading, saving the t = 2 trading cost

which is captured by the term (1− αs) in Eq. (5). Compared with the previous cases, two-

layer financing structure provides the benefit of short-term debt yet avoids the additional

liquidation losses in the one-period debt, delivering an endogenously smaller default cost.14

This benefit of adding layers, which is to reduce liquidation costs, extends to multiple layers.

This numerical example also helps deliver a slightly more general intuition that this pa-

per aims to deliver. Thanks to OLG households and secondary market trading frictions, our

model generates a key result that default costs are endogenously increasing in the maturity of

liquidating assets. Given a higher liquidating cost of longer-term assets, it is better to issue

short-term debt against two-period asset, as in Case 3, than to issue short-term debt against

three-period asset, as in Case 2. The relation between default cost and asset maturity can be

micro-founded in many ways; but as long as longer-term assets have larger liquidation costs,

which is often empirically the case, then there is a benefit for the layered structure with

credit chains. Finally, debt with state-contingent maturity could achieve similar outcomes

as the layered structure. We explain the comparison in details in Appendix A.

As evident from Eq. (5), our key mechanism works as long as αs ∈ (0, 1). What we

really need is that both secondary market transactions and liquidation processes are more

frictional than debt issuance/rollover, which we have assumed to be costless in this paper.

This is reasonable in the context of SPVs. The secondary market transaction costs for the

14We do not focus on the comparison between the two-period debt and the two-layer case. This is because
relative to the two-period debt, the two-layer credit chain in this example (which is formed with one-period
debt) shortens the maturity that households face, in addition to adding a layer. The comparison will be
confounded by the effect of shorter maturity.

15



securities that SPVs hold, such as MBS and ABS, are around 50 bps, whereas the issuance

cost for shorter term debt is around 10 bps (Kacperczyk and Schnabl, 2010). These vehicles

are purposefully set up to minimize the debt rollover costs. Note, the relevant comparison

is indeed the per-time issuance cost, which has been normalized to zero in our model, and

the per-time transaction cost, which is αs in our model.15

To summarize, our paper highlights a key trade-off that is new to the literature. The

impatient entrepreneur would like to pledge out as many future cash flows as possible at

t = 0, but the associated secondary market liquidation losses will be high. The credit

chain structure, just like special purpose vehicles (SPVs) that we observe in the practice,

supplies more money-like securities by helping insulate interim negative fundamental shocks

and protect the underlying real firms from heavy discounts.

2.4 Connection to the Main Model

Since our mechanism does not rely on the relative magnitudes of secondary market friction

αs versus liquidation friction αl (see Eq. (5)), we assume both are equal to α in our full

model. Furthermore, the final cash-flow at the final period t = 3 is similar to the cash-flow

structure in the full model, except that there we assume a Poisson arrival of cash-flow to

keep the environment stationary.

More importantly, the intuition revealed in the example carries to the main dynamic

model featuring general credit chains with L layers. We generalize the numerical example

in this section to a project that matures in L periods in Appendix B. The benefit of credit

chains illustrated in Section 2.3 suggests that the optimal financing structure features an

(L− 1)-layer credit chain, where layer-` holds debt with maturity L− ` and issue debt with

maturity L − ` − 1. In other words, every layer bears some maturity mismatch and the

maturity of debt held by layer-` decreases as ` increases. This conjecture is formally proven

in Appendix B. Clearly, collapsing the (L − 1) layers to one-layer does not yield the same

result, and this is a key difference from the classic literature on financial intermediation

(Diamond, 1984).

In the remaining parts of the paper, we consider a dynamic model to study the connec-

tion between financial stability and credit chain length. Both the run probability and credit

chain length are endogenously determined. Since deterministic debt maturities lead to in-

tractability in a dynamic setting with Poisson cash-flows, we instead assume that each layer’s

debt contract matures at some Poisson event, and also matures if above-layers’ debts ma-

15If a short-term debt is issued instead of a long-term debt, then in the period when the short-term debt
matures, one saves on the secondary market transaction cost but incurs additional issuance cost in order to
rollover debt.
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ture. As we will show, this random maturity setup is much more tractable, while generating

similar maturity structure (e.g., the layer-`’ debt maturity decreases in `) and same economic

mechanisms as in the example.16 In addition, this setup with Poisson maturity probability

and continuous cash-flow distribution allows us to study endogenous run probabilities and

related comparative statics in a relatively tractable way.

3 The Model

We consider a discrete-time dynamic model with three types of risk-neutral agents: OLG

households, a long-lived entrepreneur, and a group of long-lived experts. After presenting

each ingredient in our model, we write down the optimization problem for each fund in

different layers in the credit chain. We then define the equilibrium formally in this economy.

3.1 The Setting

Endowment and agents. A long-lived entrepreneur with a discount rate α ∈ (0, 1) (here-

after he) has a long term project that produces nothing before maturity. The timeline within

each period t > 0 is as follows. At the beginning of the period, the public “news” on the

(potential) cash-flow yt ≥ 0 arrives; we assume yt is i.i.d. across periods, with H (·) denoting

the cumulative distribution function (CDF) and h(·) the corresponding probability density

function (PDF). During the period, the project matures with probability λy ∈ (0, 1), in

which event the project delivers yt units of consumption good at the end of the period and

the game ends. (We will explain the timing in more detail shortly.)

There are OLG households in this economy. Cohort-t is born at the beginning of period

t and leaves the economy at the beginning of period t+ 1. Each cohort consists of a measure

1 of representative households, who are endowed with e > 0 units of consumption good when

born. They can choose to consume ctt in period t or invest in the securities issued by the

firm or funds, and consume ctt+1 in period t+ 1 (and then leave the economy). Household’s

utility is ctt + ctt+1.

There is a financial intermediary sector which consists of a group of “experts.” In

contrast to OLG households, each expert (hereafter she) is long lived with a discount rate

α ∈ (0, 1). For simplicity we take the experts’ discount rate to be the same as that of the

entrepreneur’s. In our model, experts can serve different roles in the financial market. They

16Suppose that each debt will mature in each period with an exogenous probability λd, for all layers. Then
effectively, layer-` holds debt that matures with probability 1− (1− λd)` and issues debt that matures with
probability 1 − (1 − λd)`+1. Similar to the deterministic debt maturity case, each layer’s asset has longer
maturity than its liability side, and layer-`’s debt matures with higher probability as ` increases.
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Figure 6: Timing

This figure illustrates the timing of events in each period for Section 3.

can operate some funds who raise financing from households and in turn provide credit to

the entrepreneur; serve as market makers to facilitate the secondary market trading between

OLG households; or run distress funds who purchase liquidated assets and resell in the

secondary market. There are many interpretations for their discount rate α besides their

opportunity costs of time. For instance, following He and Krishnamurthy (2012, 2013),

experts need to commit certain equity capital to operate the distressed funds, which is

costly.

The fact that households are more patient (with a discount rate 1) than the entrepreneur

and experts (with discount rate α < 1) implies that in our model the gain of trade comes

from financing from households. Just as illustrated in Section 2, the key is how to sell the

project’s cash flows from the hands of relatively impatient entrepreneur to the patient but

OLG households.

Timing. As shown in Figure 6, at the beginning of each period, everyone learns the value

of yt first; then whether debt contracts mature or not. Cohort-t households are then born,

and after that, cohort-(t−1) households (who receive the debt payment or liquidation value)

leave the economy. At the end of each period, whether the project matures or not is realized.

We denote by Ft the information set at the end of period t.

Debt contracts. Financing contracts in our model are restricted to the class of “debt”-like

contracts. Let T be the contract termination time (either project or debt matures, which is a
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stopping time measurable to Ft). Any “debt”-like contract needs to specify i) debt maturity;

ii) promised payment upon debt maturity; and iii) promised payment upon project maturity.

In our main analysis, we take the first two as exogenous—that is, debt matures with some

maturity parameter(s) λ̃d, and the promised payment equals the households endowment

e—while focusing on the third to analyze endogenous rollover decisions.

Specifically, our debt contract takes the form of {Fy,s}Ts=t, which specifies the following

promised future payments from the debtor to the creditor (w.p. stands for with probability):

min(Fy,s, ys) · 1project matures at period s, w.p. λy + e · 1debt matures at period s+ 1, w.p. λ̃d
. (6)

where {Fy,s} is Fs−1-measurable for any s ≥ t; in words, the payment upon project maturity

takes the form of a debt contract min(Fy,s, ys). In Eq. (6), one can interpret Fy,s as interest

payment each period (upon project maturity) and e as the face value to be paid (upon debt

maturity); and we will soon explain that it is “debtness” of face value e—rather than the

“debtness” of interest payment Fy,s—that drives our result.

Denote by πt the sequence of interest payments {Fy,s}Ts=t, which lies in the space of

Π ≡ RT−t+1
+ . Each period t, all funds (and the entrepreneur) can choose πt ∈ Π if their

existing debt contracts mature. A new debt contract is signed after the existing debt matures

with y’s information in hand, but before knowing whether project matures; see Figure 6.

It is worth pausing to discuss the restrictiveness of our contracting space. First, we

focus on credit chain length and therefore leave endogenous debt maturity choice to future

research.17 We assume the maturity rate of contracts issued to intermediary funds (from

the entrepreneur to funds or between funds) is λ̃d = λd ∈ (0, 1), and the maturity rate of

contracts issued to households is λ̃d = 1, where “maturity rate” refers to the probability

of debt matures within each period. When rollover is successful, the OLG households are

always holding the shortest-term debt (which is one, as their debt always matures within

a period).18 Importantly, this maturity structure fixes the total maturity transformation in

the system, regardless of the number of layers. In the NBER working paper version (w29632)

of this paper (He and Li, 2022), we consider λ̃d = λd for all layers, including the households.

The main mechanism is the same.

Second, to keep the contract space simple, in the main text we exogenously fix the debt

face value at the household endowment e. Appendix D endogenizes the sequence of face

values and derive condition under which they indeed binds at e. Intuitively, the benefit of a

17For models with endogenous debt maturity structure, see He and Milbradt (2016) and Hu et al. (2021).
18However, it is possible that on equilibrium path, conditional on rollover failure households are holding

liquidated assets (i.e., debt issued by some funds) that do not mature every period. For details, see the
discussion on liquidation value toward end of this section.
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larger face value is due to the discount rate wedge between the entrepreneur and households,

whereas the cost comes from the possibility of rollover failures in the future. Because the

face value cannot exceed the households endowment e due to resource constraint, when e is

sufficiently low, the benefit of having a larger face value outweighs the cost, in which case

the optimal face value binds at e.

Third, the “debt” form of interest payment upon project maturity is not essential, and

one can show that this is indeed the optimal contract under a weaker assumption of limited

liability. To see this, consider a more general Fs-measurable interest payment F̂y,s, which

satisfies limited liability F̂y,s ≤ ys. Suppose that debt matures in period s, which means

the debtor needs to repay e. If ys is sufficiently low, then F̂y,s ≤ ys is constrained to be

low and the debtor may not be able to raise enough funding from the market to rollover its

debt. As we will see, inefficient liquidation caused by rigid debt payment only occurs after

a debt contract matures (and when the yt is sufficiently low), while the game ends without

inefficient liquidation after the project matures. Put it differently, it is the “debtness” of the

promised payment e upon maturity, not the “debtness” of Fy,s(ys), that drives our result.

Nevertheless, the simple debt form on interest payments allows us to make a sharper claim,

as we show that in equilibrium {Fy,s} = F ∗y is stationary (for all layers). Or equivalently, in

equilibrium, the optimal Fs-measurable interest payment is F̂y,s = min(F ∗y , ys).

Without loss of generality we focus on the class of issue-at-par debt contracts, i.e., their

market values at issuance equal their face value e. We further impose Assumption 1.

Assumption 1 Issuers cannot raise new debt before existing debt matures. However, issuers

can prepay their existing debt anytime.

First, we rule out dilution by preventing issuers (the entrepreneur or funds) from raise

new debt before their existing debt is repaid. Second, we allow debtors, after knowing

the realization of yt, to renegotiate by “prepaying” the debt contract. Effectively, in our

model creditors have the option of unilaterally triggering the debt to “mature,” so that

they pay the lender e and eliminate all future obligations. Under this assumption, without

loss of generality we can focus on renegotiation proof contracts; as we show, this implies

“stationarity” so that the optimal debt contract chosen at any period along the equilibrium

path is independent of history.19 We suppress the time t index from now on, unless necessary.

19Because of the stationary structure of the fundamental (i.e., yt’s are i.i.d.), the optimal debt contracts
would have been stationary if we assume debt contracts to be short-term. Essentially, the prepayment option
(of the lenders) is the minimum element to guarantee the stationarity of optimal contracting in our model.
It is also worth emphasizing that this prepayment option, which is about the debt itself, differs from “the
prepayment clauses” introduced shortly, which are regarding prepayments triggered by events along the
credit chain.
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Figure 7: Credit Chains

This figure illustrates the structure of the credit chain. Layer-0 is the entrepreneur, holding the project on
the asset side and issuing debt contract π0 to layer-1 funds. Funds in layer-1 hold the debt issued by
layer-0 on the asset side, and issue debt contract π1 to layer-2. The households hold debt contract πL−1

issued by the last layer of funds, layer-(L− 1).

Credit chain and prepayment clauses along the chain. The model starts with the

entrepreneur who owns the project issues debt at period 0 to household creditors via a credit

chain. See Figure 7 for an illustration.

Consider a credit chain with length L, and a fund in the chain is indexed by its position

l, where 0 < l < L. A fund in layer l borrows from layer l + 1 using a debt contract

πl = {Fy,l}, which prespecifies promised payment when the project matures at layer l. We

refer to 0-layer fund of a credit chain as the entrepreneur with real project—the ultimate

borrower, and L-layer as the households—the ultimate lenders. And, we call funds that sit

at layer i < l (i > l) to be the upper (lower) layers of fund l.

Credit chain features contracting externality. To facilitate analysis, we impose Assump-

tion 2, i.e., “prepayment” clauses regarding other players in the chain.

Assumption 2 When the project matures, all the debt contracts mature; when debt claim

issued by layer l matures, all the debt claim issued by layer l′ (∀l′ ≥ l) matures.

First, when the real project matures, the creditors of layer l get paid by Fy,l and the game

ends. Due to limited liability, we have

Fy,l ≤ Fy,l−1 for ∀1 ≤ l ≤ L, (7)

and hence this payment trickles down to households. (In equilibrium Fy,l = Fy,l−1.) Second,
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when l+1’s debt claim issued by l matures, all debts issued by lower layers i ≥ l+1 mature;

therefore the payment from l + 1—whether l makes it full or gets liquidated—will trickle

down to the ultimate departing household creditors.20

Finally, it follows from the prepayment clauses that if multiple contracts mature, only

the one with the highest layer (the smallest layer number) matters. To simplify expression,

we refer to the scenario that “either the project matures, or any debt contract issued by any

fund i ∈ {1, · · · , l − 1} matures” simply as that “layers above l mature.”

Credit chain, debt rollover, and secondary market. We have explained the payment

flow along the credit chain following a debt maturing event in a fund l. Now consider

a borrower fund l who needs to refinance/rollover its debt contract (so that contractual

payments can ensue as described above).

We call rollover successful when the fund l is able to raise enough money in the market

to pay back e to fund l+ 1. In equilibrium, successful rollover occurs when y exceeds above

certain endogenous threshold ŷl. Due to prepayment clauses, all debt between layer l and the

households matures. When rollover is successful, fund l can use the proceeds raised from new-

born households to pay back e, so that all funds below layer l and the departing households

are paid in full. Since the optimal chain length does not change, they can renegotiate and

form a new credit chain with the optimal length of L.21

Otherwise, when y < ŷ, rollover fails. Creditors take over and liquidate the asset held

by fund l, which could be the real project, or the debt issued by fund l− 1. The liquidation

occurs on the secondary market where the (direct) buyers are experts (who run distressed

funds), who then sell this asset to the next cohort of households at a price Bl(y, L).

Similar to He and Xiong (2012), there is strategic complementarity among different

cohorts of households’ rollover decisions. If future cohorts are more likely to rollover their

debt, the current cohort of households are less likely to face liquidation, and they will be

more willing to rollover their debt as well. In other words, there are runs in equilibrium, and

we refer to the probability of rollover failures as the run probability.

In the case of liquidation, we assume that with probability β ∈ [0, 1], the chain is restored

immediately, in which case the next cohort values the debt at VL(L). With probability 1−β,

the households need to hold the debt issued by layer-l for one period, and the chain length

20Although our analysis takes this “prepayment” clause as given, we conjecture that this will be the
outcome of optimal contracting, as it facilitates the payment directly to departing households as soon as
possible, avoiding secondary market transaction costs (to be introduced shortly).

21There are many different ways to implement the same outcome, as essentially in this arrangement
departing households receive the payment e financed by new-born households. For instance, all funds can
simply ask their corresponding lender funds for rollover. In the final layer, the new-born households simply
replace departing households. The credit chain stays exactly the same going forward.
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is restored to its optimal level in the following period absent another run. We essentially

need some bankruptcy cost, and a probabilistic delay of chain length restoration is perhaps

the simplest way to capture this inefficiency.22

We further assume that there is a restructuring/legal cost c ≥ 0 for each layer during

bankruptcy. To summarize, the direct creditor fund l+1 recovers min (αBl(y, L), e) from the

liquidation of fund l’s asset (intermediated by experts), where the liquidation value Bl(y, L)

is endogenously determined in equilibrium. This payment then trickles down to departing

households who receive

min (αBl(y, L), e)− c · (L− l).

Finally, in the case when layer-0 (the firm operated by the entrepreneur) fails to rollover

its debt, bankruptcy occurs, but the expert can locate the original entrepreneur who have

the most project-specific human capital to continue running the project (so the original chain

is restored and the economy is stationary), just like in Diamond and Rajan (2000). This

ensures that the private loss in a bankruptcy is the same as the social loss.

3.2 Value Functions and Bellman Equation

Recall that each period, the layer-l fund sets its contract (denoted by πl), take the project

fundamental (y), the total chain length (L), and the contract from the layer above (πl−1) as

given. Denote the value function of layer l fund by Vl(y, πl; πl−1, L); this is evaluated after

debt maturity but before the project maturity (in Figure 6). For layer-0, the entrepreneur’s

value function only depends on y, π0 and L. Denote the market price of the debt issued by

layer-l (1 ≤ l ≤ L− 1) under contract πl by Pl(πl, y; πl−1, L). We may write the price of the

debt and the value function simply as Pl(y) and Vl(y) whenever there is no risk of confusion.

Finally, for notational convenience, we denote F̃y,l = min (Fy,l, y). We also denote by

ml the probability that layer l’s asset does not mature:

ml ≡ (1− λd)l for 0 ≤ l ≤ L− 1 (8)

which satisfies 1 − ml+1 = 1 − ml + mlλd. Since debt held by households always matures

(recall λ̃d = 1 for households), we can define mL ≡ 0.

22Two points are worth making. First, recall in our example in Section 2, no restoration is allowed (i.e.,
β = 0; once an asset is liquidated, it is traded repeatedly among the households and households cannot issue
short-term financial claims against the project). Second, our mechanism goes through in another stationary
setting where restoration occurs with a constant probability each period, instead of restoration after one
period.
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3.2.1 Fund managers

For 0 < l < L, we calculate layer-l’s payoff in period 0 to be

Pl(πl, y; πl−1, L)− Pl−1(y) + Vl(y, πl; πl−1, L). (9)

Here, layer-l issues its debt πl for a proceed of Pl, and then purchases the debt from layer-

(l − 1) at a price of Pl−1, where Pl and Pl−1 are the market prices of the underlying debt.

The last term captures its continuation payoff.

In subsequent periods, if the debt issued by layer-l (l < L) matures, then it needs to

refinance its debt to repay e. If Pl − e ≥ 0, successful rollover implies a layer-l’s value to be

Pl(πl, y; πl−1, L)− e+ Vl(y, πl; πl−1, L). (10)

If rollover fails, the layer-l fund asset gets liquidated and the manager recovers nothing.

Following the convention of using prime to indicate variables in the next period, we can

write V (y, πl; πl−1, l, L) for 0 < l < L recursively as,

Vl(y, πl;πl−1, L) = λy (F̃y,l−1 − F̃y,l)︸ ︷︷ ︸
Project matures

(11)

+ (1− λy)α

{
ml+1E

[
Vl(y

′, πl;πl−1, L)︸ ︷︷ ︸
Neither debt issued by nor held by layer l matures

] (12)

+

l−1∑
i=0

(mi −mi+1)E
[
1irollover(−P ′l−1 + max

π′l

(P ′l + Vl(y
′, π′l;π

′
l−1, L)))︸ ︷︷ ︸

Debt held by layer l matures

]

(13)

+ (ml −ml+1)E
[

1lrollover(−e+ max
π′l

(P ′l + Vl(y
′, π′l;πl−1, L)))︸ ︷︷ ︸

Debt held by layer l does not mature but debt issued by layer l matures

]}
.

(14)

In the above expression, (11) captures the payoff to layer-l when the project matures with

probability λy; otherwise with probability 1− λy, we have the next three terms.

First, (12) in the curly bracket captures the continuation value of layer-l when neither its

asset nor liability side matures, which occurs with probability ml+1. Here the fund manager

as an expert discount her future by α, and y′ is the next period project cash flow realization.

For the last layer of fund (l = L− 1) who borrows from households, its liability side always

matures (recall mL = 0). Hence this scenario never occurs.
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Second, (13) captures the payoff if layer-l’s asset side matures; this happens whenever

debt issued by any layer-i (i < l) matures. In this case, if rollover fails, layer-l’s payoff is

0. When rollover is successful (1irollover = 1), then layer-l receives e from its debtors, and

pays e to its creditors — the two terms cancel out. In the refinancing stage, it receives P ′l
from its new creditors and gives P ′l−1 to its debtors. Going forward, layer l’s valuation is

V (y′, π′l; π
′
l−1, l, L), where π′l is the new contract issued by layer-l and π′l−1 is a new contract

given to layer-l. We highlight that fund l is optimally choosing a new contract π′l to maximize

the sum of new debt proceeds and its continuation payoff P ′l + Vl(y
′, π′l; πl−1, L).

Finally, (14) considers the expected payoff to layer-l if debt issued by layer-l matures but

layer-l’s asset has not matured yet. This event occurs with probability ml−ml+1 = λdml for

1 ≤ l < L− 1. For layer-(L− 1), this event occurs with probability mL−1, as its liability side

always matures (layer-L households hold one-period debt). There, if rollover is successful,

layer-l raises P ′l , pays off e to existing creditors and chooses a new contract π′l. Otherwise

layer-l’s payoff is 0.

3.2.2 Entrepreneur

Recall that the entrepreneur is labeled as layer 0. Like fund managers, his value is:

V0(y, π0;L) = λy(y − F̃y,0)︸ ︷︷ ︸
Project matures

+(1− λy)α

{
(1− λd)(1− 1L=1)E

[
V0(y′, π0;L)︸ ︷︷ ︸

Debt issued by layer-0 does not mature

] (15)

+ (λd(1− 1L=1) + 1L=1)E
[

10
rollover(−e+ max

π′0

(P ′0 + V0(y′, π′0;L)))︸ ︷︷ ︸
Debt issued by layer-0 matures and rollover succeeds

+ (16)

(1− 10
rollover)[(β + (1− β)(1− λy)α)(−P ′−1 + max

π′0

(P ′0 + V0(y′, π′0;L)))]︸ ︷︷ ︸
Debt issued by layer-0 matures and rollover fails

]}
. (17)

The term E
[
V0(y′, π0;L)

]
in the second part of (15) captures the continuation value when

debt does not mature;23 (16) captures the value if debt matures and rollover is successful.

The main difference between the entrepreneur’s payoff and intermediary funds’ payoffs

is reflected in the last term in (17), when debt matures but rollover fails. Because of the

entrepreneur’s unique human capital in the project, he is re-hired back after the bankruptcy

if the chain is restored.24 Essentially, the expert in the distress fund sells the project back to

the entrepreneur at price P ′−1 (one can view the distress fund as layer −1). The entrepreneur

takes price P ′−1 as given, chooses a new contract π′0 (and hence initializes a new chain) to

23In the special one-layer case where the entrepreneur is directly issuing to households one-period debt
(which always matures), this term equals zero since 1− 1L=1 = 0.

24The chain is restored with probability β this period, and (1 − β)(1 − λy) in the next period. Discount
rate α is applied to the continuation value if restoration happens in the next period.
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maximize the sum of proceeds from issuing debt (P ′0) and his continuation value (V0).

We allow entrepreneurs to be rehired for keeping the contract stationary over time.

Since the entrepreneur has no savings when he is rehired, the price charged by the distress

fund P ′−1 cannot be larger than the debt proceeds that the entrepreneur can raise P ′0. We

assume the distress fund has all the bargaining power so that P ′−1 = P ′0.25

3.2.3 Households

Now consider the value function of households. When debt matures, the new-born households

are paying PL−1 for the debt. So their payoff is

e− PL−1(y) + VL(y; πL−1, L). (18)

In equilibrium, households are paying the competitive price, PL−1(y) = VL(y; πL−1, L), which
is defined recursively as below:

VL(y;πL−1, L) = λy F̃y,L−1︸ ︷︷ ︸
Project matures

+ (1− λy)

{
L−1∑
l=0

(ml −ml+1)E[1lrollovere+ (1− 1lrollover)(αBl(y, L)− c(L− l))︸ ︷︷ ︸
Rollover happens at layer l ≤ L− 1

]

}
. (19)

Similar as before, F̃y,L−1 = min (Fy,L−1, y) is the payoff to households who hold debt

issued by layer L− 1 if the project matures. With probability 1− λy, the project does not

mature, though households’ debt matures with probability 1. When debt issued by layer-l

matures (with proability ml −ml+1), the repayment trickles down to households due to the

prepayment clauses, as explained in Section 3.1. The departing households get paid by e

if rollover is successful (the first part of (19) inside the expectation), or they receive the

liquidation proceeds αBl(y, L)− c(L− l) if rollover fails (the second part of (19)).
The valuation equation from the perspective of buyers’ determines Bl(y, L):

Bl(y, L) =β VL(L)︸ ︷︷ ︸
If chain is restored

+(1− β)
{

λyF̃y,l−1︸ ︷︷ ︸
Project matures

+(1− λy)
[
ml E[αVL(y′;L)]︸ ︷︷ ︸

Debt does not mature

(20)

+

l−1∑
i=0

(mi −mi+1)E [1irollovere+ (1− 1irollover)(αBi(y, L)− c(l − i))]
]

︸ ︷︷ ︸
Debt matures

}
. (21)

With probability β, the chain is restored to length L immediately, in which case the house-

25The impatient entrepreneur with discount rate α < 1 indeed has no savings, as he would prefer consume
his previous debt proceeds immediately. Also recall that we have always assumed that the distress fund has
all the bargaining power, so that the liquidation value equals the fair value of the debt when other layers are
broken.
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holds’ valuation for the debt is VL. With probability 1 − β, households hold the liquidated

asset (debt issued by layer l−1) directly for one period, and the chain is restored to L in the

following period. In this case, if the project matures with probability λy during this period,

then households get paid F̃y,l−1. If neither the project nor the debt matures, which occurs

with probability (1 − λy)ml, then it is sold in the secondary market to the next cohort of

households at discount α. Since the next cohort of households will hold debt issued by the

restored chain, their valuation of debt is VL; this gives the last term in Eq. (20).

Lastly, if the project does not mature but debt matures (which could occur if any debt

issued by layers above l matures), then households either get paid by e given successful

rollover or get the liquidation proceeds αBi(y, L)− c(l− i) if rollover fails. This is captured

by Eq. (21).

3.3 Liquidation Value

As illustrated by the simple example in Section 2, the goal for financial intermediaries to

form credit chains is to increase the liquidation value Bl(y, L) toward departing households.

Denote the equilibrium credit chain length by L∗. The next proposition formally gives the

key property of Bl(y, L) that drives the benefit of a long-chain.

Proposition 1 Liquidation value BL−j(y, L) is increasing in L for L ≤ L∗ and any j ≤ L.

We show this formally in Appendix C.1. By fixing the distance j between the bankruptcy

layer L − j and households while varying the chain length L, Proposition 1 shows that the

further away from the entrepreneur the higher the liquidation value. To see the intuition,

consider the asset that is being liquidated at the breaking point L−j. This asset in liquidation

can be considered as a collection of debt contracts issued by all layers above; and consistent

with the intuition of maturity transformation, the further away the breaking point from the

entrepreneur, the shorter-term the liquidated asset. These shorter-term claims are desirable

in that if favorable fundamental y realizes later then debt payments can flow toward departing

households in a frictionless way (i.e., without the discount factor α), leading to a higher

liquidation value.

We highlight that the above intuition is exactly the same as in our example in Section

2, which shows that two-layer structure dominates that of short-term debt. Essentially,

during liquidation, instead of liquidating the long-term project as what would happen in the

short-term debt structure, the two-layer structure liquidates a short-term asset and protects

the underlying long term cash flows from being discounted repeatedly. As explained toward

the end of Section 2.3, because of secondary market discount and short-lived households,
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liquidating short-term asset is less costly than liquidating long-term asset. Proposition 1

formally states this property in our dynamic model: The more the layers between the point

of bankruptcy and the underlying project, the shorter-term the liquidation asset is, the

higher the liquidation value, and the greater the ex-ante debt value.

3.4 Equilibrium Definition

Define Π̂ as the set of feasible contracts that are renegotiation proof and subject to the

resource constraint (imposed by limited endowment from OLG households):

Π̂ ≡ {π ∈ Π : VL({Fy,s}Ts=t, L) ≤ e for ∀t}. (22)

Definition 1 The equilibrium credit chain is a set of contracts {πl,t}0≤l≤L−1 and credit chain

length L∗ such that

1. For 1 ≤ l ≤ L− 1, when layer-l’s liability matures in period t,26

πl,t = arg max
π∈Π̂

1lrollover(Pl(yt, π; πl−1,t, L
∗) + Vl(yt, π; πl−1,t, L

∗)), (23)

s.t. Fy,l,t ≤ Fy,l−1,t in (7). (24)

When layer-0’s liability matures,

π0 = arg max
π∈Π̂

10
rollover(P0(yt, π;L∗) + V0(yt, π;L∗)). (25)

2. The equilibrium L∗ is such that the last layer of fund manager (L∗ − 1) prefers to

borrow directly from households than to borrow via other fund managers:

PL∗−1(L∗) + VL∗−1(L∗) ≥ PL∗−1(L∗ + l) + VL∗−1(L∗ + l) for l ≥ 1. (26)

Furthermore, for all other funds 0 < l < L∗ − 1,

Pl(L
∗) + Vl(L

∗) ≥ Pl(l + 1) + Vl(l + 1). (27)

In other words, the funds in intermediary layers prefer to borrow via other funds than

to borrow from households.

26When t = 0, 1lrollover = 1 for all l.
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3. Due to perfect competition,

Pl − Pl−1 + Vl = 0. (28)

4 Equilibrium Credit Chain

In this section, we first show that the equilibrium contract features stationarity and layer

independence, i.e., the interest payment Fy is the same for all layers and is stationary over

time. We then characterize and analyze the equilibrium credit chain length L∗, and provide

comparative statics analysis on equilibrium chain length. Finally, we show that, somewhat

surprisingly, the resulting equilibrium chain length in the decentralized market is constrained

efficient.

4.1 Equilibrium Contract

Now we show that the equilibrium contract features stationarity and layer-independence;

and for this section we put back time subscript t. Each period t, after yt is observed but

before the project matures, layer-l chooses a new contract for its creditors when either the

debt issued by himself or the debt held by himself matures, i.e., the event 1rollover in Eq.

(13) and (14) occurs. There, we can see layer-l’s (0 < l < L) problem is equivalent to:

max
πl,t

Pl,t + Vl(yt, πl,t; πl−1,t, L) (29)

s.t. Pl+1,t + Vl+1(yt, πl+1,t; πl,t, L)− Pl,t = 0 (30)

Fy,l,s ≤ Fy,l−1,s ∀s ≥ t. (31)

Eq. (30) indicates that the payoff of layer-(l+1) is 0 in equilibrium — Pl+1,t+Vl+1(yt, πl+1,t; πl,t, L)

is layer-(l+ 1)’s payoff from issuing debt, and Pl,t is how much he pays to layer-l. In perfect

competition, layer-(l+1)’s payoff is 0. We present the first result on the equilibrium contract

in Lemma 1.

Lemma 1 The interest rate payment in the optimal debt contract is stationary and inde-

pendent of fund position l, so that F̃y,l,t = min(yt, F
∗
y ).

Start with stationarity. Recall that successful rollover occurs when y exceeds certain en-

dogenous threshold ŷl,t which is measurable to Ft−1. By definition, ŷl,t is the payment to

the creditor in period t, such that the present value of the debt contract—i.e., all future

promised payments at t + s with s ≥ 1—equals e. But Assumption 1 in Section 3.1 says
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that the issuer can always unilaterally prepay his debt. As a result, in a renegotiation proof

contract, the funds set Fy,l,t+s = ŷl,t+s for s ≥ 0, i.e., the interest payment equals the run

threshold for all periods. Since the amount that needs to be refinanced—i.e., e—is constant

over time, it immediately implies that the endogenous rollover threshold ŷl,t is also constant

over time, yielding the stationarity of Fy,l.
27

Next, given that the face value e is the same across layers, we argue that Fy,l has to be

the same for all l as well due to perfect competition. In light of limited liability constraint

(31), we only need to rule out the case Fy,l−1 > Fy,l. But if this is the case, then layer-l earns

positive spread when the project matures, implying strictly positive profit in expectation—

but this is against perfect competition.

4.2 Special Case: c = 0

The special case of no restructuring cost, i.e. c = 0, helps illustrate the benefit of setting up

long chains. We have the following Corollary.

Corollary 1 When c = 0, the equilibrium length of credit chain is infinity, i.e., L∗ =∞.

To see the benefit of long chains, consider the difference in households value when the

chain length is L versus L + 1. We can simplify the households’ value function by taking

advantage of the fact that E[1lrollover] = 1−H(Fy) (recall H(·) is the cumulative distribution

function of y); in words, H(Fy) is the probability of rollover failure. In Appendix C.3, we

show that

VL+1(L+ 1)− VL(L) =
(1− λy)αH(Fy)mL[

>0 due to Proposition 1︷ ︸︸ ︷
BL(y, L+ 1)−BL−1(y, L)]

1− (1− λy)αH(Fy)KL

≥ 0, (32)

with an endogenous constant Kl ∈ (0, 1−ml] for any l ≥ 0. Proposition 1 says that a longer

credit chain increases liquidation value, which implies that the last fund layer always prefers

to keep extending the credit chain. Here we see exactly the same intuition revealed by the

comparison between two-layer structure and short-term debt in Section 2: Having multiple

layers increases the liquidation value (reduce liquidation loss). Again, longer chains increase

liquidation value because the liquidated asset is of shorter maturity in expectation. In other

words, an ex-ante longer chain delivers a shorter maturity asset when liquidation happens.

27ŷl,t is defined by VL(ŷl,t, {Fy,l,t+j}∞j=1, L) = e. Since the intermediate layers all have zero payoffs, a suc-
cessful rollover is determined by promising the households a value equal to the face value e. In renegotiation-
proof contracts, Fy,l,t+j = ŷl,t+j . With stationarity, ŷl is pinned down by VL(ŷl, {ŷl}, L) = e.
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Since OLG households value short-term assets, this raises the liquidation value and increases

debt value ex-ante.

Furthermore, similar to the example, the benefit of long chains can also be achieved by

debt contracts where the maturity is state-contingent. In Appendix C.3.1, we show that the

value of some state-contingent maturity debt is exactly the same as the value of debt with

L+ 1 layers. The state-contingent contract preserves the subsequent short-term contracts in

the case of low output and rollover failures, yielding the liquidated asset effectively shorter-

term and achieving similar outcome as longer chains.

Finally, in the special case of c = 0, the difference in liquidation value BL(L + 1) −
BL−1(L) is proportional to (1 − β), as shown in Eq. (70) in Appendix C.3. If β = 1, i.e.,

chain restoration happens immediately after liquidation (so future short-term debt claims

are never destroyed by liquidation), then adding layers does not improve liquidation value.

4.3 Characterizing Equilibrium

Given the contract is stationary and layer independent, the run thresholds for all layers are
the same and constant over time. We can simplify the households’ value function to the
following:

VL(Fy , L; y) = λy min(Fy , y) (33)

+ (1− λy)
{

(1−H(Fy))e+H(Fy)
[L−2∑
l=0

mlλd(αE[Bl(y, L)|y < Fy ]− c(L− l)) +mL−1(αE[BL−1(y, L)|y < Fy ]− c)
]}

︸ ︷︷ ︸
vL(Fy,L)

. (34)

Define vL(Fy, L) ≡ VL(L) − λy min(Fy, y) to be the continuation value if the project does

not mature in this period, which is independent of the current realization of y. Because

vL(Fy, L) only depends on total chain length L and interest payment Fy, it is constant over

time as both inputs are constant along the equilibrium path.

Conditional on rollover being successful (y ≥ Fy), the households’ valuation of the debt

VL(L) should equal e, representing households’ binding participation constraint in equilib-

rium. Therefore the following equation pins down Fy as a function of L,

VL = e ⇒ λyFy + vL(Fy, L) = e. (35)

Assumption 3 guarantees that the solution to Eq. (35) is unique.

Assumption 3 The following inequality holds for all Fy,

λy − (0, 0, ..., 0, 1)Ψ−1 ∂Ψ

∂Fy
Ψ−1η + (0, 0, ..., 0, 1)Ψ−1 ∂η

∂Fy
≥ 0 (36)

31



where the exact expressions for Ψ(Fy) and ∂η(Fy)

∂Fy
are in Appendix C.4.

Now we are ready to determine L∗. Given the competitive fund sector, the problem

faced by the last layer of funds is equivalent to maximizing the sum of the funds’ payoff and

the households’ payoff. Given that part of VL (specifically, Eq. (33)) is a transfer between

the households and the funds, the funds’ problem is equivalent to maximizing vL. But Eq.

(35) immediately implies that maximizing vL amounts to minimizing Fy, by choosing the

optimal credit chain length L∗. Intuitively, layer-l will only borrow via another layer of funds

if extending the credit chain reduces interest Fy; otherwise, layer-l should borrow directly

from households. Proposition 2 characterizes the equilibrium conditions.

Proposition 2 Under Assumption 3, the equilibrium (promised) interest payment F ∗y and
equilibrium chain length L∗ is the unique solution to the following equations

e = λyF
∗
y +

[
0 0 ... 0 1

]
︸ ︷︷ ︸

1×(L∗+1)

(Ψ(F ∗y )−1η(F ∗y ))

︸ ︷︷ ︸
=vL∗ (L∗)

(37)

0 =
λdmL−1mL(1− β)(1− λy)α

(1 + λdmL−1Ω)(1 +mLΩ)
e(1−H)(1− α)−

{
(1−mL)

1 +mL−1Ω

1 + λdmL−1Ω
− mLΩ

1 +mLΩ

λdmL−1Ω

1 + λdmL−1Ω

}
c.

(38)

where Ψ is a (L∗ + 1) × (L∗ + 1) matrix and η is a (L∗ + 1) × 1 vector, with both being

functions of F ∗y . The exact expressions for Ψ and η are in Appendix C.4. Finally, Ω ≡
(1− β)(1− λy)αH(F ∗y ).28

The formal proof is in Appendix C.4. Household’s valuation for the debt VL(L), together

with all the liquidation values Bl(L) (0 ≤ l ≤ L−1), forms a system of linear equations with

dimension L + 1. We solve this system of linear equations and take the last entry which is

the value of vL(L), to be the second term in the right-hand-side of (37).

As explained, the equilibrium chain length L∗ is effectively characterized by maximizing

households’ continuation payoff vL, with (38) as the first order condition. The first term

gives the marginal benefit of longer chains, as explained in Section 4.2. On the cost side

which is the second term in (38), the total bankruptcy cost given rollover failure is increasing

in the number of layers disrupted as well as the bankruptcy cost c. Combining this with Eq.

(37) (the households’ participation constraint (35)) yields the equilibrium F ∗y and L∗.
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Figure 8: Comparative Statics with respect to e and λd

(a) Borrowing amount e

(b) Debt maturity rate λd

Numerical illustration of comparative statics related to chain length L. Parameter values (unless specified
in the x-axis): β = 0.1, λd = 0.1, α = 0.5, λy = 0.35, g(y) = γ exp(−γy), γ = 0.3, e = 1. The blue solid line
plots equilibrium chain length when c = 0.01 and the red dotted line plots chain length when c = 0.02.

4.4 Comparative Statics

The previous subsection illustrates that intermediaries in the market would like to lengthen

the credit chain. When c > 0, additional cost in the case of rollover failure increases with L,

leading the equilibrium chain length to be finite.

In this section, we analyze how credit chain length varies with certain parameter values.

Proposition 3 The equilibrium credit chain length is decreasing in bankruptcy cost c, i.e.
∂L∗

∂c
≤ 0.

When the liquidation cost c is higher, it is more costly to add layers, hence the equi-

28Although credit chain length should take an integer value, for exposition convenience we do not impose
this requirement for L in this article. It is straightforward though to impose this restriction; specifically, if
the solution to Eq. (38) lies between two integers (L1, L2), then L∗ = arg maxL∈{L1,L2} vL(L).
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Figure 9: Comparative Statics with respect to λy and Distribution of y

(a) Project maturity rate λy

(b) Fundamental cash-flow

Numerical illustration of comparative statics related to chain length L. Parameter values (unless specified
in the x-axis): β = 0.1, λd = 0.1, α = 0.5, λy = 0.35, g(y) = γ exp(−γy), γ = 0.3, e = 1. The blue solid line
plots equilibrium chain length when c = 0.01 and the red dotted line plots chain length when c = 0.05.

librium chain length is shorter. However, for the other parameter values, the effects are

generally mixed. Figure 8-10 plot several numerical illustrations of how equilibrium chain

length, run probability and welfare vary with parameter values. In all cases, higher c leads

to lower equilibrium chain length, higher run probability and lower welfare.29

To understand the opposing forces, consider the marginal benefit of extending the chain

length when the borrowing amount e is larger. Recall that the benefit of longer chains comes

from a higher liquidated value of the debt, which is proportional to e(1 − H(F ∗y ))(1 − α)

(as shown in the first part of Eq. (38)). The direct effect of higher leverage e increases

the marginal benefit of longer chains. However, higher leverage also increases probability

of rollover failures H(F ∗y ), as shown in Panel (a) of Figure 8. This indirect effect through

equilibrium run threshold reduces the benefit of long chains. We therefore cannot sign the

29The total welfare is equal to the sum of all agents’ payoff. See Section 4.5 for details.
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Figure 10: Comparative Statics with respect to α and β

(a) Discount rate α

(b) Chain restoration probability β

Numerical illustration of comparative statics related to chain length L. Parameter values (unless specified
in the x-axis): β = 0.1, λd = 0.1, α = 0.5, λy = 0.35, g(y) = γ exp(−γy), γ = 0.3, e = 1. The blue solid line
plots equilibrium chain length when c = 0.01 and the red dotted line plots chain length when c = 0.02.

net effect of larger e in general. Figure 8 Panel (a) presents a case when the effect of e on the

chain length is non-monotone. Welfare naturally increases with e because e is households’

endowment.

Similar logic applies to all the other parameters: the direct effect on chain length and

the indirect effect through the equilibrium rollover threshold operate in opposite directions.

In the case of λd, when λd is small, the asset side of any given layer has long maturity in

expectation and it is more costly to liquidate those assets. This force pushes more layers

in the chain to “shorten” the effective maturity of liquidated assets. However, the indirect

effect via run probability goes in the opposite direction. As Figure 8 Panel (b) shows,

run probability becomes larger when λd is smaller. In Figure 8 Panel (b), the direct effect

dominates and chain length is longer when λd is smaller.

Next, we consider comparative statics with respect to project characteristics. First,
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consider the project maturity rate λy, fixing the rollover threshold, a larger λy means less

maturity mismatch in the system, which reduces the benefit of extending chains (in the

limit, when λy = 1, there is no maturity mismatch and hence households lend directly to the

entrepreneur). However, larger λy also reduces the equilibrium rollover threshold, as shown

in Panel (a) of Figure 9. This indirect force reduces the marginal cost of extending chains.

As a result, the relationship between equilibrium chain length and λy is non-monotone in

Figure 9 Panel (a). Welfare increases in λy because larger λy means the project produces

cash-flow sooner, which raises the payoff of the impatient entrepreneur. Furthermore, we

find that higher fundamental cash-flow leads to longer credit chains in equilibrium in Figure

9 Panel (b). When the cash-flow is on average higher, the run probability is lower and

welfare is higher. Lower run probability reduces the marginal cost of extending the credit

chains. Hence, we see longer chains in equilibrium when the fundamental project has higher

cash-flow.

Figure 10 illustrates the effect of the discount rate α and chain restoration probability β.

The direct effect of higher α reduces the marginal benefit but the indirect effect via probabil-

ity of rollover failure counteracts it. When α = 1, i.e., without any transaction/liquidation

cost, we have L∗ = 1 as there is no liquidation loss to start with, implying no benefit of using

long chains. This implies that L∗ decreases in α for α being close to 1. But for general α val-

ues, the comparative statics is undetermined: a higher α also reduces the rollover threshold

and hence the probability of rollover failure, an indirect force that may increase the marginal

value of longer chains. Under the parameterization in Figure 10 Panel (a) shows that assets

with worse secondary market liquidity are supported by longest credit chains. This pattern

is consistent with the case of MBS where the underlying assets (real estate properties) are

with illiquid secondary markets and the intermediation chain is long.30 Higher α also raises

total welfare through smaller liquidation costs.

Finally, higher probability of chain restoration right after rollover failures reduces fric-

tions in the system and raises liquidation values. As a result, run probability is lower and

total welfare is higher, as shown in Figure 10 Panel (b). However, the benefit of long chains

is to preserve the short-term claims in the event of rollover failures. Hence being able to

immediately re-issue short-term debt after liquidation diminishes the benefit of having long

chains in the first place. In general, we find that the equilibrium chain length decreases with

the immediate restoration probability β.

30In addition, there is no monitoring from creditors in our model. This is perhaps another reason why our
model applies well to market based financing such as the case of MBS.
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4.5 Welfare Analysis

We now study whether the decentralized equilibrium is constrained-efficient from the social

planner’s perspective. Specifically, we ask the following question: Can the social planner

improve welfare by restricting the credit chain length, say via a regulation that caps L? The

answer is negative.

Consider a constrained planner who can choose L to maximize the sum of all agents’

utilities W ({πl,t}0≤l≤L−1, L), subject to that the contracts are determined by the decen-

tralized equilibrium as characterized in Section 4.3. Since equilibrium contracts are layer-

independent and time-invariant (Section 4.1), we denote the total welfare by W (Fy(L), L),

which is defined as

W (Fy(L), L) = e+ λyy + v0(Fy(L)) + v1(Fy(L)) + · · ·+ vL(Fy(L).L), (39)

Here, we are given y, Fy(L) is the equilibrium interest rates given chain length L, and

vl being layer-l’s continuation payoff if the project does not mature this period. Note, only

households (layer L) will be directly affected by the chain length L; all other layers, including

the entrepreneur only care about the equilibrium interest rates Fy (which, of course, will be

determined by L).

Since in equilibrium all intermediary funds earn 0 profit, we can write Eq. (39) as

W (Fy(L), L) = e+ λyy + v0(Fy(L)) + vL(Fy(L), L). (40)

Denote the continuation value of the social welfare by wL in the case when the project does
not mature in this period, i.e., wL = v0 + vL. wL can then be expressed recursively as

wL = (1− λy)
{
αλyE[y] + αwL + (1−H(Fy))(1− α)e−H(Fy)

L−1∑
l=0

(ml −ml+1) [α(vL(L)− bl) + c(L− l)]︸ ︷︷ ︸
=∆

}
.

(41)

To better understand (41), the term ∆ represents the gain from trade (via endogenous credit

chains) in our economy. To see this, consider the case of autarky without lending. There,

the households’ payoff is e, while the entrepreneur’s payoff V̂0 = λyy + v̂0, with v̂0 denoting

his continuation value if the project does not mature. Similar to before, we can express v̂0

recursively as

v̂0 = (1− λy)α (λyE[y] + v̂0) , (42)
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which makes it clear that the difference between (42) and (41) comes from ∆. The first part

of ∆ is (1 − H(Fy))(1 − α)e, capturing the impatience wedge between households and the

entrepreneur; and the second part captures the cost in the event of rollover failure. When

c = 0, we can show that ∆ > 0, representing a gain from trade. See Appendix C.6 for details.

We now show that the equilibrium chain length emerging from the decentralized market

is constrained efficient. To formally prove this claim, we first state the formal definition of

a planner’s problem in Definition 2. Same as before, Π̂ denotes the set of feasible contracts

that are renegotiation proof and subject to the resource constraint.

Definition 2 The planner’s solution L∗∗ solves maxLW ({πl,t(L)}0≤l≤L−1, L) such that

1. For 1 ≤ l ≤ L− 1, when layer-l’s liability matures,

πl(L) = arg max
π∈Π̂

1lrollover(Pl(y, π; πl−1, L) + Vl(y, π; πl−1, L)), (43)

s.t. Fy,l ≤ Fy,l−1 in (7). (44)

When layer-0’s liability matures,

π0(L) = arg max
π∈Π̂

10
rollover(P0(y, π;L) + V0(y, π;L)). (45)

2. Due to perfect competition,

Pl − Pl−1 + Vl = 0. (46)

Consider the impact of varying credit chain length on the total welfare, evaluated at the

decentralized equilibrium L = L∗. From Eq. (40), both the entrepreneur’s payoff (v0) and

the households’ payoff (vL) are affected:

dW

dL
=
dv0

dFy

dFy
dL︸︷︷︸
=0

∣∣∣
L=L∗

+
dvL
dL︸︷︷︸
=0

∣∣∣
L=L∗

. (47)

As argued in Section 4.3, in the decentralized equilibrium, the privately optimal chain length

L∗ is chosen to maximize households’ payoff vL. Hence the second part of Eq. (47) is equal

to 0 at the decentralized equilibrium L∗. Furthermore, we have also discussed that the

optimization amounts to choosing the chain length L∗ that minimizes the interest rate Fy,

as suggested by vL = e − λyFy in (35). Hence the first part of Eq. (47) is also 0. The

following proposition summarizes our key result in this section.
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Proposition 4 The constrained social planner’s solution coincides with the decentralized

equilibrium. In other words, L∗ = L∗∗.

Why does the first order condition of L from the social perspective coincides with that

in the private case in our model? At a high level, this is because the trade-offs of extending

chains is reflected in the interest rate paid by the last layer of funds to their lenders —that

is, OLG households. Since households are the ones paying the full restructuring cost, the

interest rate that the households are willing to lend at takes this cost into account. If the

cost of extending the chain outweighs the benefit, fund managers will directly borrow from

households for a lower interest rate—in other words, households are willing to accept a lower

interest rate to rollover the debt. Thanks to this force, in our model funds internalize the

cost and benefit of longer chains through the interest rate they pay. We expect this force

to be general in other settings, though we leave it to future research for a more thorough

analysis on this issue.

We emphasize that our constrained-efficiency result is conditional on liquidation dis-

counts and bankruptcy costs being fixed. Incorporating bankruptcy externalities, in which

the bankruptcy cost c and/or restructuring probability β are endogenous to how many lay-

ers are being liquidated, could lead to too long chain in the decentralized equilibrium. This

could be micro-founded by limited resources to handle distressed intermediary funds. Indi-

vidual agents in the decentralized economy take these equilibrium variables as given, while

the planner internalizes the effect of chain length on number of layers being liquidated and

eventually the bankruptcy costs. Then, the wedge between the social planner’s optimal

choice of L∗∗ and the equilibrium L∗ boils down to the effect of credit chain length on the

fraction of funds that go through rollover failures. Finally, if the liquidation cost c is born

by each layer, instead of the households, the total liquidation cost will not be internalized

by the last layer fund, which determines the equilibrium chain length. This will also lead to

the decentralized equilibrium chain length being longer than the socially optimal one.

More broadly, if the overall degree of maturity transformation generated by the system

varies with the chain length as in the NBER working paper version (w29632), then there is

a wedge between systemic risk (the probability that the credit chain experiences a run) and

the rollover risk of a given layer.31 Standard fire-sale externalities (e.g. Shleifer and Vishny,

1992; Lorenzoni, 2008; He and Kondor, 2016 and many more), in which fire-sale discount α

gets more severe when there are more assets being liquidated, also lead to chains that are

31As explained in “Debt contracts” in Section 3.1, in the NBER version of this paper (He and Li, 2022) we
assume that OLG households are holding debt with that matures with probability λd (instead of 1). This
implies that for the system as a whole the debt rollover occurs with probability 1 −mL = 1 − (1 − λd)L,
which is increasing in the credit chain length L. The decentralized market equilibrium minimizes the rollover
risk of a given layer, but may generate too much systemic risk overall.
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too long. In this setting, the planner limits the chain length to reduce systemic risk.

5 Conclusion

By highlighting a feature that we often see in the modern market-based financial system,

we study a new dimension of the credit intermediation where one agent’s liability is another

agent’s asset in the credit chain. We develop a new framework to illustrate the novel economic

benefit of credit chains, characterize the equilibrium credit chain, and then study welfare

implication of the equilibrium credit chain.

Different from existing research that only looks at systemic risk for each part of the

financial system one at a time, our paper tries to provide a holistic view of the financial

system when analyzing risks and welfare. This is important because regulations that impact

one sector of the financial system will induce changes in the whole sector, affecting other

institutions that interact with that sector. Without a model that includes the linkages

among different institutions, researchers cannot properly assess the impact of any individual

institution or policy. We hope future studies can use our model to answer these questions

by further incorporating other empirically relevant features.
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Online Appendix

A Equilibrium in the Example

As a benchmark, the entrepreneur can issue three-period debt to cohort 0, who will then sell

the debt to cohort 1 and 2 later. Figure 11 illustrates the cash flow exchanges. In t = 0,

households purchase the debt from the entrepreneur at price P0; in t = 3, the firm pays the

households D3. In t = 1 and 2, households trade debt on the secondary market. Since each

sale on the market incurs a discount αs = 0.8, at t = 0 the entrepreneur is able to raise

P0 (three-period debt) = 0.6× 0.82 + 0.4× 0.6× 0.82 = 0.538. (48)

More generally, the price of the equity contract is given by

P0(three-period debt) = [p+ (1− p)p]α2
s (49)

A.1 Direct Financing Using Two-Period Contract

Here we consider the general case where the debt face value is D2. We show that in equilib-

rium D2 is such that rollover is only successful in the good state.

We solve the problem backward. In period 2, the entrepreneur/firm can at most raise

P2 = 1 from cohort 2. This happens when good news has arrived, otherwise, P2 = 0. If

D2 = 0, then the firm is never in liquidation; if 1 ≤ D2 > 0, the firm is only liquidated if no

good news has arrived; finally, if D2 > 1, the firm will always be liquidated.

D2


≤ 0 never liquidate

∈ (0, 1] only liquidate when no good news arrives

> 1 always liquidate.

The amount of money that can be raised in period 0 is,

P0(D2) = 1D2≤0αsD2 + 10<D2≤1[p+ (1− p)p]αsD2 + 1D2>1[p+ (1− p)p]αlαs

The entrepreneur chooses D2 to maximize P0, we get D2 = 1, and

P0 (two-period debt) = [p+ (1− p)p]αs (50)

Liquidation only happens in period 2 and when no good news arrives. Comparing Eq. (50)
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Figure 11: Illustration of Case 0: Long-Term Three-Period Debt

y = 1

p p

1− p 1− pt = 1 t = 2t = 0

Entrepreneur/firm

P0

Households

D3

Sell at αsP1

P1 = αs × 1

Sell at αs × 1

Sell at αsP1

P1 = p× αs Sell at αs × 0

Sell at αs × 1

This figure illustrates the cash flow exchanges between the households and the entrepreneur in Case 0.

with that in the three-period debt case Eq. (49), we get

P0 (two-period debt)− P0(three-period debt) = [p+ (1− p)p]αs(1− αs) (51)

In the three-period debt case, discount is always applied twice on the final cash flow. In the

two-period debt case, αs is always applied once due to the trading in period 1. However, if

debt is rolled over successful in period 2, then final cash flow need not be discounted again.

That situation happens with probability p+ (1− p)p and the saving is 1− αs.

A.2 Direct Financing Using One-Period Contract

The problem in period 2 is the same as in the two-period contract case

D2


≤ 0 never liquidate

∈ (0, 1] only liquidate when no good news arrives

> 1 always liquidate.

So the proceeds of issuing debt in period 1 if good news arrives is,

P1(g;D2,g) = 1D2,g≤0D2,g + 10<D2,g≤1D2,g + 1D2,g>1αl
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if good news has not arrived in period 1, then

P1(b;D2,b) = 1D2,b≤0D2,b + 10<D2,b≤1pD2,b + 1D2,b>1pαl

Given the amount of money that can be raised in period 1 (P1),

D1

≤ P1,b never liquidate

∈ (P1,b, P1,g] liquidate if no good news > P1,g always liquidate

The amount of money that can be raised in period 0 is then

P0(D1, D2) =1D1≤P1,b
D1 + 1P1,b<D1≤P1,g

[pD1 + (1− p)pαsαl] + 1D1>P1,g
αsαl[p+ (1− p)p] (52)

The entrepreneur’s problem is the following,

max
D1,D2

P0(D1, D2)

Solution is then D2,g = D2,b = 1, and D1 = 1. Plug this in Eq. (52) to get,

P0(one-period debt) = p+ (1− p)pαsαl (53)

So liquidation in period 2 happens when no good news arrives and liquidation in period 1

happens when no good news arrives in period 1.

Comparing the funds raised via one-period debt (Eq. (50)) with the funds raised via

two-period debt (Eq. (53)),

P0(one-period debt)− P0(two-period debt) = p(1− αs)︸ ︷︷ ︸
Rollover succeeds

−(1− p)αsp(1− αl)︸ ︷︷ ︸
Rollover fails

(54)

The benefit comes from avoiding transaction cost in the secondary market when short-term

debt can be successfully rolled-over.
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A.3 Financing via Intermediary Funds

Similar to before, we solve the problem backward. The problem at period 2 is exactly the

same as the previous subsection,

D2


≤ 0 never liquidate

∈ (0, 1] only liquidate when no good news arrives

> 1 always liquidate.

Same as before, the proceeds of issuing debt in period 1 if good news arrives is,

P1(g;D2,g) = 1D2,g≤0D2,g + 10<D2,g≤1D2,g + 1D2,g>1αl

if good news has not arrived in period 1, then

P1(b;D2,b) = 1D2,b≤0D2,b + 10<D2,b≤1pD2,b + 1D2,b>1pαL

Next, we consider the issuance of debt in period 0. Given the amount of money that

can be raised in period 1 (P1),

D1


≤ P1,b fund never liquidates

∈ (P1,b, P1,g] fund only liquidates when no good news

> P1,g fund always liquidates

Notice the liquidation in period 1 is at the fund level, i.e. the asset being sold on the market

is the debt contract between the entrepreneur and the fund.

The amount of money that can be raised in period 0 is then

P0(D1, D2) =1D1≤P1,b
D1 + 1P1,b<D1≤P1,g [pD1 + (1− p)αlp] (55)

+ 1D1>P1,g(p+ (1− p)p)αl (56)

The entrepreneur’s problem is maxD1,D2,g ,D2,b
P0, which gives us D2,g = D2,b = 1, and D1 = 1.

Plug the debt face values into Eq. (56) to get,

P0(two-layer) = p+ (1− p)pαl (57)
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Comparing this with the one-period direct financing in Eq. (53),

P0(two-layer)− P0(one-period debt) = (1− p)pαl(1− αs) (58)

The difference occurs in the case when no good news arrive in period 1, so rollover fails

in the first period. In the one-period debt financing case, the entrepreneur’s asset is being

liquidated, where as in the two-period financing case, only the fund’s asset is being liquidated.

Since short-term asset incurs lower discount on the secondary market, the indirect financing

method is able to raise more funds.

Suppose the entrepreneur issues the following debt contract whose maturity depends on

period 1 news. If good news arrives in period 1, then the cash flow structure is the same

as that in one-period debt (Case 2); otherwise the cash flow structure is the same as that

in two-period debt (Case 1). This state-contingent maturity contract provides liquidity in

period 1 if good news arrives, but at the same time avoids liquidating the firm’s asset in

the bad state. The difference in debt value between this case and a credit chain (Case 3) is

(1− p)p(αs − αl): when there is no good news arriving in period 1, the cohort-0 households

incur liquidation discount αl in a credit chain whereas they incur secondary market trading

discount αs in the state-contingent debt case. (When αl = αs, the two structures deliver the

same outcome.) The state-contingent maturity contract, however, requires more flexibility

on the contract space; and from this perspective the layered structure can be viewed as an

institutional implementation of contracts whose maturity is state-contingent.

B Generalizing the Example

We generalize the example in Section 2 to multiple layers. The environment is the same as

in Section 2, except that the project matures in T > 3 periods. We show that the structure

that generates the highest debt value in period 0 is the following: there are T − 2 layers of

intermediaries. We label the firm as layer 0, and the households as layer T − 1. The initial

entrepreneur issues debt with maturity T . Funds in layer l (0 < l ≤ T − 2) hold debt with

maturity T − l. They first issue debt with maturity T − l − 1. When such debt matures,

they try to rollover and issue debt with maturity that has only one period. In other words,

they only bear rollover risk for one period (the last period) before their asset side matures.

Once the fund’s asset side matures, it leaves the economy, and the existing households hold

debt directly issued by the layer above. The structure is illustrated in Figure 12, where the

arrows indicate cash-flow exchanges.

Here we assume the intermediary funds leave the economy as their asset side matures,
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Figure 12: Illustration of the Layer-Structure in the General Case

Entrepreneur

............

Layer 1

Layer 2

Layer T-2

(Layer 0)

(Layer T-1)
Households

......

Figure 13: Alternative Substructure

whereas in the example, we assume they issue one period debt until the economy ends. The

two structures are equivalent, because the fund is not bearing any maturity mismatch and

acts purely as a pass-through. Notice that from the households perspective, they are always

holding one-period debt, same as in the 3-period example.

To simplify the analysis, we assume αs = αl = α, as in the main model. Consider an

alternative structure in which layer l bears more than one period maturity mismatch risk,

i.e. layer l’s asset matures in Tl period, but it’s liability matures in Tl − ∆, where ∆ ≥ 2.

See the illustration in Figure 13. We show that debt value can be improved by adding a

layer (moving to the structure in Figure 14) and shortening layer l’s maturity mismatch.

Suppose layer l’s liability matures in period t. We focus the analysis on the amount of

money that households receive at time t. Given the iterative structure, the initial debt value

P0 is increasing in the expected payment to the households in any given period. If good
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Figure 14: Improvement on the Alternative Substructure

news has arrived by time t, then layer l can rollover its debt successfully and so will all the

subsequent debt. Hence households receive 1. However, when good news has not arrived by

time t, the rollover fails and layer l has to liquidate its asset at αPt,l−1, where Pt,l−1 is the

new cohort of households’ valuation of debt issued by layer l− 1 at time t conditional on no

good news has arrived by time t. In the structure in Figure 13,

Pt,l−1 = p α× 1︸ ︷︷ ︸
If goods news arrive in t+ 1

+(1− p) αPt+1,l−1︸ ︷︷ ︸
If no good news has arrived by t+ 1

However, consider the structure in Figure 14, denote households’ valuation of debt issued by

layer l − 1 as P̃t,l−1 (conditional on no good news arrive by time t),

P̃t,l−1 = p× 1︸︷︷︸
If goods news arrive in t+ 1

+(1− p) αP̃t+1,l−1︸ ︷︷ ︸
If no good news has arrived by t+ 1

Notice that from period t + 1 onward, the two structures are exactly the same. Hence

Ṽt+1,l−1 = Vt+1,l−1.

P̃t,l−1 − Pt,l−1 = p(1− α) > 0

Hence if there is any layer bearing more than 1 period maturity mismatch, then adding a

layer and reducing the maturity mismatch strictly increases debt value. As a result, the

structure that yields the highest debt value must be the one in Figure 12. The mechanism

is the same as in the 3-period example: adding layers increases the liquidation value (here

it is Pt,l−1) in the bad states of the world.
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C Proofs and Derivations

C.1 Proof for Proposition 1

If the total chain length is L, the liquidation value if the chain breaks at l is,

Bl(y, L) =βVL(L) + (1− β)
{
λy min(y, Fy) + (1− λy)

[
(1− λd)lE[αVL(y′, L)]

+
l−1∑
i=0

λd(1− λd)i(e(1−H) +H(αE[Bi(y, L)|y < Fy]− c(l − i)))
]}

bl(L) =βvL(L) + (1− β)(1− λy)
[
(1− λd)lE[αVL(y′, L)]

+
l−1∑
i=0

λd(1− λd)i(e(1−H) +H(αE[Bi(y, L)|y < Fy]− c(l − i)))
]

(59)

As will be shown in Appendix C.4, when L < L∗, dvL
dL

> 0, where dvL(L)
dL
≡ vL+1(L+ 1)−

vL(L). Furthermore, define ∂bl(L)
∂L

= bl(L+ 1)− bl(L). Using Eq. (59),

∂bl(L)

∂L
= β

dvL(L)

dL
+ (1− β)(1− λy)

[
(1− λd)lα

dvL(L)

dL
+

l−1∑
i=0

λdmlα
∂E[Bi(y, L)|y ≤ Fy]

∂L

]

where ∂E[Bi(y,L)|y≤Fy ]

∂L
= ∂bi(L)

∂L
. From induction, it is straightforward to show that ∂bl(L)

∂L
> 0

when dvL
dL

> 0.

Next, we can write bL−j+1(L+ 1)− bL−j(L) as

bL−j+1(L+ 1)− bL−j(L) = bL−j+1(L+ 1)− bL−j+1(L) + bL−j+1(L)− bL−j(L)

Since bl(L) is increasing in L when L ≤ L∗, bL−j+1(L+ 1)− bL−j+1(L) ≥ 0. Furthermore,

bl+1(L)− bl(L) =(1− β)(1− λy)[λd(1− λd)le(1−H)(1− α)

+ λdmlHα(vL − bl(L)) + cH(1−m1+l)] > 0 (60)

Eq. (60) implies bL−j+1(L)− bL−j(L) > 0. Together, we have bL−j+1(L+ 1)− bL−j(L) > 0.

C.2 Proof for Lemma 1

We want to show that Fy,l,t = min(Fy,l−1,t, ŷl,t), given the face value of the debt equals to e.

At time t, for a given sequence of future payments {Fy,l,t+j}∞j=1, there exists ŷl,t such
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that

Pl = VL({ŷl,t, {Fy,l,t+j}∞j=1}, L) = e

ŷl,t is the run threshold. Because yt is i.i.d. across periods, ŷl,t does not depend on the

history of y. If layer-l’s debt matures in period t, then it must be the case that

Fy,l,t = min{ŷl,t, Fy,l,t}

Otherwise, layer-l would not be able to rollover. Since layer-(L− 1) issues one period debt,

this is always the case, i.e.

Fy,L−1,t = min{ŷL−1,t, Fy,L−2,t} ∀t

For layer-l < L−1, consider the case when debt is issued in period s, where s < t. Since

the fund manager can always renegotiate with the households, it must be the case that

Fy,l,t ≤ min{ŷl,t, Fy,l,t}

If Fy,L−1,t < min(ŷL−1,t, Fy,L−2,t), then by setting F̃y,L−1,t = min(ŷL−1,t, Fy,L−2,t) and setting

F̃y,L−1,t+1 = Fy,L−1,t+1 − α(min(ŷL−1,t, Fy,L−2,t)− Fy,L−1,t), both the borrowing fund and the

lending fund remain indifferent. So without loss of generality, we can assume

Fy,l,t = min(ŷl,t, Fy,l,t)

Next, we proceed to show ŷl,t must be a constant.

For layer-0, since yt is i.i.d., ŷ0,t = ŷ0 is a constant over time and the distribution of

Fy,0,t is stationary. Suppose for any layer-l where 1 ≤ l ≤ L− 1, ŷl−1,t = ŷl−1 is a constant,

then Fy,l−1,t is stationary. If ŷl,t < ŷl,t+1, then it must exist j, such that

Et[Fy,l,t+j] > Et+1[Fy,l,t+j+1]

⇒Et[min(ŷl,t+j, Fy,l−1,t+j)] > Et+1[min(ŷl,t+j+1, Fy,l−1,t+j+1)]

⇒ŷl,t+j > ŷl,t+j+1 (61)

However, at time t+j, the problem faced by the fund is exactly the same as at time t because

of stationarity: at both point t and t+ j, the manager is trying to find the best subsequent

of payment such the debt is worth e to households. The two problems are identical. Hence
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it must be the case that

ŷl,t+j < ŷl,t+j+1 (62)

This contradicts Eq. (61). So ŷl,t = ŷl, i.e. it must be a constant over time. By induction,

this is true for all 0 ≤ l ≤ L− 1.

We have now established stationarity. We move on to show Fy,l = Fy, i.e. layer-

independence.

By the definition of Fy,l,

e = Pl+1 + Vl+1(Fy,l+1;Fy,l) (63)

In perfect competition, Pl+1 = e and Vl+1 = 0. From the HJB of Vl+1 (Eq. (11)-(14)), we

can see that it is proportional to Fy,l − Fy,l+1. Hence for Vl+1 = 0, it must be the case that

Fy,l = Fy,l+1 = Fy (64)

C.3 Proof for Corollary 1

We prove the equilibrium chain length is infinity by showing that the entrepreneur’s payoff

is always higher with more layers of financial intermediaries, for a given set of contract

parameters.

From the proof of optimal contract, it is straightforward that rollover fails when y < Fy.

This is true for any layer l. Suppose VL({Fy}, L) = e, we will show that VL+1({Fy}, L+1) > e,

which implies the equilibrium Fy(L + 1) < Fy(L). In the following proof, unless specified

otherwise, Fy = Fy(L) and H = H(Fy).

We can write households’ value function as,

VL = λy min(y, Fy) + (1− λy)(1−H)e

+ (1− λy)H
[ L−2∑
l=0

mlλdαE[Bl(y, L)|y < Fy] +mL−1αE[BL−1(y, L)|y < Fy]
]

consider adding a layer, households’ value function becomes

VL+1 = λy min(y, Fy) + (1− λy)(1−H)e

+ (1− λy)H ×
[ L−1∑
l=0

mlλdαE[Bl(y, L)|y < Fy] +mLαE[BL(y, L+ 1)|y < Fy]
]
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Note that we define

vL ≡ (1− λy)(1−H)e+ (1− λy)H
[ L−2∑
l=0

mlλdαE[Bl(y, L)|y < Fy] +mL−1αE[BL−1(y, L)|y < Fy]
]

To compare the two,

VL+1 − VL = vL+1 − vL

=(1− λy)Hα
[ L−1∑
l=0

mlλdE[Bl(y, L+ 1)|y < Fy] +mLE[BL(y, L+ 1)|y < Fy]

−
L−2∑
l=0

mlλdE[Bl(y, L)|y < Fy]−mL−1E[BL(y, L)|y < Fy]
]

=(1− λy)Hα
[ L−1∑
l=0

mlλd(bl(L+ 1)− bl(L)) +mL(bL(L+ 1)− bL−1(L))
]

(65)

Where bl(L) = Bl(Fy, L) − λy min(y, Fy). It is clear that the increase in debt value purely

comes from the increase in liquidation value. Next, we show that the liquidation value is

indeed higher when the chain length is longer.

First of all,

bl(L+ 1)− bl(L) = β(vL+1 − vL) + (1− β)(1− λy)[mlα(vL+1 − vL) + αH

l−1∑
i=0

λdmi(bi(L+ 1)− bi(L))]

and

b0(L+ 1)− b0(L) = [β + (1− β)(1− λy)α](vL+1(L+ 1)− vL(L))

Denote
∑n−1

l=0 λdml(bl(L+1)−bl(L)) by Kn× (vL+1−vL), and K1 = λd[β+(1−β)(1−λy)α].

For n ≥ 1, Kn is defined recursively by (1 ≤ n ≤ L),

Kn+1 −Kn = λdmn[β + (1− β)(1− λy)(αmn + αHKn)] (66)

and K1 ≤ λd = 1−m1. Suppose Kn ≤ 1−mn, plug into Eq. (66) we get

Kn+1 ≤ Kn + λdmn[β + (1− β)(1− λy)(αmn + αHKn)]

≤ Kn + λdmn[β + (1− β)(1− λy)] ≤ 1−mn + λdmn = 1−mn+1
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By induction, we have proved that Kn ≤ 1−mn for 1 ≤ n ≤ L. Next,

bL(L+ 1)− bL−1(L) = β(vL+1 − vL) + (1− β)(1− λy)
[
mLE[αVL+1(y′, L+ 1)]

+
L−1∑
i=0

λdmi(e(1−H) +HαE[Bi(y, L+ 1)|y < Fy])

−mL−1E[αVL(y′, L)]−
L−2∑
i=0

λdmi(e(1−H) +H(αE[Bi(y, L)|y < Fy]))
]

= β(vL+1 − vL) + (1− β)(1− λy)
[
− λdmL−1αE[VL+1(y′, L+ 1)] +mL−1α(vL+1 − vL)

+ λdmL−1e(1−H) + λdmL−1HαE[BL−1(y, L+ 1)|y < Fy]
]

(67)

Plug Eq. (67) into Eq. (65), we get

vL+1 − vL = (1− λy)Hα
[
(KL +mLβ +mL(1− β)(1− λy)mL−1α)(vL+1 − vL)

+mL(1− β)(1− λy)λdmL−1e(1−H)

+mL(1− β)(1− λy)λdmL−1Hα(E[BL−1(y, L+ 1)|y < Fy]− E[VL+1(y′, L+ 1)|y < Fy])
]

(68)

From Eq. (68), we can write vL+1 − vL as

vL+1 − vL = (1− β)αH(1− λy)2λdmLmL−1

× e(1−H) +Hα(E[BL−1(y, L+ 1)|y < Fy]− E[VL+1(y′, L+ 1)|y < Fy])

1− (1− λy)Hα(KL +mLβ +mL(1− β)(1− λy)mL−1α)
(69)

Plug Eq. (69) back into Eq. (67), we can see that BL(y, L+ 1)−BL−1(y, L) = bL(L+ 1)−
bL−1(L) is proportional to (1− β)

bL(L+ 1)− bL−1(L) = [β + (1− β)(1− λy)mL−1α](vL+1 − vL)

+ (1− β)(1− λy)
[
− λdmL−1αE[VL+1(y′, L+ 1)] + λdmL−1e(1−H) + λdmL−1HαE[BL−1(y, L+ 1)|y < Fy]

]
=(1− β)(1− λy)

{
[β + (1− β)(1− λy)mL−1α]αH(1− λy)λdmLmL−1

× e(1−H) +Hα(E[BL−1(y, L+ 1)|y < Fy]− E[VL+1(y′, L+ 1)|y < Fy])

1− (1− λy)Hα(KL +mLβ +mL(1− β)(1− λy)mL−1α)
− λdmL−1αE[VL+1(y′, L+ 1)]

+ λdmL−1e(1−H) + λdmL−1HαE[BL−1(y, L+ 1)|y < Fy]

}
(70)
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Furthermore, we can write E[VL+1(y′, L+ 1)] = (1−H)e+HE[VL+1(y′, L+ 1)|y < Fy],

E[BL−1(y, L+ 1)|y < Fy]− E[VL+1(y′, L+ 1)|y < Fy]

=(1− β)(1− λy)
[
mL−1E[αVL+1(y′, L+ 1)]−mL−1e(1−H)−HλdmL−1αE[BL−1(y, L+ 1)|y < Fy]

−HmLαE[BL(y, L+ 1)|y < Fy]
]

=(1− β)(1− λy)
[
λdmL−1Hα(E[VL+1(y′, L+ 1)|y < Fy]− E[BL−1(y, L+ 1)|y < Fy])

+HmLα(E[VL+1(y′, L+ 1)|y < Fy]− E[BL(y, L+ 1)|y < Fy])
]

E[BL−1(y, L+ 1)|y < Fy]− E[VL+1(y′, L+ 1)|y < Fy]

=
(1− β)(1− λy)αHmL

1 + (1− β)(1− λy)λdmL−1Hα
(E[VL+1(y′, L+ 1)|y < Fy]− E[BL(y, L+ 1)|y < Fy])

E[VL+1(y′, L+ 1)|y < Fy]− E[BL(y, L+ 1)|y < Fy] = (1− β)(1− λy)

×
[
mLe(1−H)(1− α) +HmLα(E[BL(y, L+ 1)|y < Fy]− E[VL+1(y′, L+ 1)|y < Fy])

]
E[VL+1(y′, L+ 1)|y < Fy]− E[BL(y, L+ 1)|y < Fy] =

(1− β)(1− λy)mL(1−H)(1− α)e

1 + (1− β)(1− λy)αHmL

Plug the expressions back into Eq. (68) to get,

vL+1 − vL = (1− λy)Hα
[
(KL +mLβ +mL(1− β)(1− λy)mL−1α)(vL+1 − vL)

+mL(1− β)(1− λy)λdmL−1e(1−H)

+mL(1− β)(1− λy)λdmL−1Hα
(1− β)(1− λy)αHmL

1 + (1− β)(1− λy)λdmL−1Hα

(1− β)(1− λy)mL(1−H)(1− α)e

1 + (1− β)(1− λy)αHmL

]
(71)

Rearrange terms in Eq. (71), we get

[1− (1− λy)Hα(KL +mLβ +mL(1− β)(1− λy)mL−1α)](vL+1 − vL)

=(1− λy)HαmL(1− β)(1− λy)λdmL−1e

×
[
1−H +Hα

(1− β)(1− λy)αHmL

1 + (1− β)(1− λy)λdmL−1Hα

(1− β)(1− λy)mL(1−H)(1− α)

1 + (1− β)(1− λy)αHmL

]
The right hand side of the equation is positive. Furthermore, using KL ≤ 1 −mL, we can

show

1− (1− λy)Hα(KL +mLβ +mL(1− β)(1− λy)mL−1α)] > 0

Hence, vL+1(L+1)−vL(L) > 0, which means to make the households break-even, Fy(L+1) <

Fy(L).

Layer L−1 manager’s value is decreasing in Fy(L+1). Hence, in equilibrium, the chain

length is infinity.
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C.3.1 The Case of State-Contingent Contract

Suppose that in our dynamic model the last-layer fund—as opposed to extending the chain

from L to L + 1—designs the maturity of its issued debt to depend on the realization of

yt. Specifically, if yt is above the rollover threshold, then debt matures with probability 1;

otherwise, debt matures with probability λd. When yt is below the rollover threshold and

debt does not mature in period t, last-layer’s debt matures with probability λd in period

t + 1 regardless of yt+1. Furthermore, we also assume β = 0 in both the state contingent

case and the non-state contingent case.
Denote the value of debt held by the households by ṼL(L),

ṼL(L) = λy min(y, Fy) + (1− λy)(1−H)e+ (1− λy)H
[ L−1∑
l=0

mlλdαE[B̃l(y, L)|y < Fy] +mLαE[B̃L(y, L)|y < Fy]
]

where B̃l(L) is the liquidation value in this case. When β = 0, for l < L

B̃l(y, L) =λy min(y, Fy) + (1− λy)
[
(1− λd)lE[αṼL(y′, L)] +

l−1∑
i=0

λd(1− λd)i(e(1−H) +HαE[B̃i(y, L)|y < Fy])
]

Furthermore,

B̃L(y, L) =λy min(y, Fy) + (1− λy)
[
(1− λd)LE[αṼL(y′, L)] +

L−1∑
i=0

λd(1− λd)i(e(1−H) +HαE[B̃i(y, L)|y < Fy])
]

We can then see B̃l(L) = Bl(L+ 1) for l < L, B̃L(L) = BL(L+ 1) and ṼL(L) = VL+1(L+ 1).

C.4 Proof for Proposition 2

C.4.1 Existence and Uniqueness of Fy

A given cohort of household’s strategy (run threshold) is Fy =
e−vL(F ′y)

λy
, where F ′y is other

cohort’s strategy. A symmetric equilibrium is where Fy = F ′y. Moreover,
d
e−vL(F ′y)

λy

dF ′y
≤ 1 at

the equilibrium point.

Given e−vL(0)
λy

> 0 and limx→∞
e−vL(x)
λy

− x < 0, there exists at least one intersection of

y = e−vL(x)
λy

with y = x from above. So equilibrium exists.
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We next solve for Fy. We write the equations defining bl(L) and vL in matrix form

Ψ


b0(L)

b1(L)

...

bL−1(L)

vL(L)

 = η (72)

where

Ψ =



1 0 0 ... 0 −β − (1− β)(1− λy)αm0

0 1 0 ... 0 −β − (1− β)(1− λy)αm1

...

0 0 0 ... 1 −β − (1− β)(1− λy)αmL−1

0 0 0 ... 0 1



− (1− λy)H(Fy)αλd



0 0 0 ... 0 0 0

(1− β)m0 0 0 ... 0 0 0

(1− β)m0 (1− β)m1 0 ... 0 0 0

(1− β)m0 (1− β)m1 (1− β)m2 ... 0 0 0

...

(1− β)m0 (1− β)m1 (1− β)m2 ... (1− β)mL−2 0 0

m0 m1 m2 ... mL−2
mL−1

λd
0


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and

η =(1− λy)[αλyH(y)X(Fy) + (1−H(Fy))e]



0

1− β
...

1− β
1


+ (1− λy)(1− β)



αλy(HX(Fy) + Fy(1−H))

cH 1−λd
λd

...

cH 1−λd
λd

0



+ (1− λy)[αλyFy(1−H)− e(1−H) + cH(1− 1

λd
)]



0

(1− β)m1

...

(1− β)mL−1

0



− (1− λy)cH(Fy)



0

(1− β)

...

(1− β)(L− 1)

L− 1−λd
λd
− (1− 1

λd
)mL−1



Next, to argue uniqueness, we just need to show that
d
e−vL(Fy)

λy

dFy
≤ 1⇔ λy + dvL(Fy)

dFy
≥ 0.

We can express

vL = (0, 0, ..., 0, 1)Ψ−1η

dvL
dFy

= −(0, 0, ..., 0, 1)Ψ−1 ∂Ψ

∂Fy
Ψ−1η + (0, 0, ..., 0, 1)Ψ−1 ∂η

∂Fy

We need

λy − (0, 0, ..., 0, 1)Ψ−1 ∂Ψ

∂Fy
Ψ−1η + (0, 0, ..., 0, 1)Ψ−1 ∂η

∂Fy
≥ 0

which is satisfied by Assumption 3.

C.4.2 Characterizing Equilibrium Chain Length

In equilibrium, Fy(L) is determined by e = λyFy + vL(L)

vL =(1− λy)(1−H)e+ (1− λy)H ×
[ L−2∑
l=0

mlλd(αE[Bl(y, L)|y < Fy]− c(L− l))

+mL−1(αE[BL−1(y, L)|y < Fy]− c)
]
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In equilibrium, L∗ = arg maxL vL(L). Taking difference with respect to L (dvL(L) = vL(L)−
vL−1(L− 1) and ∂bl(L)

∂L
= bl(L+ 1)− bl(L)),

dvL(L)

dL
= (1− λy)H

[ L−1∑
l=0

mlλdα
∂bl(L)

∂L
− (1−mL)c+mLα(bL(L+ 1)− bL−1(L))

]
(73)

To examine ∂bl(L)
∂L

,

∂bl(L)

∂L
= β

dvL(L)

dL
+ (1− β)(1− λy)

[
(1− λd)lα

dvL(L)

dL
+

l−1∑
i=0

λdmlα
∂E[Bi(y, L)|y ≤ Fy]

∂L

]

At dvL(L)
dL

= 0, ∂bl(L)
∂L

= 0 for all 1 ≤ i ≤ L− 1. Furthermore,

bL(L+ 1)− bL−1(L) = β
dvL(L)

dL
+ (1− β)(1− λy)

[
(1− λd)L−1α

dvL(L)

dL
+

λd(1− λd)L−1e(1−H)(1− α) + λd(1− λd)L−1Hα(bL−1(L+ 1)− vL+1)− (1−mL + λdmL−1)Hc
]

(74)

bL−1(L+ 1)− vL+1 =
(1− β)(1− λy)

1 + (1− β)(1− λy)α(1− λd)L−1λdH

×
{
cH(2−mL)−mL−1e(1−H)(1− α)− HλdmL−1α(1− β)(1− λy)

1 + (1− β)(1− λy)αmLH

[
mLe(1−H)(1− α)− cH

]}
(75)

Plug Eq. (75) into Eq. (74) to get bL(L + 1) − bL−1(L) as a function of dvL
dL

. Plug bL(L +

1)− bL−1(L) back into Eq. (73) and set dvL
dL

= 0 at the optimal point. We get,

− (1−mL)c+mLα(1− β)(1− λy)
{
λdmL−1e(1−H)(1− α)−Hc(1−mL)

+
λdmL−1αH(1− β)(1− λy)

1 + (1− β)(1− λy)αmL−1λdH
×
[
cH(2−mL)−mL−1(1−H)(1− α)e

+
(1− β)(1− λy)mLαH

1 + (1− β)(1− λy)αmLH
(mL(1−H)(1− α)e− cH)

]}
= 0

Rearranging terms and denote Ω = (1− β)(1− λy)αH, we get

FOCL,prv =
λdmL−1mL(1− β)(1− λy)α
(1 + λdmL−1Ω)(1 +mLΩ)

e(1−H)(1− α)

−
{

(1−mL)
1 +mL−1Ω

1 + λdmL−1Ω
− mLΩ

1 +mLΩ

λdmL−1Ω

1 + λdmL−1Ω

}
c (76)

To show the second order condition is satisfied, take derivative with respect to L in Eq.
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(76), we get

log(1− λd)
λdmL−1mL(1− β)(1− λy)α

(1 + λdmL−1Ω)(1 +mLΩ)
e(1−H)(1− α)

− log(1− λd)
λdmL−1Ω

1 + λdmL−1Ω

λdmL−1mL(1− β)(1− λy)α

(1 + λdmL−1Ω)(1 +mLΩ)
e(1−H)(1− α)

− log(1− λd)
mLΩ

1 +mLΩ

λdmL−1mL(1− β)(1− λy)α

(1 + λdmL−1Ω)(1 +mLΩ)
e(1−H)(1− α)

−
{
− log(1− λd)mL

1 +mL−1Ω

1 + λdmL−1Ω
+ (1−mL)log(1− λd)

[
mL−1Ω

1 + λdmL−1Ω
− λdΩmL−1(1 +mL−1Ω)

(1 + λdmL−1Ω)2

]
− log(1− λd)

mLΩ

1 +mLΩ

λdmL−1Ω

1 + λdmL−1Ω

(
1

1 +mLΩ
+

1

1 + λdmL−1Ω

)}
c

Use the first order condition to substitute out λdmL−1mL(1−β)(1−λy)α

(1+λdmL−1Ω)(1+mLΩ)
e(1−H)(1−α), the above

expression can be rewritten as

c× log(1− λd)
{[

(1−mL)
1 +mL−1Ω

1 + λdmL−1Ω
− mLΩ

1 +mLΩ

λdmL−1Ω

1 + λdmL−1Ω

](
1− λdmL−1Ω

1 + λdmL−1Ω
− mLΩ

1 +mLΩ

)
+mL

1 +mL−1Ω

1 + λdmL−1Ω
− (1−mL)

mLΩ

(1 + λdmL−1Ω)2
+

mLΩ

1 +mLΩ

λdmL−1Ω

1 + λdmL−1Ω

(
1

1 +mLΩ
+

1

1 + λdmL−1Ω

)}
=
c× log(1− λd)
1 + λdmL−1Ω

{ mLΩ

1 +mLΩ
λdmL−1Ω +

(1−mL)(1− λdmL−1Ω)

1 + λdmL−1Ω
− (1−mL)

1 +mL−1Ω

1 +mLΩ
mLΩ +mL(1 +mL−1Ω)

}
Consider the last two terms in the above equation,

− (1−mL)
1 +mL−1Ω

1 +mLΩ
mLΩ +mL(1 +mL−1Ω) = mL(1 +mL−1Ω)[1− (1−mL)Ω

1 +mLΩ
] > 0

Since log(1− λd) < 0, the second order condition is satisfied.

C.5 Proof for Proposition 3

C.5.1 Comparative statics with respect to c

We first consider the comparative statics with respect to the per layer bankruptcy cost c,

∂FOCL,prv
∂c

=
∂FOCL,prv

∂Fy

∂Fy
∂c

−
{

(1−mL)
1 +mL−1Ω

1 + λdmL−1Ω
− mLΩ

1 +mLΩ

λdmL−1Ω

1 + λdmL−1Ω

}

where ∂Fy
∂c

= −
∂vL(L)

∂c

λy+
∂vL(L)

∂Fy

. Since ∂vL(L)
∂c

< 0, ∂Fy
∂c

> 0. Furthermore,

∂FOCL,prv
∂Fy

=
∂FOCL,prv

∂H
h(Fy) < 0
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Hence
∂FOCL,prv

∂c
< 0. By implicit function theorem, we have ∂L∗

∂c
< 0.

C.6 Proof for Proposition 4

First, we show that when c = 0, there is always gains from trade, i.e. wL > v̂L. We want to

show

(1−H)(1− α)e > H

L−1∑
l=0

(ml −ml−1)(vL − bl)

From Eq. (60), we know that bl is increasing in l, hence H
∑L−1

l=0 (ml − ml−1)(vL − bl) <

H(vL − b0). Plug in b0 = βvL + (1− β)(1− λy)αE[αVL], we get

vL − b0 = (1− β)(1− λy)[(1−H)(1− α)e− αH
L−1∑
l=0

(ml −ml+1)(vL − b)l)]

< (1− β)(1− λy)(1−H)(1− α)e

Hence the benefit always dominates the cost of forming chains.

Next, we show that the social first order condition is the same as the private first order

condition with respect to L. The social welfare can be written as

W (Fy(L), L) = e+ λyy + (1− λy)
{

(1−H(Fy))((1− α)e+ αE[W |y ≥ Fy])

+ λdH(Fy)
L−2∑
l=0

ml [αE[W |y < Fy]− α(vL(L)− bl)− c(L− l)]

+mL−1H(Fy) [αE[W |y ≤ Fy]− α(vL(L)− bL−1)− c]
}

Define W (Fy(L), L) = wL + λyy, where wL is independent of the realization of y in this

period. Rewriting the above equation in terms of wL, we get

wL = e+ (1− λy)
{

(1−H(Fy))((1− α)e+ α(λyE[y|y ≥ Fy] + wL))

+ λdH(Fy)
L−2∑
l=0

ml [α(λyE[y|y < Fy] + wL)− α(vL(L)− bl)− c(L− l)]

+mL−1H(Fy) [α(λyE[y|y < Fy] + wL)− α(vL(L)− bL−1)− c]
}
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Consider wL+1 − wL for a given Fy,

wL+1 − wL = (1− λy)
{

(1−H(Fy))(wL+1 − wL)− (1−mL)H(Fy)c

+ λdH(Fy)
L−1∑
l=0

ml

[
α(wL+1 − wL)− α(vL+1 − vL) + α

∂bl(L)

∂L
)
]

+mLH(Fy) [α(wL+1 − wL)− α(vL+1 − vL) + α(bL(L+ 1)− bL−1(L))]
}

Moving wL+1 − wL to the left hand side, we get

wL+1 − wL ∝ (1− λy)H(Fy)
{
λd

L−1∑
l=0

mlα
∂bl(L)

∂L
− (1−mL)c+mLα(bL(L+ 1)− bL−1(L))︸ ︷︷ ︸

∝(vL+1−vL)

− α(vL+1 − vL)
}

From Eq. (65), we see that

vL+1 − vL ∝ λd

L−1∑
l=0

mlα
∂bl(L)

∂L
− (1−mL)c+mLα(bL(L+ 1)− bL−1(L))

Hence at the decentralized equilibrium where vL+1−vL = 0, we have wL+1−wL = 0. In other

words, the decentralised condition coincides with the social planner’s first order condition

with respect to L.

D Extension: Optimal Contracts

D.1 Setting

In this section, we endogenize the face value of the debt contract as well and derive the

condition under which the face value equals e. Denote by πt a generic debt contract; we

assume that it takes the form of πt = {F̃y,s, Fd,s+1}Ts=t, with an exogenously given debt

maturity parameter λd as in the main text.

F̃y,s · 1project matures at period s, w.p. λy + Fd,s+1 · 1debt matures at period s+ 1, w.p. λd ,

where {Fd,s+1} is Fs-measurable for any s ≥ t. Importantly, it cannot depend on tomorrow’s

fundamental ys+1. The space of debt contracts is now Π ≡ RT−t+1
+ × RT−t

+ . Same as before,

we allow debtors, after knowing the realization of yt, to renegotiate by “prepaying” the debt
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contract. In other words, they can pay the lender Fd and eliminate all future obligations.

Because the layer-l fund is essentially using its asset holding with a market value of

Fd,l−1 to back its debt issuance with a market value of Fd,l, and fund managers have no

initial wealth, we impose the following condition throughout the paper:

Fd,l ≤ Fd,l−1 ≤ e for ∀l. (77)

The first part of the condition (77) essentially rules out the “Ponzi” scheme by any fund in

which a fund maintains a debt that is underfunded relative to its asset holdings but keeps

rolling over this debt from OLG households. A side benefit of this assumption is that it

simplifies the prepayment process, as the cash-flows trickle down to the bottom. The second

part Fd,l ≤ e in condition (77) captures the fact that households can only afford to pay e.

Similar to the main text, if rollover fails at layer-l, the departing households recover

min(αBl(y, L), Fd,l)− c · (L− l).

The value functions are similar to before except that the face value is Fd,l,t, instead of

e. We adjust the feasible contract space to account for the endogenous face values.

Π̂ ≡ {π ∈ Π : VL({Fy,s, Fd,s+1}Ts=t, L) ≤ Fd,t ≤ e for ∀t}. (78)

Finally, the definition of equilibrium now includes the optimal design of Fd’s

Definition 3 The equilibrium credit chain is a set of contracts {πl,t}0≤l≤L−1 and credit chain

length L∗ such that

1. When layer-l’s liability matures,32

πl = arg max
π∈Π̂

1lrollover(Pl(y, π; πl−1, L
∗) + Vl(y, π; πl−1, L

∗)), (79)

s.t. Fy,l ≤ Fy,l−1 ≤ y in (7) Fd,l ≤ Fd,l−1 ≤ e in (77). (80)

2. The equilibrium L∗ is such that the final layer of fund manager (L∗ − 1) prefers to

borrow directly from households than to borrow via other fund managers:

PL∗−1(L∗) + VL∗−1(L∗) ≥ PL∗−1(L∗ + l) + VL∗−1(L∗ + l) for l ≥ 1. (81)

32When t = 0, 1lrollover = 1 for all l.
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Furthermore, for all other funds 0 < l < L∗ − 1,

Pl(L
∗) + Vl(L

∗) ≥ Pl(l + 1) + Vl(l + 1). (82)

In other words, the funds in intermediary layers prefer to borrow via other funds than

to borrow from the households.

3. Due to perfect competition,

Pl − Pl−1 + Vl = 0. (83)

D.2 Optimal Contracts

In this section, we derive conditions under which in equilibrium, Fd,l,t = e.

Assumption 4 Denote L∗ as the equilibrium chain length. The primitives of our model

satisfy:

(1− α)(1−H(Fy))−
h(Fy)

λy
e−

L∗−2∑
l=0

mlλdh(Fy)
1

λy
c(L∗ − l)−mL∗−1h(Fy)

1

λy
c ≥ 0

Under Assumption 4, the optimal contract in our economy is independent of history and

Fd,l,t = e. Assumption 4 guarantees that inequality (77) always binds (so that in the optimal

contract Fd,l,t = e), and it is more likely to be true when e is relatively small.
We first show that Fd,l,t = Fd,l, i.e. the optimal Fd for each layer is constant over time if

the managers do not face rollover issues in this period. We start from the problem between
layer (L − 1) and the households. Layer (L − 1) is given a contract πL−2 by layer (L − 2);
the contract specifies a sequence of payments if debt matures {Fd,L−2,t}Tt=0 and a payment if
project matures Fy,L−2. T is the stopping time, either when the contract or when the project
matures. Plugging in PL−1, layer L− 1 maximizes the following,

max
Fd,l−1

−PL−2 + λyFy,L−2 + (1− λy)E
[ L−2∑
i=0

(1− λd)i[λd1irollover(αVL−1(y, π′L−1;π′L−2, L) + αFd,L−2 + (1− α)Fd,l−1)

+ (1− 1irollover)(αBi(y, L)− c(L− i− 1))] + (1− λd)L−11L−1
rollover(αVL−1(y, π′L−1;πL−2, L) + (1− α)Fd,L−1)

+ (1− λd)L−1(1− 1L−1
rollover)(αBL−1(y, L)− c)

]
s.t. Fd,L−1 ≤ Fd,L−2
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The first order condition with respect to Fd,L−1,t is

0 = −µλd

L−1,t + (1− α)E[

L−2∑
i=0

(1− λd)iλd1irollover + (1− λd)L−11L−1
rollover]

+ (1− λd)L−1 dPr(rollover at layer L− 1)

dFd,l−1,t
(Fd,l−1,t − αBL−1(y, L) + c)

where µλdL−1,t is the Lagrangian Multiplier in front of Fd,L−2,t − Fd,L−1,t ≥ 0.

If πL−2 = π∗L−2 is stationary and Fd,L−2,t is constant over time, then F ∗d,l−1,t = Fd,l−1.
The same logic applies to F ∗d,l,t = Fd,l for all 0 ≤ l ≤ L − 1. For 0 ≤ l < L − 1, its

objective can be written as

max
Fd,l

−Pl−1 + λyFy,l−1 + (1− λy)α
{

(1− λd)l+2EVl(y′, πl;πl−1, L) + (1− λd)l+1λdE(1− 1l+1
rollover)Vl(y

′, π′l;πl−1, L)

+

l−1∑
i=0

(1− λd)iλdE[1irollover(Fd,l−1 − Fd,l+1 − P ′l−1 − P
′
l + max

π′
l

(P ′l + Vl(y
′, π′l;π

′
l−1, L)) + max

π′
l+1

(P ′l+1 + Vl+1(y′, π′l+1;πl, L)))]

+ (1− λd)lλdE[1lrollover(−Fd,l+1 − P ′l + max
π′
l

(P ′l + Vl(y
′, π′l;πl−1, L))) + max

πl+1′
(P ′l+1 + Vl+1(y′, π′l+1;πl, L))]

+ (1− λd)l+2EVl+1(y′, πl+1;πl, L) + (1− λd)l+1λdE[1l+1
rollover(−Fd,l+1 + max

π′
l+1

Vl+1(y′, π′l+1;πl, L))]
}

+ Pl+1

we know in equilibrium P ′l−1 = maxπ′l(P
′
l + Vl(y

′, π′l; π
′
l−1, L)) and P ′l = maxπ′l+1

(P ′l+1 +

Vl+1(y′, π′l+1; π′l, L)), so the above can be simplified as

max
Fd,l

−Pl−1 + λyFy,l−1 + (1− λy)α
{

(1− λd)l+2EVl(y′, πl;πl−1, L) + (1− λd)l+1λdE(1− 1l+1
rollover)Vl(y

′, π′l;πl−1, L)

+

l−1∑
i=0

(1− λd)iλdE[1irollover(Fd,l−1 − Fd,l+1)] + (1− λd)lλdE[1lrollover(−Fd,l+1 + Vl(y
′, π′l;πl−1, L) + Vl+1(y′, π′l+1;π′l, L) + P ′l+1)]

+ (1− λd)l+2EVl+1(y′, πl+1;πl, L) + (1− λd)l+1λdE[1l+1
rollover(−Fd,l+1 + P ′l+1 + Vl+1(y′, π′l+1;πl, L))]

}
+ Pl+1

subject to Fd,l,t ≤ Fd,l−1,t. Denote the Lagrangian multiplier as µλdl,t . The first order condition

with respect to Fd,l,t is

0 =− µλdl,t + µλdl+1,t +
dPl+1

dFd,l,t

=− µλdl,t + µλdl+1,t + (1− λd)lλd
dPr(rollover at layer l)

dFd,l,t
(Fd,l−1 − αBl−1(y, L) + c)

If π∗l−1 does not depend on history and is stationary, then it is straightforward that F ∗d,l,t =

Fd,l.

Next, we show that Fd,l = Fd across layers. Since the problem is identical over time, we
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loose the time subscript. The first order condition with respect to Fd,L−1 in equilibrium is

0 =− µλdL−1 + (1− α)
L−2∑
l=0

(1− λd)lλdPr(rollover at layer l) + (1− α)(1− λd)L−1Pr(rollover at layer l)

(1− λd)L−1dPr(rollover at layer L− 1)

dFd,L−1

[Fd,L−1 − αBL−1(y, L) + c]

The first order condition with respect to Fd,l for 0 < l < L− 1 is,

0 =− µλdl + µλdl+1 + (1− λd)lλd
dPr(rollover at layer L-1)

dFd,l
(Fd,l−1 − αBl(y, L) + c(L− l))

For l = 0, the first order condition is

0 =− µλd0 + µλd1 + λd
dPr(rollover at layer l)

dFd,0
(Fd,l−1 − αBl(y, L) + c(L− l))

Substituting in all the Lagrangian multipliers.

0 =− µλd0 + (1− α)
L−2∑
l=0

(1− λd)lλdPr(rollover at layer l) + (1− λd)L−1Pr(rollover at layer l)

+
L−1∑
l=0

(1− λd)lλd
dPr(rollover at layer l)

dFd,l
(Fd,l−1 − αBl(y, L) + c(L− l))

+ (1− λd)L−1dPr(rollover at layer L− 1)

dFd,L−1

(Fd,L−2 − αBL−1(y, L) + c) (84)

Denote layer-0’s choice as Fd,0 = Fd, satisfying equation (84). If µλd0 > 0, then Fd = e, and

since µλdL−1 ≥ µλdL−2 ≥ ... ≥ µλd0 > 0, all the constraints are binding, i.e. Fd,l−1 = Fd,L−2 =

... = Fd.

If µλd0 = 0, then Fd < e, it must be the case that dPr(rollover at layer l)
dFd,l

< 0 holds for at least

one l. Denote l̂ as the smallest l such that dPr(rollover at layer l)
dFd,l

< 0. This implies that for l < l̂,
dPr(rollover at layer l)

dFd,l
= 0, so the first order conditions for Fd,l (l ≥ l̂) are the same as that for

Fd,0. In other words, Fd,l = Fd. For l < l̂, we have µλdl > 0, so the constraint is binding, i.e.

Fd,l−1 = Fd,L−2 = ... = Fd,l̂−1 = Fd.

So far we have shown that when there is no rollover concerns, we have Fd,l,t = Fd being

constant over time and across layers. Now we just to show when y is small, and when the

money raised from the unconstrained optimal contract is smaller than the amount owed, the

managers cannot deviate and set higher Fd. For managers in layer 1 to layer L− 1, because

Fd,l ≤ Fd,l−1 is binding, they cannot set higher Fd. For layer 0, we will next show that
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Assumption 4 ensures that Fd,0 ≤ e is binding. Hence the entrepreneur at layer 0 cannot

deviate and set higher Fd either. As a result, Fd,l,t = Fd for all layer l and time t.

The proof for Fy,l,t = Fy is the same as in Appendix C.2. In equilibrium, Fy is the

minimal payment if project matures such that the new households are willing to rollover

debt, for a given Fd. By definition

Fd = VL({Fy, Fd}, L) for y ≥ Fy

⇒Fd = λyFy + vL({Fy, Fd}, L)

Since all layers have the same Fy and rollover fails when y < Fy, we have Pr(rollover at layer l) =

1−H(Fy). Plug this expression in the first order condition of Fd, we get

− µλd0 + (1− α)(1−H(Fy))−
L−2∑
l=0

mlλdh(Fy)
dFy
dFd

(Fd − αBl(Fy, L) + c(L− l))

− (1− λd)L−1h(Fy)
dFy
dFd

(Fd − αBL−1(Fy, L) + c) = 0

µλd0 (e− Fd) = 0 µλd0 ≥ 0

When Fd ≤ e is binding, dFy
dFd

= 1
λy

. Hence

(1− α)(1−H(Fy))−
L−2∑
l=0

mlλdh(Fy)
1

λy
(Fd − αBl(Fy, L) + c(L− l))−mL−1h(Fy)

1

λy
(Fd − αBL−1(Fy, L) + c)

≥(1− α)(1−H(Fy))−
L−2∑
l=0

mlλdh(Fy)
1

λy
(Fd + c(L− l))−mL−1h(Fy)

1

λy
(Fd + c)

Under Assumption 4, the above equation is greater than or equal to 0. Hence Fd = e.
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