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addRegressor Add an extra regressor to a Workbench

Description

This function adds a regressor to an existing GROAN.Workbench object.

Usage

addRegressor(wb, regressor, regressor.name = regressor, ...)

Arguments

wb the GROAN.Workbench instance to be updated

regressor regressor function

regressor.name string that will be used in reports. Keep in mind that when deciding names.

... extra parameters are passed to the regressor function

Value

an updated instance of the original GROAN.Workbench
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See Also

createWorkbench GROAN.run

Examples

#creating a Workbench with all default arguments
wb = createWorkbench()
#adding a second regressor
wb = addRegressor(wb, regressor = phenoRegressor.dummy, regressor.name = 'dummy')

## Not run:
#trying to add again a regressor with the same name would result in a naming conflict error
wb = addRegressor(wb, regressor = phenoRegressor.dummy, regressor.name = 'dummy')
## End(Not run)

are.compatible Check two GROAN.NoisyDataSet for dimension compatibility

Description

This function verifies that the two passed GROAN.NoisyDataSet objects have the same dimensions
and can thus be used in the same experiment (typically training models on one and testing on the
other). The function returns a TRUE/FALSE. In verbose mode the function also prints messages
detailing the comparisons.

Usage

are.compatible(nds1, nds2, verbose = FALSE)

Arguments

nds1 the first GROAN.NoisyDataSet to be tested

nds2 the second GROAN.NoisyDataSet to be tested

verbose boolean, if TRUE the function prints messages detailing the comparison.

Value

TRUE if the passed GROAN.NoisyDataSet are dimensionally compatible, FALSE otherwise
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createNoisyDataset Noisy Data Set Constructor

Description

This function creates a GROAN.NoisyDataset object (or fails trying). The class will contain all
noisy data set components: genotypes and/or covariance matrix, phenotypes, strata (optional), a
noise injector function and its parameters.
You can have a general description of the created object using the overridden print.GROAN.NoisyDataset
function.

Usage

createNoisyDataset(
name,
genotypes = NULL,
covariance = NULL,
phenotypes,
strata = NULL,
extraCovariates = NULL,
ploidy = 2,
allowFractionalGenotypes = FALSE,
noiseInjector = noiseInjector.dummy,
...

)

Arguments

name A string defining the dataset name, used later do identify this particular instance
in reports and result files. It is advisable for it to be it somewhat meaningful (to
you, GROAN simply reports it as it is)

genotypes Matrix or dataframe containing SNP genotypes, one row per sample (N), one
column per marker (M), 0/1/2 format (for diploids) or 0/1/2.../ploidy in case of
polyploids

covariance matrix of covariances between samples of this dataset. It is usually a square
(NxN) matrix, but rectangular matrices (NxW) are accepted to incapsulate co-
variances between samples in this set and samples of other sets. Please note
that some regression models expect the covariance to be square and will fail on
rectangular ones

phenotypes numeric array, N slots

strata array of M slots, describing the strata each data point belongs to. This is used
for stratified crossvalidation (see createWorkbench)

extraCovariates

dataframe of optional extra covariates (N lines, one column per extra covari-
ate). Numeric ones will be normalized, string and categorical ones will be trans-
formed in stub TRUE/FALSE variables (one per possible value, see model.matrix).
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ploidy number of haploid sets in the cell. Defaults to 2 (diploid).

allowFractionalGenotypes

if TRUE non-integer values for genotypes can be allowed. Defaults to FALSE

noiseInjector name of a noise injector function, defaults to noiseInjector.dummy

... further arguments are passed along to noiseInjector

Value

a GROAN.NoisyDataset object.

See Also

GROAN.run createWorkbench

Examples

#For more complete examples see the package vignette
#creating a noisy dataset with normal noise
nds = createNoisyDataset(

name = 'PEA, normal noise',
genotypes = GROAN.KI$SNPs,
phenotypes = GROAN.KI$yield,
noiseInjector = noiseInjector.norm,
mean = 0,
sd = sd(GROAN.KI$yield) * 0.5

)

createRunId Generate a random run id

Description

This function returns a partially random alphanumeric string that can be used to identify a single
run.

Usage

createRunId()

Value

a partially random alphanumeric string
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createWorkbench Workbench constructor

Description

This function creates a GROAN.Workbench instance (or fails trying). The created object contains:
a) one regressor with its own specific configuration
b) the experiment parameters (number of repetitions, number of folds in case of crossvalidation,
stratification...)
You can have a general description of the created object using the overridden print.GROAN.Workbench
function.
It is possible to add other regressors to the created GROAN.Workbench object using addRegressor.
Once the GROAN.Workbench is created it must be passed to GROAN.run to start the experiment.

Usage

createWorkbench(
folds = 10,
reps = 5,
stratified = FALSE,
outfolder = NULL,
outfile.name = "accuracy.csv",
saveHyperParms = FALSE,
saveExtraData = FALSE,
regressor = phenoRegressor.rrBLUP,
regressor.name = "default regressor",
...

)

Arguments

folds number of folds for crossvalidation, defaults to 10. If NULL no crossvalidation
happens and all training data will be used. In this case a second dataset, for test,
is needed (see GROAN.run for details)

reps number of times the whole test must be repeated, defaults to 5

stratified boolean indicating whether GROAN should take into account data strata. This
have two effects. First, the crossvalidation becomes stratified, meaning that
folds will be split so that training and test sets will contain the same propor-
tions of each data stratum. Second, prediction accuracy will be assessed (also)
by strata. If no strata are present in the GROAN.NoisyDataSet object and
stratified==TRUE all samples will be considered belonging to the same strata
("dummyStrata"). If stratified is FALSE (the default) GROAN will simply
ignore the strata, even if present in the GROAN.NoisyDataSet.

outfolder folder where to save the data. If NULL (the default) nothing will be saved. File-
names are standardized. If existing, accuracy and hyperparameter files will be
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updated, otherwise are created. ExtraData cannot be updated, so unique file-
names will be generated using runId (see GROAN.run)

outfile.name file name to be used to save the accuracies in a text file. Defaults to "accu-
racy.csv". Ignored if outfolder is NULL

saveHyperParms boolean indicating if the hyperparameters from regressor training should be
saved in outfolder. Defaults to FALSE.

saveExtraData boolean indicating if extradata from regressor training should be saved in outfolder
as R objects (using the save function). Defaults to FALSE.

regressor regressor function. Defaults to phenoRegressor.rrBLUP

regressor.name string that will be used in reports. Keep that in mind when deciding names.
Defaults to "default regressor"

... extra parameter are passed to regressor function

Value

An instance of GROAN.Workbench

See Also

addRegressor GROAN.run createNoisyDataset

Examples

#creating a Workbench with all default arguments
wb1 = createWorkbench()
#another Workbench, with different crossvalidation
wb2 = createWorkbench(folds=5, reps=20)
#a third one, with a different regressor and extra parameters passed to regressor function
wb3 = createWorkbench(regressor=phenoRegressor.BGLR, regressor.name='Bayesian Lasso', type='BL')

getNoisyPhenotype Generate an instance of noisy phenotypes

Description

Given a Noisy Dataset object, this function applies the noise injector to the data and returns a
noisy version of it. It is useful for inspecting the noisy injector effects.

Usage

getNoisyPhenotype(nds)

Arguments

nds a Noisy Dataset object

Value

the phenotypes contained in nds with added noise.
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GROAN.AI Example data for pea AI lines

Description

This list contains all data required to run GROAN examples. It refers to a pea experiment with 105
lines coming from a biparental Attika x Isard cross.

Usage

GROAN.AI

Format

A list with the following fields:

• "GROAN.AI$yield": named array with 105 slots, containing data on grain yield [t/ha]

• "GROAN.AI$SNPs": data frame with 105 rows and 647 variables. Each row is a pea AI line,
each column a SNP marker. Values can either be 0, 1, or 2, representing the three possible
genotypes (AA, Aa, and aa, respectively).

• "GROAN.AI$kinship": square dataframe containing the realized kinships between all pairs of
each of the 105 pea AI lines. Values were computed following the Astle & Balding met-
ric. Higher values represent a higher degree of genetic similarity between lines. This metric
mainly accounts for additive genetic contributions (as an alternative to dominant contribu-
tions).

Source

Annicchiarico et al., GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal
Drought, The Plant Genome, Volume 10. doi: 10.3835/plantgenome2016.07.0072

GROAN.KI Example data for pea KI lines

Description

This list contains all data required to run GROAN examples. It refers to a pea experiment with 103
lines coming from a biparental Kaspa x Isard cross.

Usage

GROAN.KI

https://www.jstor.org/stable/25681325
https://www.jstor.org/stable/25681325
https://doi.org/10.3835/plantgenome2016.07.0072
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Format

A list with the following fields:

• "GROAN.KI$yield": named array with 103 slots, containing data on grain yield [t/ha]

• "GROAN.KI$SNPs": data frame with 103 rows and 647 variables. Each row is a pea KI line,
each column a SNP marker. Values can either be 0, 1, or 2, representing the three possible
genotypes (AA, Aa, and aa, respectively).

• "GROAN.KI$kinship": square dataframe containing the realized kinships between all pairs
of each of the 103 pea KI lines. Values were computed following the Astle & Balding met-
ric. Higher values represent a higher degree of genetic similarity between lines. This metric
mainly accounts for additive genetic contributions (as an alternative to dominant contribu-
tions).

Source

Annicchiarico et al., GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal
Drought, The Plant Genome, Volume 10. doi: 10.3835/plantgenome2016.07.0072

GROAN.pea.kinship [DEPRECATED]

Description

This piece of data is deprecated and will be dismissed in next release. Please use GROAN.KI
instead.

Usage

GROAN.pea.kinship

Format

A data frame with 103 rows and 103 variables. Row and column names are pea KI lines.

Source

Annicchiarico et al., GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal
Drought, The Plant Genome, Volume 10. doi: 10.3835/plantgenome2016.07.0072

https://www.jstor.org/stable/25681325
https://www.jstor.org/stable/25681325
https://doi.org/10.3835/plantgenome2016.07.0072
https://doi.org/10.3835/plantgenome2016.07.0072
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GROAN.pea.SNPs [DEPRECATED]

Description

This piece of data is deprecated and will be dismissed in next release. Please use GROAN.KI
instead.

Usage

GROAN.pea.SNPs

Format

A data frame with 103 rows and 647 variables. Each row represent a pea KI line, each column a
SNP marker

Source

Annicchiarico et al., GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal
Drought, The Plant Genome, Volume 10. doi: 10.3835/plantgenome2016.07.0072

GROAN.pea.yield [DEPRECATED]

Description

This piece of data is deprecated and will be dismissed in next release. Please use GROAN.KI
instead.

Usage

GROAN.pea.yield

Format

A named array with 103 slots.

Source

Annicchiarico et al., GBS-Based Genomic Selection for Pea Grain Yield under Severe Terminal
Drought, The Plant Genome, Volume 10. doi: 10.3835/plantgenome2016.07.0072

https://doi.org/10.3835/plantgenome2016.07.0072
https://doi.org/10.3835/plantgenome2016.07.0072
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GROAN.run Compare Genomic Regressors on a Noisy Dataset

Description

This function runs the experiment described in a GROAN.Workbench object, training regressor(s)
on the data contained in a GROAN.NoisyDataSet object via parameter nds. The prediction accu-
racy is estimated either through crossvalidation or on separate test dataset supplied via parameter
nds.test. It returns a GROAN.Result object, which have a summary function for quick inspection
and can be fed to plotResult for visual comparisons. In case of crossvalidation the test dataset in the
result object will report the [CV] suffix.
The experiment statistics are computed via measurePredictionPerformance.
Each time this function is invoked it will refer to a runId - an alphanumeric string identifying each
specific run. The runId is usually generated internally, but it is possible to pass it if the intention is
to join results from different runs for analysis purposes.

Usage

GROAN.run(nds, wb, nds.test = NULL, run.id = createRunId())

Arguments

nds a GROAN.NoisyDataSet object, containing the data (genotypes, phenotypes and
so forth) plus a noiseInjector function

wb a GROAN.Workbench object, containing the regressors to be tested together
with the description of the experiment

nds.test either a GROAN.NoisyDataSet or a list of GROAN.NoisyDataSet. The regres-
sion model(s) trained on nds will be tested on nds.test

run.id an alphanumeric string identifying this specific run. If not passed it is generated
using createRunId

Value

a GROAN.Result object

See Also

measurePredictionPerformance

Examples

## Not run:
#Complete examples are found in the vignette
vignette('GROAN.vignette', package='GROAN')

#Minimal example
#1) creating a noisy dataset with normal noise
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nds = createNoisyDataset(
name = 'PEA KI, normal noise',
genotypes = GROAN.KI$SNPs,
phenotypes = GROAN.KI$yield,
noiseInjector = noiseInjector.norm,
mean = 0,
sd = sd(GROAN.KI$yield) * 0.5

)

#2) creating a GROAN.WorkBench using default regressor and crossvalidation preset
wb = createWorkbench()

#3) running the experiment
res = GROAN.run(nds, wb)

#4) examining results
summary(res)
plotResult(res)

## End(Not run)

measurePredictionPerformance

Measure Performance of a Prediction

Description

This method returns several performance metrics for the passed predictions.

Usage

measurePredictionPerformance(truevals, predvals)

Arguments

truevals true values
predvals predicted values

Value

A named array with the following fields:

pearson Pearson’s correlation
spearman Spearmans’ correlation (order based)
rmse Root Mean Square Error
mae Mean Absolute Error
coeff_det Coefficient of determination
ndcg10, ndcg20, ndcg50, ndcg100 mean Normalized Discounted Cumulative Gain with k equal

to 0.1, 0.2, 0.5 and 1
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ndcg Function to calculate mean Normalized Discounted Cumulative Gain
(NDCG)

Description

This function calculates NDCG from the vectors of observed and predicted values and the chosen
proportion k of top observations (rank).

Usage

ndcg(y, y_hat, k = 0.2)

Arguments

y true values

y_hat predicted values

k relevant proportion of rank (top)

Value

a real value in [0,1]

noiseInjector.dummy Noise Injector dummy function

Description

This noise injector does not add any noise. Passed phenotypes are simply returned. This function is
useful when comparing different regressors on the same dataset without the effect of extra injected
noise.

Usage

noiseInjector.dummy(phenotypes)

Arguments

phenotypes input phenotypes. This object will be returned without checks.

Value

the same passed phenotypes
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See Also

Other noiseInjectors: noiseInjector.norm(), noiseInjector.swapper(), noiseInjector.unif()

Examples

phenos = rnorm(10)
all(phenos == noiseInjector.dummy(phenos)) #TRUE

noiseInjector.norm Inject Normal Noise

Description

This function adds to the passed phenotypes array noise sampled from a normal distribution with
the specified mean and standard deviation.
The function can interest the totality of the passed phenotype array or a random subset of it (com-
manded by subset parameter).

Usage

noiseInjector.norm(phenotypes, mean = 0, sd = 1, subset = 1)

Arguments

phenotypes an array of numbers.

mean mean of the normal distribution.

sd standard deviation of the normal distribution.

subset integer in [0,1], the proportion of original dataset to be injected

Value

An array, of the same size as phenotypes, where normal noise has been added to the original phe-
notype values.

See Also

Other noiseInjectors: noiseInjector.dummy(), noiseInjector.swapper(), noiseInjector.unif()

Examples

#a sinusoid signal
phenos = sin(seq(0,5, 0.1))
plot(phenos, type='p', pch=16, main='Original (black) vs. Injected (red), 100% affected')

#adding normal noise to all samples
phenos.noise = noiseInjector.norm(phenos, sd = 0.2)
points(phenos.noise, type='p', col='red')
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#adding noise only to 30% of the samples
plot(phenos, type='p', pch=16, main='Original (black) vs. Injected (red), 30% affected')
phenos.noise.subset = noiseInjector.norm(phenos, sd = 0.2, subset = 0.3)
points(phenos.noise.subset, type='p', col='red')

noiseInjector.swapper Swap phenotypes between samples

Description

This function introduces swap noise, i.e. a number of couples of samples will have their phenotypes
swapped.
The number of couples is computed so that the total fraction of interested phenotypes approximates
subset.

Usage

noiseInjector.swapper(phenotypes, subset = 0.1)

Arguments

phenotypes an array of numbers

subset fraction of phenotypes to be interested by noise.

Value

the same passed phenotypes, but with some elements swapped

See Also

Other noiseInjectors: noiseInjector.dummy(), noiseInjector.norm(), noiseInjector.unif()

Examples

#a set of phenotypes
phenos = 1:10
#swapping two elements
phenos.sw2 = noiseInjector.swapper(phenos, 0.2)
#swapping four elements
phenos.sw4 = noiseInjector.swapper(phenos, 0.4)
#swapping four elements again, since 30% of 10 elements
#is rounded to 4 (two couples)
phenos.sw4.again = noiseInjector.swapper(phenos, 0.3)
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noiseInjector.unif Inject Uniform Noise

Description

This function adds to the passed phenotypes array noise sampled from a uniform distribution with
the specified range.
The function can interest the totality of the passed phenotype array or a random subset of it (com-
manded by subset parameter).

Usage

noiseInjector.unif(phenotypes, min = 0, max = 1, subset = 1)

Arguments

phenotypes an array of numbers.

min, max lower and upper limits of the distribution. Must be finite.

subset integer in [0,1], the proportion of original dataset to be injected

Value

An array, of the same size as phenotypes, where uniform noise has been added to the original
phenotype values.

See Also

Other noiseInjectors: noiseInjector.dummy(), noiseInjector.norm(), noiseInjector.swapper()

Examples

#a sinusoid signal
phenos = sin(seq(0,5, 0.1))
plot(phenos, type='p', pch = 16, main='Original (black) vs. Injected (red), 100% affected')

#adding normal noise to all samples
phenos.noise = noiseInjector.unif(phenos, min=0.1, max=0.3)
points(phenos.noise, type='p', col='red')

#adding noise only to 30% of the samples
plot(phenos, type='p', pch = 16, main='Original (black) vs. Injected (red), 30% affected')
phenos.noise.subset = noiseInjector.unif(phenos, min=0.1, max=0.3, subset = 0.3)
points(phenos.noise.subset, type='p', col='red')
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phenoRegressor.BGLR Regression using BGLR package

Description

This is a wrapper around BGLR. As such, it won’t work if BGLR package is not installed.
Genotypes are modeled using the specified type. If type is ’RKHS’ (and only in this case) the
covariance/kinship matrix covariances is required, and it will be modeled as matrix K in BGLR
terms. In all other cases genotypes and covariances are put in the model as X matrices.
Extra covariates, if present, are modeled as FIXED effects.

Usage

phenoRegressor.BGLR(
phenotypes,
genotypes,
covariances,
extraCovariates,
type = c("FIXED", "BRR", "BL", "BayesA", "BayesB", "BayesC", "RKHS"),
...

)

Arguments

phenotypes phenotypes, a numeric array (n x 1), missing values are predicted
genotypes SNP genotypes, one row per phenotype (n), one column per marker (m), val-

ues in 0/1/2 for diploids or 0/1/2/...ploidy for polyploids. Can be NULL if
covariances is present.

covariances square matrix (n x n) of covariances. Can be NULL if genotypes is present.
extraCovariates

extra covariates set, one row per phenotype (n), one column per covariate (w).
If NULL no extra covariates are considered.

type character literal, one of the following: FIXED (Flat prior), BRR (Gaussian
prior), BL (Double-Exponential prior), BayesA (scaled-t prior), BayesB (two
component mixture prior with a point of mass at zero and a scaled-t slab),
BayesC (two component mixture prior with a point of mass at zero and a Gaus-
sian slab)

... extra parameters are passed to BGLR

Value

The function returns a list with the following fields:

• predictions : an array of (n) predicted phenotypes, with NAs filled and all other positions
repredicted (useful for calculating residuals)

• hyperparams : empty, returned for compatibility
• extradata : list with information on trained model, coming from BGLR
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See Also

BGLR

Other phenoRegressors: phenoRegressor.RFR(), phenoRegressor.SVR(), phenoRegressor.dummy(),
phenoRegressor.rrBLUP(), phenoregressor.BGLR.multikinships()

Examples

## Not run:
#using the GROAN.KI dataset, we regress on the dataset and predict the first ten phenotypes
phenos = GROAN.KI$yield
phenos[1:10] = NA

#calling the regressor with Bayesian Lasso
results = phenoRegressor.BGLR(

phenotypes = phenos,
genotypes = GROAN.KI$SNPs,
covariances = NULL,
extraCovariates = NULL,
type = 'BL', nIter = 2000 #BGLR-specific parameters

)

#examining the predictions
plot(GROAN.KI$yield, results$predictions,

main = 'Train set (black) and test set (red) regressions',
xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')

points(GROAN.KI$yield[1:10], results$predictions[1:10], pch=16, col='red')

#printing correlations
test.set.correlation = cor(GROAN.KI$yield[1:10], results$predictions[1:10])
train.set.correlation = cor(GROAN.KI$yield[-(1:10)], results$predictions[-(1:10)])
writeLines(paste(

'test-set correlation :', test.set.correlation,
'\ntrain-set correlation:', train.set.correlation

))

## End(Not run)

phenoregressor.BGLR.multikinships

Multi-matrix GBLUP using BGLR

Description

This regressor implements Genomic BLUP using Bayesian methods from BGLR package, but al-
lows to use more than one covariance matrix.
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Usage

phenoregressor.BGLR.multikinships(
phenotypes,
genotypes = NULL,
covariances,
extraCovariates,
type = "RKHS",
...

)

Arguments

phenotypes phenotypes, a numeric array (n x 1), missing values are predicted

genotypes added for compatibility with the other GROAN regressors, must be NULL

covariances square matrix (n x n) of covariances.
extraCovariates

the extra covariance matrices to be added in the GBLUP model, collated in a
single matrix-like structure, with optionally first column as an ignored intercept
(supported for compatibility). See details, below.

type character literal, one of the following: FIXED (Flat prior), BRR (Gaussian
prior), BL (Double-Exponential prior), BayesA (scaled-t prior), BayesB (two
component mixture prior with a point of mass at zero and a scaled-t slab),
BayesC (two component mixture prior with a point of mass at zero and a Gaus-
sian slab), RKHS (Gaussian processes, default)

... extra parameters are passed to BGLR

Details

In its simplest form, GBLUP is defined as:

y = 1µ+ Zu+ e

with
var(y) = Kσ2

u + Iσ2
e

Where µ is the overall mean, K is the incidence matrix relating individual weights u to y, and e is
a vector of residuals with zero mean and covariance matrix Iσ2

e

It is possible to extend the above model to include different types of kinship matrices, each capturing
different links between genotypes and phenotypes:

y = 1µ+ Z1u1 + Z2u2 + · · ·+ e

with
var(y) = K1σu1

2 +K2σu2
2 + · · ·+ Iσ2

e

This function receives the first kinship matrix K1 via the covariances argument and an arbitrary
number of extra matrices via the extraCovariates built as follow:
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#given the following defined variables
y = <some values, Nx1 array>
K1 = <NxN kinship matrix>
K2 = <another NxN kinship matrix>
K3 = <a third NxN kinship matrix>

#invoking the multi kinship GBLUP
y_hat = phenoregressor.BGLR.multikinships(
phenotypes = y,
covariances = K1,
extraCovariates = cbind(K2, K3)

)

Value

The function returns a list with the following fields:

• predictions : an array of (n) predicted phenotypes, with NAs filled and all other positions
repredicted (useful for calculating residuals)

• hyperparams : empty, returned for compatibility

• extradata : list with information on trained model, coming from BGLR

See Also

BGLR

Other phenoRegressors: phenoRegressor.BGLR(), phenoRegressor.RFR(), phenoRegressor.SVR(),
phenoRegressor.dummy(), phenoRegressor.rrBLUP()

phenoRegressor.dummy Regression dummy function

Description

This function is for development purposes. It returns, as "predictions", an array of random numbers.
It accept the standard inputs and produces a formally correct output. It is, obviously, quite fast.

Usage

phenoRegressor.dummy(phenotypes, genotypes, covariances, extraCovariates)

Arguments

phenotypes phenotypes, numeric array (n x 1), missing values are predicted

genotypes SNP genotypes, one row per phenotype (n), one column per marker (m), val-
ues in 0/1/2 for diploids or 0/1/2/...ploidy for polyploids. Can be NULL if
covariances is present.



phenoRegressor.RFR 21

covariances square matrix (n x n) of covariances. Can be NULL if genotypes is present.

extraCovariates

extra covariates set, one row per phenotype (n), one column per covariate (w).
If NULL no extra covariates are considered.

Value

The function should return a list with the following fields:

• predictions : an array of (k) predicted phenotypes

• hyperparams : named array of hyperparameters selected during training

• extradata : any extra information

See Also

Other phenoRegressors: phenoRegressor.BGLR(), phenoRegressor.RFR(), phenoRegressor.SVR(),
phenoRegressor.rrBLUP(), phenoregressor.BGLR.multikinships()

Examples

#genotypes are not really investigated. Only
#number of test phenotypes is used.
phenoRegressor.dummy(

phenotypes = c(1:10, NA, NA, NA),
genotypes = matrix(nrow = 13, ncol=30)

)

phenoRegressor.RFR Random Forest Regression using package randomForest

Description

This is a wrapper around randomForest and related functions. As such, this function will not work
if randomForest package is not installed. There is no distinction between regular covariates (geno-
types) and extra covariates (fixed effects) in random forest. If extra covariates are passed, they are
put together with genotypes, side by side. Same thing happens with covariances matrix. This can
bring to the scientifically questionable but technically correct situation of regressing on a big matrix
made of SNP genotypes, covariances and other covariates, all collated side by side. The function
makes no distinction, and it’s up to the user understand what is correct in each specific experiment.

WARNING: this function can be *very* slow, especially when called on thousands of SNPs.
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Usage

phenoRegressor.RFR(
phenotypes,
genotypes,
covariances,
extraCovariates,
ntree = ceiling(length(phenotypes)/5),
...

)

Arguments

phenotypes phenotypes, a numeric array (n x 1), missing values are predicted

genotypes SNP genotypes, one row per phenotype (n), one column per marker (m), val-
ues in 0/1/2 for diploids or 0/1/2/...ploidy for polyploids. Can be NULL if
covariances is present.

covariances square matrix (n x n) of covariances. Can be NULL if genotypes is present.
extraCovariates

extra covariates set, one row per phenotype (n), one column per covariate (w).
If NULL no extra covariates are considered.

ntree number of trees to grow, defaults to a fifth of the number of samples (rounded
up). As per randomForest documentation, it should not be set to too small a
number, to ensure that every input row gets predicted at least a few times

... any extra parameter is passed to randomForest::randomForest()

Value

The function returns a list with the following fields:

• predictions : an array of (k) predicted phenotypes

• hyperparams : named vector with the following keys: ntree (number of grown trees) and mtry
(number of variables randomly sampled as candidates at each split)

• extradata : the object returned by randomForest::randomForest(), containing the full
trained forest and the used parameters

See Also

randomForest

Other phenoRegressors: phenoRegressor.BGLR(), phenoRegressor.SVR(), phenoRegressor.dummy(),
phenoRegressor.rrBLUP(), phenoregressor.BGLR.multikinships()

Examples

## Not run:
#using the GROAN.KI dataset, we regress on the dataset and predict the first ten phenotypes
phenos = GROAN.KI$yield
phenos[1:10] = NA
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#calling the regressor with random forest
results = phenoRegressor.RFR(

phenotypes = phenos,
genotypes = GROAN.KI$SNPs,
covariances = NULL,
extraCovariates = NULL,
ntree = 20,
mtry = 200 #randomForest-specific parameters

)

#examining the predictions
plot(GROAN.KI$yield, results$predictions,

main = 'Train set (black) and test set (red) regressions',
xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')

points(GROAN.KI$yield[1:10], results$predictions[1:10], pch=16, col='red')

#printing correlations
test.set.correlation = cor(GROAN.KI$yield[1:10], results$predictions[1:10])
train.set.correlation = cor(GROAN.KI$yield[-(1:10)], results$predictions[-(1:10)])
writeLines(paste(

'test-set correlation :', test.set.correlation,
'\ntrain-set correlation:', train.set.correlation

))

## End(Not run)

phenoRegressor.rrBLUP SNP-BLUP or G-BLUP using rrBLUP package

Description

This is a wrapper around rrBLUP function mixed.solve. It can either work with genotypes (in form
of a SNP matrix) or with kinships (in form of a covariance matrix). In the first case the function will
implement a SNP-BLUP, in the second a G-BLUP. An error is returned if both SNPs and covariance
matrix are passed.
In rrBLUP terms, genotypes are modeled as random effects (matrix Z), covariances as matrix K,
and extra covariates, if present, as fixed effects (matrix X).
Please note that this function won’t work if rrBLUP package is not installed.

Usage

phenoRegressor.rrBLUP(
phenotypes,
genotypes = NULL,
covariances = NULL,
extraCovariates = NULL,
...

)
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Arguments

phenotypes phenotypes, a numeric array (n x 1), missing values are predicted

genotypes SNP genotypes, one row per phenotype (n), one column per marker (m), val-
ues in 0/1/2 for diploids or 0/1/2/...ploidy for polyploids. Can be NULL if
covariances is present.

covariances square matrix (n x n) of covariances.
extraCovariates

optional extra covariates set, one row per phenotype (n), one column per covari-
ate (w). If NULL no extra covariates are considered.

... extra parameters are passed to rrBLUP::mixed.solve

Value

The function returns a list with the following fields:

• predictions : an array of (k) predicted phenotypes

• hyperparams : named vector with the following keys: Vu, Ve, beta, LL

• extradata : list with information on trained model, coming from mixed.solve

See Also

mixed.solve

Other phenoRegressors: phenoRegressor.BGLR(), phenoRegressor.RFR(), phenoRegressor.SVR(),
phenoRegressor.dummy(), phenoregressor.BGLR.multikinships()

Examples

## Not run:
#using the GROAN.KI dataset, we regress on the dataset and predict the first ten phenotypes
phenos = GROAN.KI$yield
phenos[1:10] = NA

#calling the regressor with ridge regression BLUP on SNPs and kinship
results.SNP.BLUP = phenoRegressor.rrBLUP(

phenotypes = phenos,
genotypes = GROAN.KI$SNPs,
SE = TRUE, return.Hinv = TRUE #rrBLUP-specific parameters

)
results.G.BLUP = phenoRegressor.rrBLUP(

phenotypes = phenos,
covariances = GROAN.KI$kinship,
SE = TRUE, return.Hinv = TRUE #rrBLUP-specific parameters

)

#examining the predictions
plot(GROAN.KI$yield, results.SNP.BLUP$predictions,

main = '[SNP-BLUP] Train set (black) and test set (red) regressions',
xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')

abline(a=0, b=1)
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points(GROAN.KI$yield[1:10], results.SNP.BLUP$predictions[1:10], pch=16, col='red')

plot(GROAN.KI$yield, results.G.BLUP$predictions,
main = '[G-BLUP] Train set (black) and test set (red) regressions',
xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')

abline(a=0, b=1)
points(GROAN.KI$yield[1:10], results.G.BLUP$predictions[1:10], pch=16, col='red')

#printing correlations
correlations = data.frame(

model = 'SNP-BLUP',
test_set_correlations = cor(GROAN.KI$yield[1:10], results.SNP.BLUP$predictions[1:10]),
train_set_correlations = cor(GROAN.KI$yield[-(1:10)], results.SNP.BLUP$predictions[-(1:10)])

)
correlations = rbind(correlations, data.frame(

model = 'G-BLUP',
test_set_correlations = cor(GROAN.KI$yield[1:10], results.G.BLUP$predictions[1:10]),
train_set_correlations = cor(GROAN.KI$yield[-(1:10)], results.G.BLUP$predictions[-(1:10)])

))
print(correlations)

## End(Not run)

phenoRegressor.SVR Support Vector Regression using package e1071

Description

This is a wrapper around several functions from e1071 package (as such, it won’t work if e1071
package is not installed). This function implements Support Vector Regressions, meaning that the
data points are projected in a transformed higher dimensional space where linear regression is pos-
sible.

phenoRegressor.SVR can operate in three modes: run, train and tune.
In run mode you need to pass the function an already tuned/trained SVR model, typically obtained
either directly from e1071 functions (e.g. from svm, best.svm and so forth) or from a previous run
of phenoRegressor.SVR in a different mode. The passed model is applied to the passed dataset and
predictions are returned.
In train mode a SVR model will be trained on the passed dataset using the passed hyper parameters.
The trained model will then be used for predictions.
In tune mode you need to pass one or more sets of hyperparameters. The best combination of
hyperparameters will be selected through crossvalidation. The best performing SVR model will be
used for final predictions. This mode can be very slow.

There is no distinction between regular covariates (genotypes) and extra covariates (fixed effects)
in Support Vector Regression. If extra covariates are passed, they are put together with genotypes,
side by side. Same thing happens with covariances matrix. This can bring to the scientifically
questionable but technically correct situation of regressing on a big matrix made of SNP genotypes,
covariances and other covariates, all collated side by side. The function makes no distinction, and
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it’s up to the user understand what is correct in each specific experiment.

Usage

phenoRegressor.SVR(
phenotypes,
genotypes,
covariances,
extraCovariates,
mode = c("tune", "train", "run"),
tuned.model = NULL,
scale.pheno = TRUE,
scale.geno = FALSE,
...

)

Arguments

phenotypes phenotypes, a numeric array (n x 1), missing values are predicted

genotypes SNP genotypes, one row per phenotype (n), one column per marker (m), val-
ues in 0/1/2 for diploids or 0/1/2/...ploidy for polyploids. Can be NULL if
covariances is present.

covariances square matrix (n x n) of covariances. Can be NULL if genotypes is present.

extraCovariates

extra covariates set, one row per phenotype (n), one column per covariate (w).
If NULL no extra covariates are considered.

mode this parameter decides what will happen with the passed dataset

• mode = "tune" : hyperparameters will be tuned on a grid (you may want to
specify its values using extra params) with a call to e1071::tune.svm. Use
this option if you have no idea about the optimal choice of hyperparameters.
This mode can be very slow.

• mode = "train" : an SVR will be trained on the train dataset using the
passed hyperparameters (if you know them). This more invokes e1071::train

• mode = "run" : you already have a tuned and trained SVR (put it into
tuned.model) and want to use it. The fastest mode.

tuned.model a tuned and trained SVR to be used for prediction. This object is only used if
mode is equal to "run".

scale.pheno if TRUE (default) the phenotypes will be scaled and centered (before tuning or
before applying the passed tuned model).

scale.geno if TRUE the genotypes will be scaled and centered (before tuning or before
applying the passed tuned model. It is usually not a good idea, since it leads to
worse results. Defaults to FALSE.

... all extra parameters are passed to e1071::svm or e1071::tune.svm
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Value

The function returns a list with the following fields:

• predictions : an array of (n) predicted phenotypes

• hyperparams : named vector with the following keys: gamma, cost, coef0, nu, epsilon. Some
of the values may not make sense given the selected model, and will contain default values
from e1071 library.

• extradata : depending on mode parameter, extradata will contain one of the following: 1) a
SVM object returned by e1071::tune.svm, containing both the best performing model and the
description of the training process 2) a newly trained SVR model 3) the same object passed as
tuned.model

See Also

svm, tune.svm, best.svm from e1071 package

Other phenoRegressors: phenoRegressor.BGLR(), phenoRegressor.RFR(), phenoRegressor.dummy(),
phenoRegressor.rrBLUP(), phenoregressor.BGLR.multikinships()

Examples

## Not run:
### WARNING ###
#The 'tuning' part of the example can take quite some time to run,
#depending on the computational power.

#using the GROAN.KI dataset, we regress on the dataset and predict the first ten phenotypes
phenos = GROAN.KI$yield
phenos[1:10] = NA

#--------- TUNE ---------
#tuning the SVR on a grid of hyperparameters
results.tune = phenoRegressor.SVR(

phenotypes = phenos,
genotypes = GROAN.KI$SNPs,
covariances = NULL,
extraCovariates = NULL,
mode = 'tune',
kernel = 'linear', cost = 10^(-3:+3) #SVR-specific parameters

)

#examining the predictions
plot(GROAN.KI$yield, results.tune$predictions,

main = 'Mode = TUNING\nTrain set (black) and test set (red) regressions',
xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')

points(GROAN.KI$yield[1:10], results.tune$predictions[1:10], pch=16, col='red')

#printing correlations
test.set.correlation = cor(GROAN.KI$yield[1:10], results.tune$predictions[1:10])
train.set.correlation = cor(GROAN.KI$yield[-(1:10)], results.tune$predictions[-(1:10)])
writeLines(paste(
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'test-set correlation :', test.set.correlation,
'\ntrain-set correlation:', train.set.correlation

))

#--------- TRAIN ---------
#training the SVR, hyperparameters are given
results.train = phenoRegressor.SVR(

phenotypes = phenos,
genotypes = GROAN.KI$SNPs,
covariances = NULL,
extraCovariates = NULL,
mode = 'train',
kernel = 'linear', cost = 0.01 #SVR-specific parameters

)

#examining the predictions
plot(GROAN.KI$yield, results.train$predictions,

main = 'Mode = TRAIN\nTrain set (black) and test set (red) regressions',
xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')

points(GROAN.KI$yield[1:10], results.train$predictions[1:10], pch=16, col='red')

#printing correlations
test.set.correlation = cor(GROAN.KI$yield[1:10], results.train$predictions[1:10])
train.set.correlation = cor(GROAN.KI$yield[-(1:10)], results.train$predictions[-(1:10)])
writeLines(paste(

'test-set correlation :', test.set.correlation,
'\ntrain-set correlation:', train.set.correlation

))

#--------- RUN ---------
#we recover the trained model from previous run, predictions will be exactly the same
results.run = phenoRegressor.SVR(

phenotypes = phenos,
genotypes = GROAN.KI$SNPs,
covariances = NULL,
extraCovariates = NULL,
mode = 'run',
tuned.model = results.train$extradata

)

#examining the predictions
plot(GROAN.KI$yield, results.run$predictions,

main = 'Mode = RUN\nTrain set (black) and test set (red) regressions',
xlab = 'Original phenotypes', ylab = 'Predicted phenotypes')

points(GROAN.KI$yield[1:10], results.run$predictions[1:10], pch=16, col='red')

#printing correlations
test.set.correlation = cor(GROAN.KI$yield[1:10], results.run$predictions[1:10])
train.set.correlation = cor(GROAN.KI$yield[-(1:10)], results.run$predictions[-(1:10)])
writeLines(paste(

'test-set correlation :', test.set.correlation,
'\ntrain-set correlation:', train.set.correlation

))
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## End(Not run)

plotResult Plot results of a run

Description

This function uses ggplot2 package (which must be installed) to graphically render the result of a
run. The function receive as input the output of GROAN.run and returns a ggplot2 object (that can
be further customized). Currently implemented types of plot are:

• box : boxplot, showing the distribution of repetitions. See geom_boxplot

• bar : barplot, showing the average over repetitions. See stat_summary

• bar_conf95 : same as ’bar’, but with 95% confidence intervals

Usage

plotResult(
res,
variable = c("pearson", "spearman", "rmse", "time_per_fold", "coeff_det", "mae"),
x.label = c("both", "train_only", "test_only"),
plot.type = c("box", "bar", "bar_conf95"),
strata = c("no_strata", "avg_strata", "single")

)

Arguments

res a result data frame containing the output of GROAN.run

variable name of the variable to be used as y values

x.label select what to put on x-axis between both train and test dataset (default), train
dataset only or test dataset only

plot.type a string indicating the type of plot to be obtained

strata string determining behaviour toward strata. If 'no_strata' will plot accuracies
not considering strata. If 'avg_strata' will average single strata accuracies. If
'single' each strata will be represented separately.

Value

a ggplot2 object
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print.GROAN.NoisyDataset

Print a GROAN Noisy Dataset object

Description

Short description for class GROAN.NoisyDataset, created with createNoisyDataset.

Usage

## S3 method for class 'GROAN.NoisyDataset'
print(x, ...)

Arguments

x object of class GROAN.NoisyDataset.

... ignored, put here to match S3 function signature

Value

This function returns the original GROAN.NoisyDataset object invisibly (via invisible(x))

print.GROAN.Workbench Print a GROAN Workbench object

Description

Short description for class GROAN.Workbench, created with createWorkbench.

Usage

## S3 method for class 'GROAN.Workbench'
print(x, ...)

Arguments

x object of class GROAN.Workbench.

... ignored, put here to match S3 function signature

Value

This function returns the original GROAN.Workbench object invisibly (via invisible(x))
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summary.GROAN.NoisyDataset

Summary for GROAN Noisy Dataset object

Description

Returns a dataframe with some description of an object created with createNoisyDataset.

Usage

## S3 method for class 'GROAN.NoisyDataset'
summary(object, ...)

Arguments

object instance of class GROAN.NoisyDataset.

... additional arguments ignored, added for compatibility to generic summary func-
tion

Value

a data frame with GROAN.NoisyDataset stats.

summary.GROAN.Result Summary of GROAN.Result

Description

Performance metrics are averaged over repetitions, so that a data.frame is produced with one row
per dataset/regressor/extra_covariates/strata/samples/markers/folds combination.

Usage

## S3 method for class 'GROAN.Result'
summary(object, ...)

Arguments

object an object returned from GROAN.run

... additional arguments ignored, added for compatibility to generic summary func-
tion

Value

a data.frame with averaged statistics
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