
Package ‘PLNmodels’
January 20, 2025

Title Poisson Lognormal Models

Version 1.2.0

Description The Poisson-lognormal model and variants (Chiquet, Mariadassou and Robin,
2021 <doi:10.3389/fevo.2021.588292>) can be used for
a variety of multivariate problems when count data are at play, including
principal component analysis for count data, discriminant analysis, model-based clustering and
network inference. Implements variational algorithms to fit such models accompanied with a set of
functions for visualization and diagnostic.

URL https://pln-team.github.io/PLNmodels/

BugReports https://github.com/pln-team/PLNmodels/issues

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.3.1

Depends R (>= 3.4)

LazyData true

Imports methods, stats, MASS, future, future.apply, R6, glassoFast,
pscl, Matrix, Rcpp, nloptr, igraph, grid, gridExtra, dplyr,
tidyr, purrr, ggplot2, corrplot, magrittr, torch, rlang

Suggests knitr, rmarkdown, testthat, pkgdown, spelling, factoextra

LinkingTo Rcpp, RcppArmadillo, nloptr

VignetteBuilder knitr

Collate 'PLNfit-class.R' 'PLN.R' 'PLNLDA.R' 'PLNLDAfit-S3methods.R'
'PLNLDAfit-class.R' 'PLNPCA.R' 'PLNPCAfamily-S3methods.R'
'PLNfamily-class.R' 'PLNPCAfamily-class.R'
'PLNPCAfit-S3methods.R' 'PLNPCAfit-class.R'
'PLNfamily-S3methods.R' 'PLNfit-S3methods.R' 'PLNmixture.R'
'PLNmixturefamily-S3methods.R' 'PLNmixturefamily-class.R'
'PLNmixturefit-S3methods.R' 'PLNmixturefit-class.R'
'PLNmodels-package.R' 'PLNnetwork.R'
'PLNnetworkfamily-S3methods.R' 'PLNnetworkfamily-class.R'
'PLNnetworkfit-S3methods.R' 'PLNnetworkfit-class.R'

1

https://doi.org/10.3389/fevo.2021.588292
https://pln-team.github.io/PLNmodels/
https://github.com/pln-team/PLNmodels/issues

2 Contents

'RcppExports.R' 'ZIPLNfit-class.R' 'ZIPLN.R'
'ZIPLNfit-S3methods.R' 'ZIPLNnetwork.R' 'barents.R'
'import_utils.R' 'mollusk.R' 'oaks.R' 'plot_utils.R' 'scRNA.R'
'trichoptera.R' 'utils-pipe.R' 'utils-zipln.R' 'utils.R'
'zzz.R'

Language en-US

NeedsCompilation yes

Author Julien Chiquet [aut, cre] (<https://orcid.org/0000-0002-3629-3429>),
Mahendra Mariadassou [aut] (<https://orcid.org/0000-0003-2986-354X>),
Stéphane Robin [aut],
François Gindraud [aut],
Julie Aubert [ctb],
Bastien Batardière [ctb],
Giovanni Poggiato [ctb],
Cole Trapnell [ctb],
Maddy Duran [ctb]

Maintainer Julien Chiquet <julien.chiquet@inrae.fr>

Repository CRAN

Date/Publication 2024-03-05 15:50:03 UTC

Contents
barents . 4
coef.PLNfit . 5
coef.PLNLDAfit . 6
coef.PLNmixturefit . 6
coef.ZIPLNfit . 7
coefficient_path . 8
compute_offset . 9
compute_PLN_starting_point . 11
extract_probs . 12
fitted.PLNfit . 13
fitted.PLNmixturefit . 14
fitted.ZIPLNfit . 14
getBestModel.PLNPCAfamily . 15
getModel.PLNPCAfamily . 16
mollusk . 17
Networkfamily . 18
oaks . 21
PLN . 22
PLNfamily . 23
PLNfit . 25
PLNfit_diagonal . 30
PLNfit_fixedcov . 33
PLNfit_spherical . 35
PLNLDA . 36

https://orcid.org/0000-0002-3629-3429
https://orcid.org/0000-0003-2986-354X

Contents 3

PLNLDAfit . 38
PLNLDAfit_diagonal . 42
PLNLDA_param . 44
PLNmixture . 46
PLNmixturefamily . 47
PLNmixturefit . 50
PLNmixture_param . 54
PLNnetwork . 55
PLNnetworkfamily . 56
PLNnetworkfit . 57
PLNnetwork_param . 60
PLNPCA . 61
PLNPCAfamily . 62
PLNPCAfit . 65
PLNPCA_param . 71
PLN_param . 73
plot.Networkfamily . 75
plot.PLNfamily . 77
plot.PLNLDAfit . 78
plot.PLNmixturefamily . 79
plot.PLNmixturefit . 80
plot.PLNnetworkfit . 81
plot.PLNPCAfamily . 82
plot.PLNPCAfit . 83
plot.ZIPLNfit_sparse . 85
predict.PLNfit . 86
predict.PLNLDAfit . 87
predict.PLNmixturefit . 88
predict.ZIPLNfit . 89
predict_cond . 90
prepare_data . 91
rPLN . 93
scRNA . 94
sigma.PLNfit . 94
sigma.PLNmixturefit . 95
sigma.ZIPLNfit . 96
stability_selection . 97
standard_error.PLNPCAfit . 98
trichoptera . 100
vcov.PLNfit . 101
ZIPLN . 102
ZIPLNfit . 103
ZIPLNfit_diagonal . 107
ZIPLNfit_fixed . 108
ZIPLNfit_sparse . 109
ZIPLNfit_spherical . 112
ZIPLNnetwork . 113
ZIPLNnetworkfamily . 114

4 barents

ZIPLNnetwork_param . 116
ZIPLN_param . 117

Index 119

barents Barents fish data set

Description

This data set gives the abundance of 30 fish species observed in 89 sites in the Barents sea. For each
site, 4 additional covariates are known. Subsample of the original datasets studied by Fossheim et
al, 2006.

Usage

barents

Format

A data frame with 6 variables:

• Abundance: A 30 fish species by 89 sites count matrix

• Offset: A 30 fish species by 116 samples offset matrix, measuring the sampling effort in each
site

• 4 covariates for latitude, longitude, depth (in meters), temperature (in Celsius degrees).

Source

Data from M. Fossheim and coauthors.

References

Fossheim, Maria, Einar M. Nilssen, and Michaela Aschan. "Fish assemblages in the Barents Sea."
Marine Biology Research 2.4 (2006). doi:10.1080/17451000600815698

Examples

data(barents)

https://doi.org/10.1080/17451000600815698

coef.PLNfit 5

coef.PLNfit Extract model coefficients

Description

Extracts model coefficients from objects returned by PLN() and its variants

Usage

S3 method for class 'PLNfit'
coef(object, type = c("main", "covariance"), ...)

Arguments

object an R6 object with class PLNfit

type type of parameter that should be extracted. Either "main" (default) for

B

or "covariance" for

Σ

... additional parameters for S3 compatibility. Not used

Value

A matrix of coefficients extracted from the PLNfit model.

See Also

sigma.PLNfit(), vcov.PLNfit(), standard_error.PLNfit()

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1 + offset(log(Offset)), data = trichoptera)
coef(myPLN) ## B
coef(myPLN, type = "covariance") ## Sigma

6 coef.PLNmixturefit

coef.PLNLDAfit Extracts model coefficients from objects returned by PLNLDA()

Description

The method for objects returned by PLNLDA() only returns coefficients associated to the

Θ

part of the model (see the PLNLDA vignette for mathematical details).

Usage

S3 method for class 'PLNLDAfit'
coef(object, ...)

Arguments

object an R6 object with class PLNLDAfit

... additional parameters for S3 compatibility. Not used

Value

Either NULL or a matrix of coefficients extracted from the PLNLDAfit model.

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ Wind, grouping = Group, data = trichoptera)
coef(myPLNLDA)

coef.PLNmixturefit Extract model coefficients

Description

Extracts model coefficients from objects returned by PLN() and its variants

Usage

S3 method for class 'PLNmixturefit'
coef(object, type = c("main", "means", "covariance", "mixture"), ...)

coef.ZIPLNfit 7

Arguments

object an R6 object with class PLNmixturefit

type type of parameter that should be extracted. Either "main" (default) for

Θ

, "means" for
µ

, "mixture" for
π

or "covariance" for
Σ

... additional parameters for S3 compatibility. Not used

Value

A matrix of coefficients extracted from the PLNfit model.

See Also

sigma.PLNmixturefit()

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLNmixture(Abundance ~ 1 + offset(log(Offset)),

data = trichoptera, control = PLNmixture_param(smoothing = "none")) %>% getBestModel()
coef(myPLN) ## Theta - empty here
coef(myPLN, type = "mixture") ## pi
coef(myPLN, type = "means") ## mu
coef(myPLN, type = "covariance") ## Sigma

coef.ZIPLNfit Extract model coefficients

Description

Extracts model coefficients from objects returned by ZIPLN() and its variants

Usage

S3 method for class 'ZIPLNfit'
coef(object, type = c("count", "zero", "precision", "covariance"), ...)

8 coefficient_path

Arguments

object an R6 object with class ZIPLNfit

type type of parameter that should be extracted. Either "count" (default) for B, "zero"
for B0, "precision" for Ω, "covariance" for Σ

... additional parameters for S3 compatibility. Not used

Value

A matrix of coefficients extracted from the ZIPLNfit model.

See Also

sigma.ZIPLNfit()

Examples

data(scRNA)
data subsample: only 100 random cell and the 50 most varying transcript
subset <- sample.int(nrow(scRNA), 100)
myPLN <- ZIPLN(counts[, 1:50] ~ 1 + offset(log(total_counts)), subset = subset, data = scRNA)

coefficient_path Extract the regularization path of a PLNnetwork fit

Description

Extract the regularization path of a PLNnetwork fit

Usage

coefficient_path(Robject, precision = TRUE, corr = TRUE)

Arguments

Robject an object with class Networkfamily, i.e. an output from PLNnetwork()

precision a logical, should the coefficients of the precision matrix Omega or the covariance
matrix Sigma be sent back. Default is TRUE.

corr a logical, should the correlation (partial in case precision = TRUE) be sent back.
Default is TRUE.

Value

Sends back a tibble/data.frame.

compute_offset 9

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
head(coefficient_path(fits))

compute_offset Compute offsets from a count data using one of several normalization
schemes

Description

Computes offsets from the count table using one of several normalization schemes (TSS, CSS, RLE,
GMPR, Wrench, TMM, etc) described in the literature.

Usage

compute_offset(
counts,
offset = c("TSS", "GMPR", "RLE", "CSS", "Wrench", "TMM", "none"),
scale = c("none", "count"),
...

)

Arguments

counts Required. An abundance count table, preferably with dimensions names and
species as columns.

offset Optional. Normalization scheme used to compute scaling factors used as offset
during PLN inference. Available schemes are "TSS" (Total Sum Scaling, de-
fault), "CSS" (Cumulative Sum Scaling, used in metagenomeSeq), "RLE" (Rel-
ative Log Expression, used in DESeq2), "GMPR" (Geometric Mean of Pairwise
Ratio, introduced in Chen et al., 2018), Wrench (introduced in Kumar et al.,
2018) or "none". Alternatively the user can supply its own vector or matrix of
offsets (see note for specification of the user-supplied offsets).

scale Either "none" (default) or "count". Should the offset be normalized to be on
the same scale as the counts ?

... Additional parameters passed on to specific methods (for now CSS and RLE)

Details

RLE has additional pseudocounts and type arguments to add pseudocounts to the observed counts
(defaults to 0L) and to compute offsets using only positive counts (if type == "poscounts"). This
mimics the behavior of DESeq2::DESeq() when using sfType == "poscounts". CSS has an addi-
tional reference argument to choose the location function used to compute the reference quantiles
(defaults to median as in the Nature publication but can be set to mean to reproduce behavior of

10 compute_offset

functions cumNormStat* from metagenomeSeq). Wrench has two additional parameters: groups
to specify sample groups and type to either reproduce exactly the default Wrench::wrench() be-
havior (type = "wrench", default) or to use simpler heuristics (type = "simple"). Note that (i)
CSS normalization fails when the median absolute deviation around quantiles does not become
instable for high quantiles (limited count variations both within and across samples) and/or one
sample has less than two positive counts, (ii) RLE fails when there are no common species across
all samples (unless type == "poscounts" has been specified) and (iii) GMPR fails if a sample does
not share any species with all other samples. TMM code between two libraries is simplified and
adapted from M. Robinson (edgeR:::.calcFactorTMM). The final output is however different from
the one produced by edgeR:::.calcFactorTMM as they are intended to be used as such in the model
(whereas they need to be multiplied by sequencing depths in edgeR)

Value

If offset = "none", NULL else a vector of length nrow(counts) with one offset per sample.

References

Chen, L., Reeve, J., Zhang, L., Huang, S., Wang, X. and Chen, J. (2018) GMPR: A robust normal-
ization method for zero-inflated count data with application to microbiome sequencing data. PeerJ,
6, e4600 doi:10.7717/peerj.4600

Paulson, J. N., Colin Stine, O., Bravo, H. C. and Pop, M. (2013) Differential abundance analysis for
microbial marker-gene surveys. Nature Methods, 10, 1200-1202 doi:10.1038/nmeth.2658

Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome
Biology, 11, R106 doi:10.1186/gb20101110r106

Kumar, M., Slud, E., Okrah, K. et al. (2018) Analysis and correction of compositional bias in sparse
sequencing count data. BMC Genomics 19, 799 doi:10.1186/s1286401851605

Robinson, M.D., Oshlack, A. (2010) A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol 11, R25 doi:10.1186/gb2010113r25

Examples

data(trichoptera)
counts <- trichoptera$Abundance
compute_offset(counts)
Other normalization schemes
compute_offset(counts, offset = "RLE", pseudocounts = 1)
compute_offset(counts, offset = "Wrench", groups = trichoptera$Covariate$Group)
compute_offset(counts, offset = "GMPR")
compute_offset(counts, offset = "TMM")
User supplied offsets
my_offset <- setNames(rep(1, nrow(counts)), rownames(counts))
compute_offset(counts, offset = my_offset)

https://doi.org/10.7717/peerj.4600
https://doi.org/10.1038/nmeth.2658
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1186/s12864-018-5160-5
https://doi.org/10.1186/gb-2010-11-3-r25

compute_PLN_starting_point 11

compute_PLN_starting_point

Helper function for PLN initialization.

Description

Barebone function to compute starting points for B, M and S when fitting a PLN. Mostly intended
for internal use.

Usage

compute_PLN_starting_point(Y, X, O, w, s = 0.1)

Arguments

Y Response count matrix

X Covariate matrix

O Offset matrix (in log-scale)

w Weight vector (defaults to 1)

s Scale parameter for S (defaults to 0.1)

Details

The default strategy to estimate B and M is to fit a linear model with covariates X to the response
count matrix (after adding a pseudocount of 1, scaling by the offset and taking the log). The re-
gression matrix is used to initialize B and the residuals to initialize M. S is initialized as a constant
conformable matrix with value s.

Value

a named list of starting values for model parameter B and variational parameters M and S used in
the iterative optimization algorithm of PLN()

Examples

Not run:
data(barents)
Y <- barents$Abundance
X <- model.matrix(Abundance ~ Latitude + Longitude + Depth + Temperature, data = barents)
O <- log(barents$Offset)
w <-- rep(1, nrow(Y))
compute_PLN_starting_point(Y, X, O, w)

End(Not run)

12 extract_probs

extract_probs Extract edge selection frequency in bootstrap subsamples

Description

Extracts edge selection frequency in networks reconstructed from bootstrap subsamples during the
stars stability selection procedure, as either a matrix or a named vector. In the latter case, edge
names follow igraph naming convention.

Usage

extract_probs(
Robject,
penalty = NULL,
index = NULL,
crit = c("StARS", "BIC", "EBIC"),
format = c("matrix", "vector"),
tol = 1e-05

)

Arguments

Robject an object with class PLNnetworkfamily, i.e. an output from PLNnetwork()

penalty penalty used for the bootstrap subsamples

index Integer index of the model to be returned. Only the first value is taken into
account.

crit a character for the criterion used to performed the selection. Either "BIC",
"ICL", "EBIC", "StARS", "R_squared". Default is ICL for PLNPCA, and BIC
for PLNnetwork. If StARS (Stability Approach to Regularization Selection) is
chosen and stability selection was not yet performed, the function will call the
method stability_selection() with default argument.

format output format. Either a matrix (default) or a named vector.

tol tolerance for rounding error when comparing penalties.

Value

Either a matrix or named vector of edge-wise probabilities. In the latter case, edge names follow
igraph convention.

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
nets <- PLNnetwork(Abundance ~ 1 + offset(log(Offset)), data = trichoptera)
Not run:
stability_selection(nets)

fitted.PLNfit 13

probs <- extract_probs(nets, crit = "StARS", format = "vector")
probs

End(Not run)

Not run:
Add edge attributes to graph using igraph
net_stars <- getBestModel(nets, "StARS")
g <- plot(net_stars, type = "partial_cor", plot=F)
library(igraph)
E(g)$prob <- probs[as_ids(E(g))]
g

End(Not run)

fitted.PLNfit Extracts model fitted values from objects returned by PLN() and its
variants

Description

Extracts model fitted values from objects returned by PLN() and its variants

Usage

S3 method for class 'PLNfit'
fitted(object, ...)

Arguments

object an R6 object with class PLNfit

... additional parameters for S3 compatibility. Not used

Value

A matrix of Fitted values extracted from the object object.

14 fitted.ZIPLNfit

fitted.PLNmixturefit Extracts model fitted values from objects returned by PLNmixture()
and its variants

Description

Extracts model fitted values from objects returned by PLNmixture() and its variants

Usage

S3 method for class 'PLNmixturefit'
fitted(object, ...)

Arguments

object an R6 object with class PLNmixturefit

... additional parameters for S3 compatibility. Not used

Value

A matrix of Fitted values extracted from the object object.

fitted.ZIPLNfit Extracts model fitted values from objects returned by ZIPLN() and its
variants

Description

Extracts model fitted values from objects returned by ZIPLN() and its variants

Usage

S3 method for class 'ZIPLNfit'
fitted(object, ...)

Arguments

object an R6 object with class ZIPLNfit

... additional parameters for S3 compatibility. Not used

Value

A matrix of Fitted values extracted from the object object.

getBestModel.PLNPCAfamily 15

getBestModel.PLNPCAfamily

Best model extraction from a collection of models

Description

Best model extraction from a collection of models

Usage

S3 method for class 'PLNPCAfamily'
getBestModel(Robject, crit = c("ICL", "BIC"), ...)

getBestModel(Robject, crit, ...)

S3 method for class 'PLNmixturefamily'
getBestModel(Robject, crit = c("ICL", "BIC"), ...)

S3 method for class 'Networkfamily'
getBestModel(Robject, crit = c("BIC", "EBIC", "StARS"), ...)

S3 method for class 'PLNnetworkfamily'
getBestModel(Robject, crit = c("BIC", "EBIC", "StARS"), ...)

S3 method for class 'ZIPLNnetworkfamily'
getBestModel(Robject, crit = c("BIC", "EBIC", "StARS"), ...)

Arguments

Robject an object with class PLNPCAfamilly ot PLNnetworkfamily

crit a character for the criterion used to performed the selection. Either "BIC",
"ICL", "EBIC", "StARS", "R_squared". Default is ICL for PLNPCA, and BIC
for PLNnetwork. If StARS (Stability Approach to Regularization Selection) is
chosen and stability selection was not yet performed, the function will call the
method stability_selection() with default argument.

... additional parameters for StARS criterion (only for PLNnetwork). stability,
a scalar indicating the target stability (= 1 - 2 beta) at which the network is
selected. Default is 0.9.

Value

Send back an object with class PLNPCAfit or PLNnetworkfit

Methods (by class)

• getBestModel(PLNPCAfamily): Model extraction for PLNPCAfamily

16 getModel.PLNPCAfamily

• getBestModel(PLNmixturefamily): Model extraction for PLNmixturefamily
• getBestModel(Networkfamily): Model extraction for PLNnetworkfamily or ZIPLNnetworkfamily
• getBestModel(PLNnetworkfamily): Model extraction for PLNnetworkfamily
• getBestModel(ZIPLNnetworkfamily): Model extraction for ZIPLNnetworkfamily

Examples

Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPCA <- PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = trichoptera, ranks = 1:4)
myModel <- getBestModel(myPCA)

End(Not run)

getModel.PLNPCAfamily Model extraction from a collection of models

Description

Model extraction from a collection of models

Usage

S3 method for class 'PLNPCAfamily'
getModel(Robject, var, index = NULL)

getModel(Robject, var, index)

S3 method for class 'PLNmixturefamily'
getModel(Robject, var, index = NULL)

S3 method for class 'Networkfamily'
getModel(Robject, var, index = NULL)

S3 method for class 'PLNnetworkfamily'
getModel(Robject, var, index = NULL)

S3 method for class 'ZIPLNnetworkfamily'
getModel(Robject, var, index = NULL)

Arguments

Robject an R6 object with class PLNPCAfamily or PLNnetworkfamily
var value of the parameter (rank for PLNPCA, sparsity for PLNnetwork) that

identifies the model to be extracted from the collection. If no exact match is
found, the model with closest parameter value is returned with a warning.

index Integer index of the model to be returned. Only the first value is taken into
account.

mollusk 17

Value

Sends back an object with class PLNPCAfit or PLNnetworkfit.

Methods (by class)

• getModel(PLNPCAfamily): Model extraction for PLNPCAfamily

• getModel(PLNmixturefamily): Model extraction for PLNmixturefamily

• getModel(Networkfamily): Model extraction for PLNnetworkfamily or ZIPLNnetworkfamily

• getModel(PLNnetworkfamily): Model extraction for PLNnetworkfamily

• getModel(ZIPLNnetworkfamily): Model extraction for ZIPLNnetworkfamily

Examples

Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPCA <- PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = trichoptera, ranks = 1:5)
myModel <- getModel(myPCA, 2)

End(Not run)

mollusk Mollusk data set

Description

This data set gives the abundance of 32 mollusk species in 163 samples. For each sample, 4 addi-
tional covariates are known.

Usage

mollusk

Format

A list with 2 two data frames:

Abundance a 163 x 32 data frame of abundancies/counts (163 samples and 32 mollusk species)

Covariate a 163 x 4 data frame of covariates:

site a factor with 8 levels indicating the sampling site
season a factor with 4 levels indicating the season
method a factor with 2 levels for the method of sampling - wood or string
duration a numeric with 3 levels for the time of exposure in week

In order to prepare the data for using formula in multivariate analysis (multiple outputs and inputs),
use prepare_data(). Original data set has been extracted from ade4.

18 Networkfamily

Source

Data from Richardot-Coulet, Chessel and Bournaud.

References

Richardot-Coulet, M., Chessel D. and Bournaud M. (1986) Typological value of the benthos of old
beds of a large river. Methodological approach. Archiv fùr Hydrobiologie, 107, 363–383.

See Also

prepare_data()

Examples

data(mollusk)
mollusc <- prepare_data(mollusk$Abundance, mollusk$Covariate)

Networkfamily An R6 Class to virtually represent a collection of network fits

Description

The functions PLNnetwork() and ZIPLNnetwork() both produce an instance of this class, which
can be thought of as a vector of PLNnetworkfits ZIPLNfit_sparses (indexed by penalty parame-
ter)

This class comes with a set of methods mostly used to compare network fits (in terms of goodness
of fit) or extract one from the family (based on penalty parameter and/or goodness of it). See the
documentation for getBestModel(), getModel() and plot() for the user-facing ones.

Super class

PLNmodels::PLNfamily -> Networkfamily

Active bindings

penalties the sparsity level of the network in the successively fitted models

stability_path the stability path of each edge as returned by the stars procedure

stability mean edge stability along the penalty path

criteria a data frame with the values of some criteria (variational log-likelihood, (E)BIC, ICL
and R2, stability) for the collection of models / fits BIC, ICL and EBIC are defined so that
they are on the same scale as the model log-likelihood, i.e. with the form, loglik - 0.5 penalty

Networkfamily 19

Methods

Public methods:
• Networkfamily$new()

• Networkfamily$optimize()

• Networkfamily$coefficient_path()

• Networkfamily$getBestModel()

• Networkfamily$plot()

• Networkfamily$plot_stars()

• Networkfamily$plot_objective()

• Networkfamily$show()

• Networkfamily$clone()

Method new(): Initialize all models in the collection

Usage:
Networkfamily$new(penalties, data, control)

Arguments:
penalties a vector of positive real number controlling the level of sparsity of the underlying

network.
data a named list used internally to carry the data matrices
control a list for controlling the optimization.

Returns: Update all network fits in the family with smart starting values

Method optimize(): Call to the C++ optimizer on all models of the collection

Usage:
Networkfamily$optimize(data, config)

Arguments:
data a named list used internally to carry the data matrices
config a list for controlling the optimization.

Method coefficient_path(): Extract the regularization path of a Networkfamily

Usage:
Networkfamily$coefficient_path(precision = TRUE, corr = TRUE)

Arguments:
precision Logical. Should the regularization path be extracted from the precision matrix

Omega (TRUE, default) or from the variance matrix Sigma (FALSE)
corr Logical. Should the matrix be transformed to (partial) correlation matrix before extrac-

tion? Defaults to TRUE

Method getBestModel(): Extract the best network in the family according to some criteria

Usage:
Networkfamily$getBestModel(crit = c("BIC", "EBIC", "StARS"), stability = 0.9)

Arguments:

20 Networkfamily

crit character. Criterion used to perform the selection. If "StARS" is chosen but $stability
field is empty, will compute stability path.

stability Only used for "StARS" criterion. A scalar indicating the target stability (= 1 - 2
beta) at which the network is selected. Default is 0.9.

Details: For BIC and EBIC criteria, higher is better.

Method plot(): Display various outputs (goodness-of-fit criteria, robustness, diagnostic) asso-
ciated with a collection of network fits (a Networkfamily)

Usage:
Networkfamily$plot(
criteria = c("loglik", "pen_loglik", "BIC", "EBIC"),
reverse = FALSE,
log.x = TRUE

)

Arguments:
criteria vector of characters. The criteria to plot in c("loglik", "pen_loglik", "BIC",

"EBIC"). Defaults to all of them.
reverse A logical indicating whether to plot the value of the criteria in the "natural" direction

(loglik - 0.5 penalty) or in the "reverse" direction (-2 loglik + penalty). Default to FALSE,
i.e use the natural direction, on the same scale as the log-likelihood.

log.x logical: should the x-axis be represented in log-scale? Default is TRUE.

Returns: a ggplot graph

Method plot_stars(): Plot stability path
Usage:
Networkfamily$plot_stars(stability = 0.9, log.x = TRUE)

Arguments:
stability scalar: the targeted level of stability using stability selection. Default is 0.9.
log.x logical: should the x-axis be represented in log-scale? Default is TRUE.

Returns: a ggplot graph

Method plot_objective(): Plot objective value of the optimization problem along the penalty
path

Usage:
Networkfamily$plot_objective()

Returns: a ggplot graph

Method show(): User friendly print method
Usage:
Networkfamily$show()

Method clone(): The objects of this class are cloneable with this method.
Usage:
Networkfamily$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

oaks 21

See Also

The functions PLNnetwork(), ZIPLNnetwork() and the classes PLNnetworkfit, ZIPLNfit_sparse

oaks Oaks amplicon data set

Description

This data set gives the abundance of 114 taxa (66 bacterial OTU, 48 fungal OTUs) in 116 samples.
For each sample, 11 additional covariates are known.

Usage

oaks

Format

A data frame with 13 variables:

• Abundance: A 114 taxa by 116 samples count matrix

• Offset: A 114 taxa by 116 samples offset matrix

• Sample: Unique sample id

• tree: Tree status with respect to the pathogen (susceptible, intermediate or resistant)

• branch: Unique branch id in each tree (4 branches were sampled in each tree, with 10 leaves
per branch)

• leafNO: Unique leaf id in each tree (40 leaves were sampled in each tree)

• distTObase: Distance of the sampled leaf to the base of the branch

• distTOtrunk: Distance of the sampled leaf to the base of the tree trunk

• distTOground: Distance of the sampled leaf to the base of the ground

• pmInfection: Powdery mildew infection, proportion of the upper leaf area displaying mildew
symptoms

• orientation: Orientation of the branch (South-West SW or North-East NE)

• readsTOTfun: Total number of ITS1 reads for that leaf

• readsTOTbac: Total number of 16S reads for that leaf

Source

Data from B. Jakuschkin and coauthors.

References

Jakuschkin, B., Fievet, V., Schwaller, L. et al. Deciphering the Pathobiome: Intra- and Interking-
dom Interactions Involving the Pathogen Erysiphe alphitoides . Microb Ecol 72, 870–880 (2016).
doi:10.1007/s002480160777x

https://doi.org/10.1007/s00248-016-0777-x

22 PLN

See Also

prepare_data()

Examples

data(oaks)
Not run:
oaks_networks <- PLNnetwork(formula = Abundance ~ 1 + offset(log(Offset)), data = oaks)

End(Not run)

PLN Poisson lognormal model

Description

Fit the multivariate Poisson lognormal model with a variational algorithm. Use the (g)lm syntax for
model specification (covariates, offsets, weights).

Usage

PLN(formula, data, subset, weights, control = PLN_param())

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.
data an optional data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which PLN is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of observation weights to be used in the fitting process.
control a list-like structure for controlling the optimization, with default generated by

PLN_param(). See the associated documentation for details.

Value

an R6 object with class PLNfit

See Also

The class PLNfit and the configuration function PLN_param()

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1, data = trichoptera)

PLNfamily 23

PLNfamily An R6 Class to represent a collection of PLNfit

Description

super class for PLNPCAfamily and PLNnetworkfamily.

Public fields

responses the matrix of responses common to every models

covariates the matrix of covariates common to every models

offsets the matrix of offsets common to every models

weights the vector of observation weights

inception a PLNfit object, obtained when no sparsifying penalty is applied.

models a list of PLNfit object, one per penalty.

Active bindings

criteria a data frame with the values of some criteria (approximated log-likelihood, BIC, ICL,
etc.) for the collection of models / fits BIC and ICL are defined so that they are on the same
scale as the model log-likelihood, i.e. with the form, loglik - 0.5 penalty

convergence sends back a data frame with some convergence diagnostics associated with the op-
timization process (method, optimal value, etc)

Methods

Public methods:
• PLNfamily$new()

• PLNfamily$postTreatment()

• PLNfamily$getModel()

• PLNfamily$plot()

• PLNfamily$show()

• PLNfamily$print()

• PLNfamily$clone()

Method new(): Create a new PLNfamily object.

Usage:
PLNfamily$new(responses, covariates, offsets, weights, control)

Arguments:
responses the matrix of responses common to every models
covariates the matrix of covariates common to every models
offsets the matrix of offsets common to every models
weights the vector of observation weights

24 PLNfamily

control list controlling the optimization and the model

Returns: A new PLNfamily object

Method postTreatment(): Update fields after optimization

Usage:
PLNfamily$postTreatment(config_post, config_optim)

Arguments:
config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).
config_optim a list for controlling the optimization parameters used during post_treatments

Method getModel(): Extract a model from a collection of models

Usage:
PLNfamily$getModel(var, index = NULL)

Arguments:
var value of the parameter (rank for PLNPCA, sparsity for PLNnetwork) that identifies the

model to be extracted from the collection. If no exact match is found, the model with closest
parameter value is returned with a warning.

index Integer index of the model to be returned. Only the first value is taken into account.

Returns: A PLNfit object

Method plot(): Lineplot of selected criteria for all models in the collection

Usage:
PLNfamily$plot(criteria, reverse)

Arguments:
criteria A valid model selection criteria for the collection of models. Includes loglik, BIC

(all), ICL (PLNPCA) and pen_loglik, EBIC (PLNnetwork)
reverse A logical indicating whether to plot the value of the criteria in the "natural" direction

(loglik - penalty) or in the "reverse" direction (-2 loglik + penalty). Default to FALSE, i.e
use the natural direction, on the same scale as the log-likelihood.

Returns: A ggplot2 object

Method show(): User friendly print method

Usage:
PLNfamily$show()

Method print(): User friendly print method

Usage:
PLNfamily$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNfamily$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

PLNfit 25

See Also

getModel()

PLNfit An R6 Class to represent a PLNfit in a standard, general framework

Description

The function PLN() fit a model which is an instance of a object with class PLNfit. Objects produced
by the functions PLNnetwork(), PLNPCA(), PLNmixture() and PLNLDA() also enjoy the methods
of PLNfit() by inheritance.

This class comes with a set of R6 methods, some of them being useful for the user and ex-
ported as S3 methods. See the documentation for coef(), sigma(), predict(), vcov() and
standard_error().

Fields are accessed via active binding and cannot be changed by the user.

Active bindings

n number of samples

q number of dimensions of the latent space

p number of species

d number of covariates

nb_param number of parameters in the current PLN model

model_par a list with the matrices of the model parameters: B (covariates), Sigma (covariance),
Omega (precision matrix), plus some others depending on the variant)

var_par a list with the matrices of the variational parameters: M (means) and S2 (variances)

optim_par a list with parameters useful for monitoring the optimization

latent a matrix: values of the latent vector (Z in the model)

latent_pos a matrix: values of the latent position vector (Z) without covariates effects or offset

fitted a matrix: fitted values of the observations (A in the model)

vcov_coef matrix of sandwich estimator of the variance-covariance of B (need fixed -ie known-
covariance at the moment)

vcov_model character: the model used for the residual covariance

weights observational weights

loglik (weighted) variational lower bound of the loglikelihood

loglik_vec element-wise variational lower bound of the loglikelihood

BIC variational lower bound of the BIC

entropy Entropy of the variational distribution

ICL variational lower bound of the ICL

R_squared approximated goodness-of-fit criterion

criteria a vector with loglik, BIC, ICL and number of parameters

26 PLNfit

Methods

Public methods:
• PLNfit$new()

• PLNfit$update()

• PLNfit$optimize()

• PLNfit$optimize_vestep()

• PLNfit$postTreatment()

• PLNfit$predict()

• PLNfit$predict_cond()

• PLNfit$show()

• PLNfit$print()

• PLNfit$clone()

Method new(): Initialize a PLNfit model

Usage:
PLNfit$new(responses, covariates, offsets, weights, formula, control)

Arguments:
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily-class
covariates design matrix (called X in the model). Will usually be extracted from the corre-

sponding field in PLNfamily-class
offsets offset matrix (called O in the model). Will usually be extracted from the corresponding

field in PLNfamily-class
weights an optional vector of observation weights to be used in the fitting process.
formula model formula used for fitting, extracted from the formula in the upper-level call
control a list-like structure for controlling the fit, see PLN_param().

Method update(): Update a PLNfit object

Usage:
PLNfit$update(
B = NA,
Sigma = NA,
Omega = NA,
M = NA,
S = NA,
Ji = NA,
R2 = NA,
Z = NA,
A = NA,
monitoring = NA

)

Arguments:
B matrix of regression matrix
Sigma variance-covariance matrix of the latent variables

PLNfit 27

Omega precision matrix of the latent variables. Inverse of Sigma.
M matrix of variational parameters for the mean
S matrix of variational parameters for the variance
Ji vector of variational lower bounds of the log-likelihoods (one value per sample)
R2 approximate R^2 goodness-of-fit criterion
Z matrix of latent vectors (includes covariates and offset effects)
A matrix of fitted values
monitoring a list with optimization monitoring quantities

Returns: Update the current PLNfit object

Method optimize(): Call to the NLopt or TORCH optimizer and update of the relevant fields

Usage:
PLNfit$optimize(responses, covariates, offsets, weights, config)

Arguments:

responses the matrix of responses (called Y in the model). Will usually be extracted from the
corresponding field in PLNfamily-class

covariates design matrix (called X in the model). Will usually be extracted from the corre-
sponding field in PLNfamily-class

offsets offset matrix (called O in the model). Will usually be extracted from the corresponding
field in PLNfamily-class

weights an optional vector of observation weights to be used in the fitting process.
config part of the control argument which configures the optimizer

Method optimize_vestep(): Result of one call to the VE step of the optimization procedure:
optimal variational parameters (M, S) and corresponding log likelihood values for fixed model
parameters (Sigma, B). Intended to position new data in the latent space.

Usage:
PLNfit$optimize_vestep(
covariates,
offsets,
responses,
weights,
B = self$model_par$B,
Omega = self$model_par$Omega,
control = PLN_param(backend = "nlopt")

)

Arguments:

covariates design matrix (called X in the model). Will usually be extracted from the corre-
sponding field in PLNfamily-class

offsets offset matrix (called O in the model). Will usually be extracted from the corresponding
field in PLNfamily-class

responses the matrix of responses (called Y in the model). Will usually be extracted from the
corresponding field in PLNfamily-class

weights an optional vector of observation weights to be used in the fitting process.

28 PLNfit

B Optional fixed value of the regression parameters
Omega precision matrix of the latent variables. Inverse of Sigma.
control a list-like structure for controlling the fit, see PLN_param().
Sigma variance-covariance matrix of the latent variables

Returns: A list with three components:
• the matrix M of variational means,
• the matrix S2 of variational variances
• the vector log.lik of (variational) log-likelihood of each new observation

Method postTreatment(): Update R2, fisher and std_err fields after optimization

Usage:
PLNfit$postTreatment(
responses,
covariates,
offsets,
weights = rep(1, nrow(responses)),
config_post,
config_optim,
nullModel = NULL

)

Arguments:
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily-class
covariates design matrix (called X in the model). Will usually be extracted from the corre-

sponding field in PLNfamily-class
offsets offset matrix (called O in the model). Will usually be extracted from the corresponding

field in PLNfamily-class
weights an optional vector of observation weights to be used in the fitting process.
config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).

See details
config_optim a list for controlling the optimization (optional bootstrap, jackknife, R2, etc.).

See details
nullModel null model used for approximate R2 computations. Defaults to a GLM model with

same design matrix but not latent variable.

Details: The list of parameters config controls the post-treatment processing, with the follow-
ing entries:

• jackknife boolean indicating whether jackknife should be performed to evaluate bias and
variance of the model parameters. Default is FALSE.

• bootstrap integer indicating the number of bootstrap resamples generated to evaluate the
variance of the model parameters. Default is 0 (inactivated).

• variational_var boolean indicating whether variational Fisher information matrix should be
computed to estimate the variance of the model parameters (highly underestimated). Default
is FALSE.

• rsquared boolean indicating whether approximation of R2 based on deviance should be
computed. Default is TRUE

PLNfit 29

• trace integer for verbosity. should be > 1 to see output in post-treatments

Method predict(): Predict position, scores or observations of new data.

Usage:
PLNfit$predict(
newdata,
responses = NULL,
type = c("link", "response"),
level = 1,
envir = parent.frame()

)

Arguments:

newdata A data frame in which to look for variables with which to predict. If omitted, the fitted
values are used.

responses Optional data frame containing the count of the observed variables (matching the
names of the provided as data in the PLN function), assuming the interest in in testing the
model.

type Scale used for the prediction. Either link (default, predicted positions in the latent space)
or response (predicted counts).

level Optional integer value the level to be used in obtaining the predictions. Level zero
corresponds to the population predictions (default if responses is not provided) while level
one (default) corresponds to predictions after evaluating the variational parameters for the
new data.

envir Environment in which the prediction is evaluated

Details: Note that level = 1 can only be used if responses are provided, as the variational
parameters can’t be estimated otherwise. In the absence of responses, level is ignored and the
fitted values are returned

Returns: A matrix with predictions scores or counts.

Method predict_cond(): Predict position, scores or observations of new data, conditionally
on the observation of a (set of) variables

Usage:
PLNfit$predict_cond(
newdata,
cond_responses,
type = c("link", "response"),
var_par = FALSE,
envir = parent.frame()

)

Arguments:

newdata a data frame containing the covariates of the sites where to predict
cond_responses a data frame containing the count of the observed variables (matching the

names of the provided as data in the PLN function)
type Scale used for the prediction. Either link (default, predicted positions in the latent space)

or response (predicted counts).

30 PLNfit_diagonal

var_par Boolean. Should new estimations of the variational parameters of mean and variance
be sent back, as attributes of the matrix of predictions. Default to FALSE.

envir Environment in which the prediction is evaluated

Returns: A matrix with predictions scores or counts.

Method show(): User friendly print method

Usage:
PLNfit$show(
model = paste("A multivariate Poisson Lognormal fit with", self$vcov_model,

"covariance model.\n")
)

Arguments:
model First line of the print output

Method print(): User friendly print method

Usage:
PLNfit$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNfit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1, data = trichoptera)
class(myPLN)
print(myPLN)

End(Not run)

PLNfit_diagonal An R6 Class to represent a PLNfit in a standard, general framework,
with diagonal residual covariance

Description

The function PLNLDA() produces an instance of an object with class PLNLDAfit.

This class comes with a set of methods, some of them being useful for the user: See the docu-
mentation for the methods inherited by PLNfit(), the plot() method for LDA visualization and
predict() method for prediction

PLNfit_diagonal 31

Super class

PLNmodels::PLNfit -> PLNfit_diagonal

Active bindings

nb_param number of parameters in the current PLN model

vcov_model character: the model used for the residual covariance

Methods

Public methods:

• PLNfit_diagonal$new()

• PLNfit_diagonal$clone()

Method new(): Initialize a PLNfit model

Usage:
PLNfit_diagonal$new(responses, covariates, offsets, weights, formula, control)

Arguments:

responses the matrix of responses (called Y in the model). Will usually be extracted from the
corresponding field in PLNfamily-class

covariates design matrix (called X in the model). Will usually be extracted from the corre-
sponding field in PLNfamily-class

offsets offset matrix (called O in the model). Will usually be extracted from the corresponding
field in PLNfamily-class

weights an optional vector of observation weights to be used in the fitting process.
formula model formula used for fitting, extracted from the formula in the upper-level call
control a list for controlling the optimization. See details.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNfit_diagonal$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Super classes

PLNmodels::PLNfit -> PLNmodels::PLNLDAfit -> PLNLDAfit_spherical

Active bindings

vcov_model character: the model used for the residual covariance

nb_param number of parameters in the current PLN model

32 PLNfit_diagonal

Methods

Public methods:
• PLNLDAfit_spherical$new()

• PLNLDAfit_spherical$clone()

Method new(): Initialize a PLNfit model

Usage:
PLNLDAfit_spherical$new(
grouping,
responses,
covariates,
offsets,
weights,
formula,
control

)

Arguments:
grouping a factor specifying the class of each observation used for discriminant analysis.
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily-class
covariates design matrix (called X in the model). Will usually be extracted from the corre-

sponding field in PLNfamily-class
offsets offset matrix (called O in the model). Will usually be extracted from the corresponding

field in PLNfamily-class
weights an optional vector of observation weights to be used in the fitting process.
formula model formula used for fitting, extracted from the formula in the upper-level call
control a list for controlling the optimization. See details.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNLDAfit_spherical$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1, data = trichoptera)
class(myPLN)
print(myPLN)

End(Not run)
Not run:
data(trichoptera)

PLNfit_fixedcov 33

trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ 1, data = trichoptera, control = PLN_param(covariance = "spherical"))
class(myPLNLDA)
print(myPLNLDA)

End(Not run)

PLNfit_fixedcov An R6 Class to represent a PLNfit in a standard, general framework,
with fixed (inverse) residual covariance

Description

An R6 Class to represent a PLNfit in a standard, general framework, with fixed (inverse) residual
covariance

An R6 Class to represent a PLNfit in a standard, general framework, with fixed (inverse) residual
covariance

Super class

PLNmodels::PLNfit -> PLNfit_fixedcov

Active bindings

nb_param number of parameters in the current PLN model

vcov_model character: the model used for the residual covariance

vcov_coef matrix of sandwich estimator of the variance-covariance of B (needs known covariance
at the moment)

Methods

Public methods:
• PLNfit_fixedcov$new()

• PLNfit_fixedcov$optimize()

• PLNfit_fixedcov$postTreatment()

• PLNfit_fixedcov$clone()

Method new(): Initialize a PLNfit model

Usage:
PLNfit_fixedcov$new(responses, covariates, offsets, weights, formula, control)

Arguments:

responses the matrix of responses (called Y in the model). Will usually be extracted from the
corresponding field in PLNfamily-class

covariates design matrix (called X in the model). Will usually be extracted from the corre-
sponding field in PLNfamily-class

34 PLNfit_fixedcov

offsets offset matrix (called O in the model). Will usually be extracted from the corresponding
field in PLNfamily-class

weights an optional vector of observation weights to be used in the fitting process.
formula model formula used for fitting, extracted from the formula in the upper-level call
control a list for controlling the optimization. See details.

Method optimize(): Call to the NLopt or TORCH optimizer and update of the relevant fields

Usage:
PLNfit_fixedcov$optimize(responses, covariates, offsets, weights, config)

Arguments:
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily-class
covariates design matrix (called X in the model). Will usually be extracted from the corre-

sponding field in PLNfamily-class
offsets offset matrix (called O in the model). Will usually be extracted from the corresponding

field in PLNfamily-class
weights an optional vector of observation weights to be used in the fitting process.
config part of the control argument which configures the optimizer

Method postTreatment(): Update R2, fisher and std_err fields after optimization

Usage:
PLNfit_fixedcov$postTreatment(
responses,
covariates,
offsets,
weights = rep(1, nrow(responses)),
config_post,
config_optim,
nullModel = NULL

)

Arguments:
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily-class
covariates design matrix (called X in the model). Will usually be extracted from the corre-

sponding field in PLNfamily-class
offsets offset matrix (called O in the model). Will usually be extracted from the corresponding

field in PLNfamily-class
weights an optional vector of observation weights to be used in the fitting process.
config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).

See details
config_optim a list for controlling the optimization parameter. See details
nullModel null model used for approximate R2 computations. Defaults to a GLM model with

same design matrix but not latent variable.

Details: The list of parameters config controls the post-treatment processing, with the follow-
ing entries:

PLNfit_spherical 35

• trace integer for verbosity. should be > 1 to see output in post-treatments
• jackknife boolean indicating whether jackknife should be performed to evaluate bias and

variance of the model parameters. Default is FALSE.
• bootstrap integer indicating the number of bootstrap resamples generated to evaluate the

variance of the model parameters. Default is 0 (inactivated).
• variational_var boolean indicating whether variational Fisher information matrix should be

computed to estimate the variance of the model parameters (highly underestimated). Default
is FALSE.

• rsquared boolean indicating whether approximation of R2 based on deviance should be
computed. Default is TRUE

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNfit_fixedcov$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1, data = trichoptera)
class(myPLN)
print(myPLN)

End(Not run)

PLNfit_spherical An R6 Class to represent a PLNfit in a standard, general framework,
with spherical residual covariance

Description

An R6 Class to represent a PLNfit in a standard, general framework, with spherical residual covari-
ance

An R6 Class to represent a PLNfit in a standard, general framework, with spherical residual covari-
ance

Super class

PLNmodels::PLNfit -> PLNfit_spherical

Active bindings

nb_param number of parameters in the current PLN model

vcov_model character: the model used for the residual covariance

36 PLNLDA

Methods

Public methods:

• PLNfit_spherical$new()

• PLNfit_spherical$clone()

Method new(): Initialize a PLNfit model

Usage:
PLNfit_spherical$new(responses, covariates, offsets, weights, formula, control)

Arguments:

responses the matrix of responses (called Y in the model). Will usually be extracted from the
corresponding field in PLNfamily-class

covariates design matrix (called X in the model). Will usually be extracted from the corre-
sponding field in PLNfamily-class

offsets offset matrix (called O in the model). Will usually be extracted from the corresponding
field in PLNfamily-class

weights an optional vector of observation weights to be used in the fitting process.
formula model formula used for fitting, extracted from the formula in the upper-level call
control a list for controlling the optimization. See details.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNfit_spherical$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1, data = trichoptera)
class(myPLN)
print(myPLN)

End(Not run)

PLNLDA Poisson lognormal model towards Linear Discriminant Analysis

Description

Fit the Poisson lognormal for LDA with a variational algorithm. Use the (g)lm syntax for model
specification (covariates, offsets).

PLNLDA 37

Usage

PLNLDA(formula, data, subset, weights, grouping, control = PLN_param())

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which lm is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of observation weights to be used in the fitting process.

grouping a factor specifying the class of each observation used for discriminant analysis.

control a list-like structure for controlling the optimization, with default generated by
PLN_param(). See the associated documentation

Details

The parameter control is a list controlling the optimization with the following entries:

• "covariance" character setting the model for the covariance matrix. Either "full" or "spherical".
Default is "full".

• "trace" integer for verbosity.

• "inception" Set up the initialization. By default, the model is initialized with a multivariate lin-
ear model applied on log-transformed data. However, the user can provide a PLNfit (typically
obtained from a previous fit), which often speed up the inference.

• "ftol_rel" stop when an optimization step changes the objective function by less than ftol
multiplied by the absolute value of the parameter. Default is 1e-8

• "ftol_abs" stop when an optimization step changes the objective function by less than ftol
multiplied by the absolute value of the parameter. Default is 0

• "xtol_rel" stop when an optimization step changes every parameters by less than xtol multi-
plied by the absolute value of the parameter. Default is 1e-6

• "xtol_abs" stop when an optimization step changes every parameters by less than xtol multi-
plied by the absolute value of the parameter. Default is 0

• "maxeval" stop when the number of iteration exceeds maxeval. Default is 10000

• "maxtime" stop when the optimization time (in seconds) exceeds maxtime. Default is -1 (no
restriction)

• "algorithm" the optimization method used by NLOPT among LD type, i.e. "CCSAQ", "MMA",
"LBFGS", "VAR1", "VAR2". See NLOPT documentation for further details. Default is "CC-
SAQ".

Value

an R6 object with class PLNLDAfit()

38 PLNLDAfit

See Also

The class PLNLDAfit

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ 1, grouping = Group, data = trichoptera)

PLNLDAfit An R6 Class to represent a PLNfit in a LDA framework

Description

The function PLNLDA() produces an instance of an object with class PLNLDAfit.

This class comes with a set of methods, some of them being useful for the user: See the docu-
mentation for the methods inherited by PLNfit(), the plot() method for LDA visualization and
predict() method for prediction

Super class

PLNmodels::PLNfit -> PLNLDAfit

Active bindings

rank the dimension of the current model

nb_param number of parameters in the current PLN model

model_par a list with the matrices associated with the estimated parameters of the PLN model: B
(covariates), Sigma (latent covariance), C (latent loadings), P (latent position) and Mu (group
means)

percent_var the percent of variance explained by each axis

corr_map a matrix of correlations to plot the correlation circles

scores a matrix of scores to plot the individual factor maps

group_means a matrix of group mean vectors in the latent space.

Methods

Public methods:
• PLNLDAfit$new()

• PLNLDAfit$optimize()

• PLNLDAfit$postTreatment()

• PLNLDAfit$setVisualization()

• PLNLDAfit$plot_individual_map()

• PLNLDAfit$plot_correlation_map()

PLNLDAfit 39

• PLNLDAfit$plot_LDA()

• PLNLDAfit$predict()

• PLNLDAfit$show()

• PLNLDAfit$clone()

Method new(): Initialize a PLNLDAfit object

Usage:
PLNLDAfit$new(
grouping,
responses,
covariates,
offsets,
weights,
formula,
control

)

Arguments:
grouping a factor specifying the class of each observation used for discriminant analysis.
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily-class
covariates design matrix (called X in the model). Will usually be extracted from the corre-

sponding field in PLNfamily-class
offsets offset matrix (called O in the model). Will usually be extracted from the corresponding

field in PLNfamily-class
weights an optional vector of observation weights to be used in the fitting process.
formula model formula used for fitting, extracted from the formula in the upper-level call
control list controlling the optimization and the model

Method optimize(): Compute group means and axis of the LDA (noted B in the model) in the
latent space, update corresponding fields

Usage:
PLNLDAfit$optimize(grouping, responses, covariates, offsets, weights, config)

Arguments:
grouping a factor specifying the class of each observation used for discriminant analysis.
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily-class
covariates design matrix. Automatically built from the covariates and the formula from the

call
offsets offset matrix (called O in the model). Will usually be extracted from the corresponding

field in PLNfamily-class
weights an optional vector of observation weights to be used in the fitting process.
config list controlling the optimization
X Abundance matrix.

Method postTreatment(): Update R2, fisher and std_err fields and visualization

40 PLNLDAfit

Usage:
PLNLDAfit$postTreatment(
grouping,
responses,
covariates,
offsets,
config_post,
config_optim

)

Arguments:
grouping a factor specifying the class of each observation used for discriminant analysis.
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily-class
covariates design matrix (called X in the model). Will usually be extracted from the corre-

sponding field in PLNfamily-class
offsets offset matrix (called O in the model). Will usually be extracted from the corresponding

field in PLNfamily-class
config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).
config_optim list controlling the optimization parameters

Method setVisualization(): Compute LDA scores in the latent space and update correspond-
ing fields.

Usage:
PLNLDAfit$setVisualization(scale.unit = FALSE)

Arguments:
scale.unit Logical. Should LDA scores be rescaled to have unit variance

Method plot_individual_map(): Plot the factorial map of the LDA

Usage:
PLNLDAfit$plot_individual_map(
axes = 1:min(2, self$rank),
main = "Individual Factor Map",
plot = TRUE

)

Arguments:
axes numeric, the axes to use for the plot when map = "individual" or "variable". Default it

c(1,min(rank))
main character. A title for the single plot (individual or variable factor map). If NULL (the

default), an hopefully appropriate title will be used.
plot logical. Should the plot be displayed or sent back as ggplot object

Returns: a ggplot graphic

Method plot_correlation_map(): Plot the correlation circle of a specified axis for a PLNLDAfit
object

Usage:

PLNLDAfit 41

PLNLDAfit$plot_correlation_map(
axes = 1:min(2, self$rank),
main = "Variable Factor Map",
cols = "default",
plot = TRUE

)

Arguments:

axes numeric, the axes to use for the plot when map = "individual" or "variable". Default it
c(1,min(rank))

main character. A title for the single plot (individual or variable factor map). If NULL (the
default), an hopefully appropriate title will be used.

cols a character, factor or numeric to define the color associated with the variables. By default,
all variables receive the default color of the current palette.

plot logical. Should the plot be displayed or sent back as ggplot object

Returns: a ggplot graphic

Method plot_LDA(): Plot a summary of the PLNLDAfit object

Usage:
PLNLDAfit$plot_LDA(
nb_axes = min(3, self$rank),
var_cols = "default",
plot = TRUE

)

Arguments:

nb_axes scalar: the number of axes to be considered when map = "both". The default is
min(3,rank).

var_cols a character, factor or numeric to define the color associated with the variables. By
default, all variables receive the default color of the current palette.

plot logical. Should the plot be displayed or sent back as ggplot object

Returns: a grob object

Method predict(): Predict group of new samples

Usage:
PLNLDAfit$predict(
newdata,
type = c("posterior", "response", "scores"),
scale = c("log", "prob"),
prior = NULL,
control = PLN_param(backend = "nlopt"),
envir = parent.frame()

)

Arguments:

newdata A data frame in which to look for variables, offsets and counts with which to predict.

42 PLNLDAfit_diagonal

type The type of prediction required. The default are posterior probabilities for each group (in
either unnormalized log-scale or natural probabilities, see "scale" for details), "response" is
the group with maximal posterior probability and "scores" is the average score along each
separation axis in the latent space, with weights equal to the posterior probabilities.

scale The scale used for the posterior probability. Either log-scale ("log", default) or natural
probabilities summing up to 1 ("prob").

prior User-specified prior group probabilities in the new data. If NULL (default), prior prob-
abilities are computed from the learning set.

control a list for controlling the optimization. See PLN() for details.
envir Environment in which the prediction is evaluated

Method show(): User friendly print method

Usage:
PLNLDAfit$show()

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNLDAfit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

The function PLNLDA.

Examples

Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ 1, grouping = Group, data = trichoptera)
class(myPLNLDA)
print(myPLNLDA)

End(Not run)

PLNLDAfit_diagonal An R6 Class to represent a PLNfit in a LDA framework with diagonal
covariance

Description

The function PLNLDA() produces an instance of an object with class PLNLDAfit.

This class comes with a set of methods, some of them being useful for the user: See the docu-
mentation for the methods inherited by PLNfit(), the plot() method for LDA visualization and
predict() method for prediction

PLNLDAfit_diagonal 43

Super classes

PLNmodels::PLNfit -> PLNmodels::PLNLDAfit -> PLNLDAfit_diagonal

Active bindings

vcov_model character: the model used for the residual covariance

nb_param number of parameters in the current PLN model

Methods

Public methods:

• PLNLDAfit_diagonal$new()

• PLNLDAfit_diagonal$clone()

Method new(): Initialize a PLNfit model

Usage:
PLNLDAfit_diagonal$new(
grouping,
responses,
covariates,
offsets,
weights,
formula,
control

)

Arguments:

grouping a factor specifying the class of each observation used for discriminant analysis.
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily-class
covariates design matrix (called X in the model). Will usually be extracted from the corre-

sponding field in PLNfamily-class
offsets offset matrix (called O in the model). Will usually be extracted from the corresponding

field in PLNfamily-class
weights an optional vector of observation weights to be used in the fitting process.
formula model formula used for fitting, extracted from the formula in the upper-level call
control a list for controlling the optimization. See details.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNLDAfit_diagonal$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

44 PLNLDA_param

Examples

Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ 1, data = trichoptera, control = PLN_param(covariance = "diagonal"))
class(myPLNLDA)
print(myPLNLDA)

End(Not run)

PLNLDA_param Control of a PLNLDA fit

Description

Helper to define list of parameters to control the PLNLDA fit. All arguments have defaults.

Usage

PLNLDA_param(
backend = c("nlopt", "torch"),
trace = 1,
covariance = c("full", "diagonal", "spherical"),
config_post = list(),
config_optim = list(),
inception = NULL

)

Arguments

backend optimization back used, either "nlopt" or "torch". Default is "nlopt"

trace a integer for verbosity.

covariance character setting the model for the covariance matrix. Either "full", "diagonal"
or "spherical". Default is "full".

config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).
See details

config_optim a list for controlling the optimizer (either "nlopt" or "torch" backend). See de-
tails

inception Set up the parameters initialization: by default, the model is initialized with a
multivariate linear model applied on log-transformed data, and with the same
formula as the one provided by the user. However, the user can provide a PLNfit
(typically obtained from a previous fit), which sometimes speeds up the infer-
ence.

PLNLDA_param 45

Details

The list of parameters config_optim controls the optimizers. When "nlopt" is chosen the following
entries are relevant

• "algorithm" the optimization method used by NLOPT among LD type, e.g. "CCSAQ", "MMA",
"LBFGS". See NLOPT documentation for further details. Default is "CCSAQ".

• "maxeval" stop when the number of iteration exceeds maxeval. Default is 10000

• "ftol_rel" stop when an optimization step changes the objective function by less than ftol
multiplied by the absolute value of the parameter. Default is 1e-8

• "xtol_rel" stop when an optimization step changes every parameters by less than xtol multi-
plied by the absolute value of the parameter. Default is 1e-6

• "ftol_abs" stop when an optimization step changes the objective function by less than ftol_abs.
Default is 0.0 (disabled)

• "xtol_abs" stop when an optimization step changes every parameters by less than xtol_abs.
Default is 0.0 (disabled)

• "maxtime" stop when the optimization time (in seconds) exceeds maxtime. Default is -1
(disabled)

When "torch" backend is used (only for PLN and PLNLDA for now), the following entries are
relevant:

• "algorithm" the optimizer used by torch among RPROP (default), RMSPROP, ADAM and
ADAGRAD

• "maxeval" stop when the number of iteration exceeds maxeval. Default is 10 000

• "numepoch" stop training once this number of epochs exceeds numepoch. Set to -1 to enable
infinite training. Default is 1 000

• "num_batch" number of batches to use during training. Defaults to 1 (use full dataset at each
epoch)

• "ftol_rel" stop when an optimization step changes the objective function by less than ftol
multiplied by the absolute value of the parameter. Default is 1e-8

• "xtol_rel" stop when an optimization step changes every parameters by less than xtol multi-
plied by the absolute value of the parameter. Default is 1e-6

• "lr" learning rate. Default is 0.1.

• "momentum" momentum factor. Default is 0 (no momentum). Only used in RMSPROP

• "weight_decay" Weight decay penalty. Default is 0 (no decay). Not used in RPROP

• "step_sizes" pair of minimal (default: 1e-6) and maximal (default: 50) allowed step sizes.
Only used in RPROP

• "etas" pair of multiplicative increase and decrease factors. Default is (0.5, 1.2). Only used in
RPROP

• "centered" if TRUE, compute the centered RMSProp where the gradient is normalized by
an estimation of its variance weight_decay (L2 penalty). Default to FALSE. Only used in
RMSPROP

46 PLNmixture

The list of parameters config_post controls the post-treatment processing (for most PLN*() func-
tions), with the following entries (defaults may vary depending on the specific function, check
config_post_default_* for defaults values):

• jackknife boolean indicating whether jackknife should be performed to evaluate bias and vari-
ance of the model parameters. Default is FALSE.

• bootstrap integer indicating the number of bootstrap resamples generated to evaluate the vari-
ance of the model parameters. Default is 0 (inactivated).

• variational_var boolean indicating whether variational Fisher information matrix should be
computed to estimate the variance of the model parameters (highly underestimated). Default
is FALSE.

• sandwich_var boolean indicating whether sandwich estimation should be used to estimate the
variance of the model parameters (highly underestimated). Default is FALSE.

• rsquared boolean indicating whether approximation of R2 based on deviance should be com-
puted. Default is TRUE

Value

list of parameters configuring the fit.

PLNmixture Poisson lognormal mixture model

Description

Fit the mixture variants of the Poisson lognormal with a variational algorithm. Use the (g)lm syntax
for model specification (covariates, offsets).

Usage

PLNmixture(formula, data, subset, clusters = 1:5, control = PLNmixture_param())

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which lm is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

clusters a vector of integer containing the successive number of clusters (or components)
to be considered

control a list-like structure for controlling the optimization, with default generated by
PLNmixture_param(). See the associated documentation for details.

PLNmixturefamily 47

Value

an R6 object with class PLNmixturefamily, which contains a collection of models with class
PLNmixturefit

See Also

The classes PLNmixturefamily, PLNmixturefit and PLNmixture_param()

Examples

Use future to dispatch the computations on 2 workers
Not run:
future::plan("multisession", workers = 2)

End(Not run)

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myMixtures <- PLNmixture(Abundance ~ 1 + offset(log(Offset)), clusters = 1:4, data = trichoptera,

control = PLNmixture_param(smoothing = 'none'))

Shut down parallel workers
Not run:
future::plan("sequential")

End(Not run)

PLNmixturefamily An R6 Class to represent a collection of PLNmixturefit

Description

The function PLNmixture() produces an instance of this class.

This class comes with a set of methods, some of them being useful for the user: See the documen-
tation for getBestModel(), getModel() and plot().

Super class

PLNmodels::PLNfamily -> PLNmixturefamily

Active bindings

clusters vector indicating the number of clusters considered is the successively fitted models

48 PLNmixturefamily

Methods

Public methods:
• PLNmixturefamily$new()

• PLNmixturefamily$optimize()

• PLNmixturefamily$smooth()

• PLNmixturefamily$plot()

• PLNmixturefamily$plot_objective()

• PLNmixturefamily$getBestModel()

• PLNmixturefamily$show()

• PLNmixturefamily$print()

• PLNmixturefamily$clone()

Method new(): helper function for forward smoothing: split a group
Initialize all models in the collection.

Usage:
PLNmixturefamily$new(
clusters,
responses,
covariates,
offsets,
formula,
control

)

Arguments:
clusters the dimensions of the successively fitted models
responses the matrix of responses common to every models
covariates the matrix of covariates common to every models
offsets the matrix of offsets common to every models
formula model formula used for fitting, extracted from the formula in the upper-level call
control a list for controlling the optimization. See details.
control a list for controlling the optimization. See details.

Method optimize(): Call to the optimizer on all models of the collection

Usage:
PLNmixturefamily$optimize(config)

Arguments:
config a list for controlling the optimization

Method smooth(): function to restart clustering to avoid local minima by smoothing the log-
likelihood values as a function of the number of clusters

Usage:
PLNmixturefamily$smooth(control)

Arguments:

PLNmixturefamily 49

control a list to control the smoothing process

Method plot(): Lineplot of selected criteria for all models in the collection

Usage:
PLNmixturefamily$plot(criteria = c("loglik", "BIC", "ICL"), reverse = FALSE)

Arguments:
criteria A valid model selection criteria for the collection of models. Any of "loglik", "BIC"

or "ICL" (all).
reverse A logical indicating whether to plot the value of the criteria in the "natural" direction

(loglik - 0.5 penalty) or in the "reverse" direction (-2 loglik + penalty). Default to FALSE,
i.e use the natural direction, on the same scale as the log-likelihood..

Returns: A ggplot2 object

Method plot_objective(): Plot objective value of the optimization problem along the penalty
path

Usage:
PLNmixturefamily$plot_objective()

Returns: a ggplot graph

Method getBestModel(): Extract best model in the collection

Usage:
PLNmixturefamily$getBestModel(crit = c("BIC", "ICL", "loglik"))

Arguments:
crit a character for the criterion used to performed the selection. Either "BIC", "ICL" or

"loglik". Default is ICL

Returns: a PLNmixturefit object

Method show(): User friendly print method

Usage:
PLNmixturefamily$show()

Method print(): User friendly print method

Usage:
PLNmixturefamily$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNmixturefamily$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

The function PLNmixture, the class PLNmixturefit

50 PLNmixturefit

PLNmixturefit An R6 Class to represent a PLNfit in a mixture framework

Description

The function PLNmixture produces a collection of models which are instances of object with class
PLNmixturefit. A PLNmixturefit (say, with k components) is itself a collection of k PLNfit.

This class comes with a set of methods, some of them being useful for the user: See the documen-
tation for ...

Active bindings

n number of samples

p number of dimensions of the latent space

k number of components

d number of covariates

components components of the mixture (PLNfits)

latent a matrix: values of the latent vector (Z in the model)

latent_pos a matrix: values of the latent position vector (Z) without covariates effects or offset

posteriorProb matrix ofposterior probability for cluster belonging

memberships vector for cluster index

mixtureParam vector of cluster proportions

optim_par a list with parameters useful for monitoring the optimization

nb_param number of parameters in the current PLN model

entropy_clustering Entropy of the variational distribution of the cluster (multinomial)

entropy_latent Entropy of the variational distribution of the latent vector (Gaussian)

entropy Full entropy of the variational distribution (latent vector + clustering)

loglik variational lower bound of the loglikelihood

loglik_vec element-wise variational lower bound of the loglikelihood

BIC variational lower bound of the BIC

ICL variational lower bound of the ICL (include entropy of both the clustering and latent distribu-
tions)

R_squared approximated goodness-of-fit criterion

criteria a vector with loglik, BIC, ICL, and number of parameters

model_par a list with the matrices of parameters found in the model (Theta, Sigma, Mu and Pi)

vcov_model character: the model used for the covariance (either "spherical", "diagonal" or "full")

fitted a matrix: fitted values of the observations (A in the model)

group_means a matrix of group mean vectors in the latent space.

PLNmixturefit 51

Methods

Public methods:

• PLNmixturefit$new()

• PLNmixturefit$optimize()

• PLNmixturefit$predict()

• PLNmixturefit$plot_clustering_data()

• PLNmixturefit$plot_clustering_pca()

• PLNmixturefit$postTreatment()

• PLNmixturefit$show()

• PLNmixturefit$print()

• PLNmixturefit$clone()

Method new(): Optimize a the
Initialize a PLNmixturefit model

Usage:
PLNmixturefit$new(
responses,
covariates,
offsets,
posteriorProb,
formula,
control

)

Arguments:

responses the matrix of responses common to every models
covariates the matrix of covariates common to every models
offsets the matrix of offsets common to every models
posteriorProb matrix ofposterior probability for cluster belonging
formula model formula used for fitting, extracted from the formula in the upper-level call
control a list for controlling the optimization.

Method optimize(): Optimize a PLNmixturefit model

Usage:
PLNmixturefit$optimize(responses, covariates, offsets, config)

Arguments:

responses the matrix of responses common to every models
covariates the matrix of covariates common to every models
offsets the matrix of offsets common to every models
config a list for controlling the optimization

Method predict(): Predict group of new samples

Usage:

52 PLNmixturefit

PLNmixturefit$predict(
newdata,
type = c("posterior", "response", "position"),
prior = matrix(rep(1/self$k, self$k), nrow(newdata), self$k, byrow = TRUE),
control = PLNmixture_param(),
envir = parent.frame()

)

Arguments:

newdata A data frame in which to look for variables, offsets and counts with which to predict.
type The type of prediction required. The default posterior are posterior probabilities for

each group , response is the group with maximal posterior probability and latent is the
averaged latent coordinate (without offset and nor covariate effects), with weights equal to
the posterior probabilities.

prior User-specified prior group probabilities in the new data. The default uses a uniform
prior.

control a list-like structure for controlling the fit. See PLNmixture_param() for details.
envir Environment in which the prediction is evaluated

Method plot_clustering_data(): Plot the matrix of expected mean counts (without offsets,
without covariate effects) reordered according the inferred clustering

Usage:
PLNmixturefit$plot_clustering_data(
main = "Expected counts reorder by clustering",
plot = TRUE,
log_scale = TRUE

)

Arguments:

main character. A title for the plot. An hopefully appropriate title will be used by default.
plot logical. Should the plot be displayed or sent back as ggplot object
log_scale logical. Should the color scale values be log-transform before plotting? Default is

TRUE.

Returns: a ggplot graphic

Method plot_clustering_pca(): Plot the individual map of a PCA performed on the latent
coordinates, where individuals are colored according to the memberships

Usage:
PLNmixturefit$plot_clustering_pca(
main = "Clustering labels in Individual Factor Map",
plot = TRUE

)

Arguments:

main character. A title for the plot. An hopefully appropriate title will be used by default.
plot logical. Should the plot be displayed or sent back as ggplot object

Returns: a ggplot graphic

PLNmixturefit 53

Method postTreatment(): Update fields after optimization

Usage:

PLNmixturefit$postTreatment(
responses,
covariates,
offsets,
weights,
config_post,
config_optim,
nullModel

)

Arguments:

responses the matrix of responses common to every models

covariates the matrix of covariates common to every models

offsets the matrix of offsets common to every models

weights an optional vector of observation weights to be used in the fitting process.

config_post a list for controlling the post-treatment

config_optim a list for controlling the optimization during the post-treatment computations

nullModel null model used for approximate R2 computations. Defaults to a GLM model with
same design matrix but not latent variable.

Method show(): User friendly print method

Usage:

PLNmixturefit$show()

Method print(): User friendly print method

Usage:

PLNmixturefit$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:

PLNmixturefit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

The function PLNmixture, the class PLNmixturefamily

54 PLNmixture_param

PLNmixture_param Control of a PLNmixture fit

Description

Helper to define list of parameters to control the PLNmixture fit. All arguments have defaults.

Usage

PLNmixture_param(
backend = "nlopt",
trace = 1,
covariance = "spherical",
init_cl = "kmeans",
smoothing = "both",
config_optim = list(),
config_post = list(),
inception = NULL

)

Arguments

backend optimization back used, either "nlopt" or "torch". Default is "nlopt"

trace a integer for verbosity.

covariance character setting the model for the covariance matrices of the mixture compo-
nents. Either "full", "diagonal" or "spherical". Default is "spherical".

init_cl The initial clustering to apply. Either, ’kmeans’, CAH’ or a user defined clus-
tering given as a list of clusterings, the size of which is equal to the number of
clusters considered. Default is ’kmeans’.

smoothing The smoothing to apply. Either, ’none’, forward’, ’backward’ or ’both’. Default
is ’both’.

config_optim a list for controlling the optimizer (either "nlopt" or "torch" backend). See de-
tails

config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).

inception Set up the parameters initialization: by default, the model is initialized with a
multivariate linear model applied on log-transformed data, and with the same
formula as the one provided by the user. However, the user can provide a PLNfit
(typically obtained from a previous fit), which sometimes speeds up the infer-
ence.

Details

See PLN_param() for a full description of the generic optimization parameters. PLNmixture_param()
also has additional parameters controlling the optimization due the inner-outer loop structure of the
optimizer:

PLNnetwork 55

• "ftol_out" outer solver stops when an optimization step changes the objective function by less
than xtol multiplied by the absolute value of the parameter. Default is 1e-6

• "maxit_out" outer solver stops when the number of iteration exceeds maxit_out. Default is 50
• "it_smoothing" number of the iterations of the smoothing procedure. Default is 1.

Value

list of parameters configuring the fit.

See Also

PLN_param()

PLNnetwork Sparse Poisson lognormal model for network inference

Description

Perform sparse inverse covariance estimation for the Zero Inflated Poisson lognormal model using
a variational algorithm. Iterate over a range of logarithmically spaced sparsity parameter values.
Use the (g)lm syntax to specify the model (including covariates and offsets).

Usage

PLNnetwork(
formula,
data,
subset,
weights,
penalties = NULL,
control = PLNnetwork_param()

)

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.
data an optional data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which lm is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of observation weights to be used in the fitting process.
penalties an optional vector of positive real number controlling the level of sparsity of

the underlying network. if NULL (the default), will be set internally. See
PLNnetwork_param() for additional tuning of the penalty.

control a list-like structure for controlling the optimization, with default generated by
PLNnetwork_param(). See the corresponding documentation for details;

56 PLNnetworkfamily

Value

an R6 object with class PLNnetworkfamily, which contains a collection of models with class
PLNnetworkfit

See Also

The classes PLNnetworkfamily and PLNnetworkfit, and the and the configuration function PLNnetwork_param().

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)

PLNnetworkfamily An R6 Class to represent a collection of PLNnetworkfits

Description

The function PLNnetwork() produces an instance of this class.

This class comes with a set of methods mostly used to compare network fits (in terms of goodness
of fit) or extract one from the family (based on penalty parameter and/or goodness of it). See the
documentation for getBestModel(), getModel() and plot() for the user-facing ones.

Super classes

PLNmodels::PLNfamily -> PLNmodels::Networkfamily -> PLNnetworkfamily

Methods

Public methods:
• PLNnetworkfamily$new()

• PLNnetworkfamily$stability_selection()

• PLNnetworkfamily$clone()

Method new(): Initialize all models in the collection

Usage:
PLNnetworkfamily$new(penalties, data, control)

Arguments:

penalties a vector of positive real number controlling the level of sparsity of the underlying
network.

data a named list used internally to carry the data matrices
control a list for controlling the optimization.

Returns: Update current PLNnetworkfit with smart starting values

PLNnetworkfit 57

Method stability_selection(): Compute the stability path by stability selection

Usage:
PLNnetworkfamily$stability_selection(
subsamples = NULL,
control = PLNnetwork_param()

)

Arguments:

subsamples a list of vectors describing the subsamples. The number of vectors (or list length)
determines the number of subsamples used in the stability selection. Automatically set to
20 subsamples with size 10*sqrt(n) if n >= 144 and 0.8*n otherwise following Liu et al.
(2010) recommendations.

control a list controlling the main optimization process in each call to PLNnetwork(). See
PLNnetwork() and PLN_param() for details.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNnetworkfamily$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

The function PLNnetwork(), the class PLNnetworkfit

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
class(fits)

PLNnetworkfit An R6 Class to represent a PLNfit in a sparse inverse covariance
framework

Description

The function PLNnetwork() produces a collection of models which are instances of object with
class PLNnetworkfit. This class comes with a set of methods, some of them being useful for the
user: See the documentation for plot() and methods inherited from PLNfit.

Super classes

PLNmodels::PLNfit -> PLNmodels::PLNfit_fixedcov -> PLNnetworkfit

58 PLNnetworkfit

Active bindings

vcov_model character: the model used for the residual covariance

penalty the global level of sparsity in the current model

penalty_weights a matrix of weights controlling the amount of penalty element-wise.

n_edges number of edges if the network (non null coefficient of the sparse precision matrix)

nb_param number of parameters in the current PLN model

pen_loglik variational lower bound of the l1-penalized loglikelihood

EBIC variational lower bound of the EBIC

density proportion of non-null edges in the network

criteria a vector with loglik, penalized loglik, BIC, EBIC, ICL, R_squared, number of parame-
ters, number of edges and graph density

Methods

Public methods:
• PLNnetworkfit$new()

• PLNnetworkfit$optimize()

• PLNnetworkfit$latent_network()

• PLNnetworkfit$plot_network()

• PLNnetworkfit$show()

• PLNnetworkfit$clone()

Method new(): Initialize a PLNnetworkfit object

Usage:
PLNnetworkfit$new(data, control)

Arguments:
data a named list used internally to carry the data matrices
control a list for controlling the optimization.

Method optimize(): Call to the C++ optimizer and update of the relevant fields

Usage:
PLNnetworkfit$optimize(data, config)

Arguments:
data a named list used internally to carry the data matrices
config a list for controlling the optimization

Method latent_network(): Extract interaction network in the latent space

Usage:
PLNnetworkfit$latent_network(type = c("partial_cor", "support", "precision"))

Arguments:
type edge value in the network. Can be "support" (binary edges), "precision" (coefficient of

the precision matrix) or "partial_cor" (partial correlation between species)

PLNnetworkfit 59

Returns: a square matrix of size PLNnetworkfit$n

Method plot_network(): plot the latent network.

Usage:
PLNnetworkfit$plot_network(
type = c("partial_cor", "support"),
output = c("igraph", "corrplot"),
edge.color = c("#F8766D", "#00BFC4"),
remove.isolated = FALSE,
node.labels = NULL,
layout = layout_in_circle,
plot = TRUE

)

Arguments:

type edge value in the network. Either "precision" (coefficient of the precision matrix) or
"partial_cor" (partial correlation between species).

output Output type. Either igraph (for the network) or corrplot (for the adjacency matrix)
edge.color Length 2 color vector. Color for positive/negative edges. Default is c("#F8766D",

"#00BFC4"). Only relevant for igraph output.
remove.isolated if TRUE, isolated node are remove before plotting. Only relevant for igraph

output.
node.labels vector of character. The labels of the nodes. The default will use the column

names ot the response matrix.
layout an optional igraph layout. Only relevant for igraph output.
plot logical. Should the final network be displayed or only sent back to the user. Default is

TRUE.

Method show(): User friendly print method

Usage:
PLNnetworkfit$show()

Method clone(): The objects of this class are cloneable with this method.

Usage:
PLNnetworkfit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

The function PLNnetwork(), the class PLNnetworkfamily

Examples

Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)

60 PLNnetwork_param

nets <- PLNnetwork(Abundance ~ 1, data = trichoptera)
myPLNnet <- getBestModel(nets)
class(myPLNnet)
print(myPLNnet)

End(Not run)

PLNnetwork_param Control of PLNnetwork fit

Description

Helper to define list of parameters to control the PLN fit. All arguments have defaults.

Usage

PLNnetwork_param(
backend = c("nlopt", "torch"),
inception_cov = c("full", "spherical", "diagonal"),
trace = 1,
n_penalties = 30,
min_ratio = 0.1,
penalize_diagonal = TRUE,
penalty_weights = NULL,
config_post = list(),
config_optim = list(),
inception = NULL

)

Arguments

backend optimization back used, either "nlopt" or "torch". Default is "nlopt"

inception_cov Covariance structure used for the inception model used to initialize the PLN-
family. Defaults to "full" and can be constrained to "diagonal" and "spherical".

trace a integer for verbosity.

n_penalties an integer that specifies the number of values for the penalty grid when internally
generated. Ignored when penalties is non NULL

min_ratio the penalty grid ranges from the minimal value that produces a sparse to this
value multiplied by min_ratio. Default is 0.1.

penalize_diagonal

boolean: should the diagonal terms be penalized in the graphical-Lasso? Default
is TRUE

penalty_weights

either a single or a list of p x p matrix of weights (default: all weights equal to
1) to adapt the amount of shrinkage to each pairs of node. Must be symmetric
with positive values.

PLNPCA 61

config_post a list for controlling the post-treatment (optional bootstrap, jackknife, R2, etc).

config_optim a list for controlling the optimizer (either "nlopt" or "torch" backend). See de-
tails

inception Set up the parameters initialization: by default, the model is initialized with a
multivariate linear model applied on log-transformed data, and with the same
formula as the one provided by the user. However, the user can provide a PLNfit
(typically obtained from a previous fit), which sometimes speeds up the infer-
ence.

Details

See PLN_param() for a full description of the generic optimization parameters. PLNnetwork_param()
also has two additional parameters controlling the optimization due the inner-outer loop structure
of the optimizer:

• "ftol_out" outer solver stops when an optimization step changes the objective function by less
than ftol multiplied by the absolute value of the parameter. Default is 1e-6

• "maxit_out" outer solver stops when the number of iteration exceeds maxit_out. Default is 50

Value

list of parameters configuring the fit.

See Also

PLN_param()

PLNPCA Poisson lognormal model towards Principal Component Analysis

Description

Fit the PCA variants of the Poisson lognormal with a variational algorithm. Use the (g)lm syntax
for model specification (covariates, offsets).

Usage

PLNPCA(formula, data, subset, weights, ranks = 1:5, control = PLNPCA_param())

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which lm is called.

62 PLNPCAfamily

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of observation weights to be used in the fitting process.

ranks a vector of integer containing the successive ranks (or number of axes to be
considered)

control a list-like structure for controlling the optimization, with default generated by
PLNPCA_param(). See the associated documentation. for details.

Value

an R6 object with class PLNPCAfamily, which contains a collection of models with class PLNPCAfit

See Also

The classes PLNPCAfamily and PLNPCAfit, and the configuration function PLNPCA_param().

Examples

#' ## Use future to dispatch the computations on 2 workers
Not run:
future::plan("multisession", workers = 2)

End(Not run)

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPCA <- PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = trichoptera, ranks = 1:5)

Shut down parallel workers
Not run:
future::plan("sequential")

End(Not run)

PLNPCAfamily An R6 Class to represent a collection of PLNPCAfit

Description

The function PLNPCA() produces an instance of this class.

This class comes with a set of methods, some of them being useful for the user: See the documen-
tation for getBestModel(), getModel() and plot().

Super class

PLNmodels::PLNfamily -> PLNPCAfamily

PLNPCAfamily 63

Active bindings

ranks the dimensions of the successively fitted models

Methods

Public methods:
• PLNPCAfamily$new()

• PLNPCAfamily$optimize()

• PLNPCAfamily$getModel()

• PLNPCAfamily$getBestModel()

• PLNPCAfamily$plot()

• PLNPCAfamily$show()

• PLNPCAfamily$clone()

Method new(): Initialize all models in the collection.

Usage:
PLNPCAfamily$new(
ranks,
responses,
covariates,
offsets,
weights,
formula,
control

)

Arguments:
ranks the dimensions of the successively fitted models
responses the matrix of responses common to every models
covariates the matrix of covariates common to every models
offsets the matrix of offsets common to every models
weights the vector of observation weights
formula model formula used for fitting, extracted from the formula in the upper-level call
control list controlling the optimization and the model

Method optimize(): Call to the C++ optimizer on all models of the collection

Usage:
PLNPCAfamily$optimize(config)

Arguments:
config list controlling the optimization.

Method getModel(): Extract model from collection and add "PCA" class for compatibility with
factoextra::fviz()

Usage:
PLNPCAfamily$getModel(var, index = NULL)

64 PLNPCAfamily

Arguments:
var value of the parameter (rank for PLNPCA, sparsity for PLNnetwork) that identifies the

model to be extracted from the collection. If no exact match is found, the model with
closest parameter value is returned with a warning.

index Integer index of the model to be returned. Only the first value is taken into account.

Returns: a PLNPCAfit object

Method getBestModel(): Extract best model in the collection
Usage:
PLNPCAfamily$getBestModel(crit = c("ICL", "BIC"))

Arguments:
crit a character for the criterion used to performed the selection. Either "ICL", "BIC". Default

is ICL

Returns: a PLNPCAfit object

Method plot(): Lineplot of selected criteria for all models in the collection
Usage:
PLNPCAfamily$plot(criteria = c("loglik", "BIC", "ICL"), reverse = FALSE)

Arguments:
criteria A valid model selection criteria for the collection of models. Any of "loglik", "BIC"

or "ICL" (all).
reverse A logical indicating whether to plot the value of the criteria in the "natural" direction

(loglik - penalty) or in the "reverse" direction (-2 loglik + penalty). Default to FALSE, i.e
use the natural direction, on the same scale as the log-likelihood.

Returns: A ggplot2 object

Method show(): User friendly print method
Usage:
PLNPCAfamily$show()

Method clone(): The objects of this class are cloneable with this method.
Usage:
PLNPCAfamily$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

The function PLNPCA(), the class PLNPCAfit()

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPCAs <- PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = trichoptera, ranks = 1:5)
class(myPCAs)

PLNPCAfit 65

PLNPCAfit An R6 Class to represent a PLNfit in a PCA framework

Description

The function PLNPCA() produces a collection of models which are instances of object with class
PLNPCAfit. This class comes with a set of methods, some of them being useful for the user: See the
documentation for the methods inherited by PLNfit and the plot() methods for PCA visualization

Super class

PLNmodels::PLNfit -> PLNPCAfit

Active bindings

rank the dimension of the current model

vcov_model character: the model used for the residual covariance

nb_param number of parameters in the current PLN model

entropy entropy of the variational distribution

latent_pos a matrix: values of the latent position vector (Z) without covariates effects or offset

model_par a list with the matrices associated with the estimated parameters of the pPCA model:
B (covariates), Sigma (covariance), Omega (precision) and C (loadings)

percent_var the percent of variance explained by each axis

corr_circle a matrix of correlations to plot the correlation circles

scores a matrix of scores to plot the individual factor maps (a.k.a. principal components)

rotation a matrix of rotation of the latent space

eig description of the eigenvalues, similar to percent_var but for use with external methods

var a list of data frames with PCA results for the variables: coord (coordinates of the vari-
ables), cor (correlation between variables and dimensions), cos2 (Cosine of the variables)
and contrib (contributions of the variable to the axes)

ind a list of data frames with PCA results for the individuals: coord (coordinates of the individu-
als), cos2 (Cosine of the individuals), contrib (contributions of individuals to an axis inertia)
and dist (distance of individuals to the origin).

call Hacky binding for compatibility with factoextra functions

Methods

Public methods:
• PLNPCAfit$new()

• PLNPCAfit$update()

• PLNPCAfit$optimize()

• PLNPCAfit$optimize_vestep()

66 PLNPCAfit

• PLNPCAfit$project()

• PLNPCAfit$setVisualization()

• PLNPCAfit$postTreatment()

• PLNPCAfit$plot_individual_map()

• PLNPCAfit$plot_correlation_circle()

• PLNPCAfit$plot_PCA()

• PLNPCAfit$show()

• PLNPCAfit$clone()

Method new(): Initialize a PLNPCAfit object

Usage:
PLNPCAfit$new(rank, responses, covariates, offsets, weights, formula, control)

Arguments:

rank rank of the PCA (or equivalently, dimension of the latent space)
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily

covariates design matrix (called X in the model). Will usually be extracted from the corre-
sponding field in PLNfamily

offsets offset matrix (called O in the model). Will usually be extracted from the corresponding
field in PLNfamily

weights an optional vector of observation weights to be used in the fitting process.
formula model formula used for fitting, extracted from the formula in the upper-level call
control a list for controlling the optimization. See details.

Method update(): Update a PLNPCAfit object

Usage:
PLNPCAfit$update(
B = NA,
Sigma = NA,
Omega = NA,
C = NA,
M = NA,
S = NA,
Z = NA,
A = NA,
Ji = NA,
R2 = NA,
monitoring = NA

)

Arguments:

B matrix of regression matrix
Sigma variance-covariance matrix of the latent variables
Omega precision matrix of the latent variables. Inverse of Sigma.
C matrix of PCA loadings (in the latent space)

PLNPCAfit 67

M matrix of mean vectors for the variational approximation
S matrix of variance vectors for the variational approximation
Z matrix of latent vectors (includes covariates and offset effects)
A matrix of fitted values
Ji vector of variational lower bounds of the log-likelihoods (one value per sample)
R2 approximate R^2 goodness-of-fit criterion
monitoring a list with optimization monitoring quantities

Returns: Update the current PLNPCAfit object

Method optimize(): Call to the C++ optimizer and update of the relevant fields

Usage:
PLNPCAfit$optimize(responses, covariates, offsets, weights, config)

Arguments:
responses the matrix of responses (called Y in the model). Will usually be extracted from the

corresponding field in PLNfamily

covariates design matrix (called X in the model). Will usually be extracted from the corre-
sponding field in PLNfamily

offsets offset matrix (called O in the model). Will usually be extracted from the corresponding
field in PLNfamily

weights an optional vector of observation weights to be used in the fitting process.
config part of the control argument which configures the optimizer

Method optimize_vestep(): Result of one call to the VE step of the optimization procedure:
optimal variational parameters (M, S) and corresponding log likelihood values for fixed model
parameters (C, B). Intended to position new data in the latent space for further use with PCA.

Usage:
PLNPCAfit$optimize_vestep(
covariates,
offsets,
responses,
weights = rep(1, self$n),
control = PLNPCA_param(backend = "nlopt")

)

Arguments:
covariates design matrix (called X in the model). Will usually be extracted from the corre-

sponding field in PLNfamily

offsets offset matrix (called O in the model). Will usually be extracted from the corresponding
field in PLNfamily

responses the matrix of responses (called Y in the model). Will usually be extracted from the
corresponding field in PLNfamily

weights an optional vector of observation weights to be used in the fitting process.
control a list for controlling the optimization. See details.

Returns: A list with three components:
• the matrix M of variational means,

68 PLNPCAfit

• the matrix S2 of variational variances
• the vector log.lik of (variational) log-likelihood of each new observation

Method project(): Project new samples into the PCA space using one VE step

Usage:
PLNPCAfit$project(newdata, control = PLNPCA_param(), envir = parent.frame())

Arguments:

newdata A data frame in which to look for variables, offsets and counts with which to predict.
control a list for controlling the optimization. See PLN() for details.
envir Environment in which the projection is evaluated

Returns:
• the named matrix of scores for the newdata, expressed in the same coordinate system as
self$scores

Method setVisualization(): Compute PCA scores in the latent space and update correspond-
ing fields.

Usage:
PLNPCAfit$setVisualization(scale.unit = FALSE)

Arguments:

scale.unit Logical. Should PCA scores be rescaled to have unit variance

Method postTreatment(): Update R2, fisher, std_err fields and set up visualization

Usage:
PLNPCAfit$postTreatment(
responses,
covariates,
offsets,
weights,
config_post,
config_optim,
nullModel

)

Arguments:

responses the matrix of responses (called Y in the model). Will usually be extracted from the
corresponding field in PLNfamily

covariates design matrix (called X in the model). Will usually be extracted from the corre-
sponding field in PLNfamily

offsets offset matrix (called O in the model). Will usually be extracted from the corresponding
field in PLNfamily

weights an optional vector of observation weights to be used in the fitting process.
config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).

See details
config_optim a list for controlling the optimizer (either "nlopt" or "torch" backend). See

details

PLNPCAfit 69

nullModel null model used for approximate R2 computations. Defaults to a GLM model with
same design matrix but not latent variable.

Details: The list of parameters config_post controls the post-treatment processing, with the
following entries:

• jackknife boolean indicating whether jackknife should be performed to evaluate bias and
variance of the model parameters. Default is FALSE.

• bootstrap integer indicating the number of bootstrap resamples generated to evaluate the
variance of the model parameters. Default is 0 (inactivated).

• variational_var boolean indicating whether variational Fisher information matrix should be
computed to estimate the variance of the model parameters (highly underestimated). Default
is FALSE.

• rsquared boolean indicating whether approximation of R2 based on deviance should be
computed. Default is TRUE

• trace integer for verbosity. should be > 1 to see output in post-treatments

Method plot_individual_map(): Plot the factorial map of the PCA

Usage:
PLNPCAfit$plot_individual_map(
axes = 1:min(2, self$rank),
main = "Individual Factor Map",
plot = TRUE,
cols = "default"

)

Arguments:
axes numeric, the axes to use for the plot when map = "individual" or "variable". Default it

c(1,min(rank))
main character. A title for the single plot (individual or variable factor map). If NULL (the

default), an hopefully appropriate title will be used.
plot logical. Should the plot be displayed or sent back as ggplot object
cols a character, factor or numeric to define the color associated with the individuals. By

default, all individuals receive the default color of the current palette.

Returns: a ggplot graphic

Method plot_correlation_circle(): Plot the correlation circle of a specified axis for a
PLNLDAfit object

Usage:
PLNPCAfit$plot_correlation_circle(
axes = 1:min(2, self$rank),
main = "Variable Factor Map",
cols = "default",
plot = TRUE

)

Arguments:
axes numeric, the axes to use for the plot when map = "individual" or "variable". Default it

c(1,min(rank))

70 PLNPCAfit

main character. A title for the single plot (individual or variable factor map). If NULL (the
default), an hopefully appropriate title will be used.

cols a character, factor or numeric to define the color associated with the variables. By default,
all variables receive the default color of the current palette.

plot logical. Should the plot be displayed or sent back as ggplot object

Returns: a ggplot graphic

Method plot_PCA(): Plot a summary of the PLNPCAfit object
Usage:
PLNPCAfit$plot_PCA(
nb_axes = min(3, self$rank),
ind_cols = "ind_cols",
var_cols = "var_cols",
plot = TRUE

)

Arguments:
nb_axes scalar: the number of axes to be considered when map = "both". The default is

min(3,rank).
ind_cols a character, factor or numeric to define the color associated with the individuals. By

default, all variables receive the default color of the current palette.
var_cols a character, factor or numeric to define the color associated with the variables. By

default, all variables receive the default color of the current palette.
plot logical. Should the plot be displayed or sent back as ggplot object

Returns: a grob object

Method show(): User friendly print method
Usage:
PLNPCAfit$show()

Method clone(): The objects of this class are cloneable with this method.
Usage:
PLNPCAfit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

The function PLNPCA, the class PLNPCAfamily

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPCAs <- PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = trichoptera, ranks = 1:5)
myPCA <- getBestModel(myPCAs)
class(myPCA)
print(myPCA)

PLNPCA_param 71

PLNPCA_param Control of PLNPCA fit

Description

Helper to define list of parameters to control the PLNPCA fit. All arguments have defaults.

Usage

PLNPCA_param(
backend = "nlopt",
trace = 1,
config_optim = list(),
config_post = list(),
inception = NULL

)

Arguments

backend optimization back used, either "nlopt" or "torch". Default is "nlopt"

trace a integer for verbosity.

config_optim a list for controlling the optimizer (either "nlopt" or "torch" backend). See de-
tails

config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).
See details

inception Set up the parameters initialization: by default, the model is initialized with a
multivariate linear model applied on log-transformed data, and with the same
formula as the one provided by the user. However, the user can provide a PLNfit
(typically obtained from a previous fit), which sometimes speeds up the infer-
ence.

Details

The list of parameters config_optim controls the optimizers. When "nlopt" is chosen the following
entries are relevant

• "algorithm" the optimization method used by NLOPT among LD type, e.g. "CCSAQ", "MMA",
"LBFGS". See NLOPT documentation for further details. Default is "CCSAQ".

• "maxeval" stop when the number of iteration exceeds maxeval. Default is 10000

• "ftol_rel" stop when an optimization step changes the objective function by less than ftol
multiplied by the absolute value of the parameter. Default is 1e-8

• "xtol_rel" stop when an optimization step changes every parameters by less than xtol multi-
plied by the absolute value of the parameter. Default is 1e-6

• "ftol_abs" stop when an optimization step changes the objective function by less than ftol_abs.
Default is 0.0 (disabled)

72 PLNPCA_param

• "xtol_abs" stop when an optimization step changes every parameters by less than xtol_abs.
Default is 0.0 (disabled)

• "maxtime" stop when the optimization time (in seconds) exceeds maxtime. Default is -1
(disabled)

When "torch" backend is used (only for PLN and PLNLDA for now), the following entries are
relevant:

• "algorithm" the optimizer used by torch among RPROP (default), RMSPROP, ADAM and
ADAGRAD

• "maxeval" stop when the number of iteration exceeds maxeval. Default is 10 000

• "numepoch" stop training once this number of epochs exceeds numepoch. Set to -1 to enable
infinite training. Default is 1 000

• "num_batch" number of batches to use during training. Defaults to 1 (use full dataset at each
epoch)

• "ftol_rel" stop when an optimization step changes the objective function by less than ftol
multiplied by the absolute value of the parameter. Default is 1e-8

• "xtol_rel" stop when an optimization step changes every parameters by less than xtol multi-
plied by the absolute value of the parameter. Default is 1e-6

• "lr" learning rate. Default is 0.1.

• "momentum" momentum factor. Default is 0 (no momentum). Only used in RMSPROP

• "weight_decay" Weight decay penalty. Default is 0 (no decay). Not used in RPROP

• "step_sizes" pair of minimal (default: 1e-6) and maximal (default: 50) allowed step sizes.
Only used in RPROP

• "etas" pair of multiplicative increase and decrease factors. Default is (0.5, 1.2). Only used in
RPROP

• "centered" if TRUE, compute the centered RMSProp where the gradient is normalized by
an estimation of its variance weight_decay (L2 penalty). Default to FALSE. Only used in
RMSPROP

The list of parameters config_post controls the post-treatment processing (for most PLN*() func-
tions), with the following entries (defaults may vary depending on the specific function, check
config_post_default_* for defaults values):

• jackknife boolean indicating whether jackknife should be performed to evaluate bias and vari-
ance of the model parameters. Default is FALSE.

• bootstrap integer indicating the number of bootstrap resamples generated to evaluate the vari-
ance of the model parameters. Default is 0 (inactivated).

• variational_var boolean indicating whether variational Fisher information matrix should be
computed to estimate the variance of the model parameters (highly underestimated). Default
is FALSE.

• sandwich_var boolean indicating whether sandwich estimation should be used to estimate the
variance of the model parameters (highly underestimated). Default is FALSE.

• rsquared boolean indicating whether approximation of R2 based on deviance should be com-
puted. Default is TRUE

PLN_param 73

Value

list of parameters configuring the fit.

PLN_param Control of a PLN fit

Description

Helper to define list of parameters to control the PLN fit. All arguments have defaults.

Usage

PLN_param(
backend = c("nlopt", "torch"),
trace = 1,
covariance = c("full", "diagonal", "spherical", "fixed"),
Omega = NULL,
config_post = list(),
config_optim = list(),
inception = NULL

)

Arguments

backend optimization back used, either "nlopt" or "torch". Default is "nlopt"

trace a integer for verbosity.

covariance character setting the model for the covariance matrix. Either "full", "diagonal",
"spherical" or "fixed". Default is "full".

Omega precision matrix of the latent variables. Inverse of Sigma. Must be specified if
covariance is "fixed"

config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).
See details

config_optim a list for controlling the optimizer (either "nlopt" or "torch" backend). See de-
tails

inception Set up the parameters initialization: by default, the model is initialized with a
multivariate linear model applied on log-transformed data, and with the same
formula as the one provided by the user. However, the user can provide a PLNfit
(typically obtained from a previous fit), which sometimes speeds up the infer-
ence.

74 PLN_param

Details

The list of parameters config_optim controls the optimizers. When "nlopt" is chosen the following
entries are relevant

• "algorithm" the optimization method used by NLOPT among LD type, e.g. "CCSAQ", "MMA",
"LBFGS". See NLOPT documentation for further details. Default is "CCSAQ".

• "maxeval" stop when the number of iteration exceeds maxeval. Default is 10000

• "ftol_rel" stop when an optimization step changes the objective function by less than ftol
multiplied by the absolute value of the parameter. Default is 1e-8

• "xtol_rel" stop when an optimization step changes every parameters by less than xtol multi-
plied by the absolute value of the parameter. Default is 1e-6

• "ftol_abs" stop when an optimization step changes the objective function by less than ftol_abs.
Default is 0.0 (disabled)

• "xtol_abs" stop when an optimization step changes every parameters by less than xtol_abs.
Default is 0.0 (disabled)

• "maxtime" stop when the optimization time (in seconds) exceeds maxtime. Default is -1
(disabled)

When "torch" backend is used (only for PLN and PLNLDA for now), the following entries are
relevant:

• "algorithm" the optimizer used by torch among RPROP (default), RMSPROP, ADAM and
ADAGRAD

• "maxeval" stop when the number of iteration exceeds maxeval. Default is 10 000

• "numepoch" stop training once this number of epochs exceeds numepoch. Set to -1 to enable
infinite training. Default is 1 000

• "num_batch" number of batches to use during training. Defaults to 1 (use full dataset at each
epoch)

• "ftol_rel" stop when an optimization step changes the objective function by less than ftol
multiplied by the absolute value of the parameter. Default is 1e-8

• "xtol_rel" stop when an optimization step changes every parameters by less than xtol multi-
plied by the absolute value of the parameter. Default is 1e-6

• "lr" learning rate. Default is 0.1.

• "momentum" momentum factor. Default is 0 (no momentum). Only used in RMSPROP

• "weight_decay" Weight decay penalty. Default is 0 (no decay). Not used in RPROP

• "step_sizes" pair of minimal (default: 1e-6) and maximal (default: 50) allowed step sizes.
Only used in RPROP

• "etas" pair of multiplicative increase and decrease factors. Default is (0.5, 1.2). Only used in
RPROP

• "centered" if TRUE, compute the centered RMSProp where the gradient is normalized by
an estimation of its variance weight_decay (L2 penalty). Default to FALSE. Only used in
RMSPROP

plot.Networkfamily 75

The list of parameters config_post controls the post-treatment processing (for most PLN*() func-
tions), with the following entries (defaults may vary depending on the specific function, check
config_post_default_* for defaults values):

• jackknife boolean indicating whether jackknife should be performed to evaluate bias and vari-
ance of the model parameters. Default is FALSE.

• bootstrap integer indicating the number of bootstrap resamples generated to evaluate the vari-
ance of the model parameters. Default is 0 (inactivated).

• variational_var boolean indicating whether variational Fisher information matrix should be
computed to estimate the variance of the model parameters (highly underestimated). Default
is FALSE.

• sandwich_var boolean indicating whether sandwich estimation should be used to estimate the
variance of the model parameters (highly underestimated). Default is FALSE.

• rsquared boolean indicating whether approximation of R2 based on deviance should be com-
puted. Default is TRUE

Value

list of parameters configuring the fit.

plot.Networkfamily Display various outputs (goodness-of-fit criteria, robustness, di-
agnostic) associated with a collection of network fits (either
PLNnetworkfamily or ZIPLNnetworkfamily)

Description

Display various outputs (goodness-of-fit criteria, robustness, diagnostic) associated with a collec-
tion of network fits (either PLNnetworkfamily or ZIPLNnetworkfamily)

Usage

S3 method for class 'Networkfamily'
plot(
x,
type = c("criteria", "stability", "diagnostic"),
criteria = c("loglik", "pen_loglik", "BIC", "EBIC"),
reverse = FALSE,
log.x = TRUE,
stability = 0.9,
...

)

S3 method for class 'PLNnetworkfamily'
plot(
x,

76 plot.Networkfamily

type = c("criteria", "stability", "diagnostic"),
criteria = c("loglik", "pen_loglik", "BIC", "EBIC"),
reverse = FALSE,
log.x = TRUE,
stability = 0.9,
...

)

S3 method for class 'ZIPLNnetworkfamily'
plot(
x,
type = c("criteria", "stability", "diagnostic"),
criteria = c("loglik", "pen_loglik", "BIC", "EBIC"),
reverse = FALSE,
log.x = TRUE,
stability = 0.9,
...

)

Arguments

x an R6 object with class PLNnetworkfamily or ZIPLNnetworkfamily

type a character, either "criteria", "stability" or "diagnostic" for the type of plot.

criteria Vector of criteria to plot, to be selected among "loglik" (log-likelihood), "BIC",
"ICL", "R_squared", "EBIC" and "pen_loglik" (penalized log-likelihood). De-
fault is c("loglik", "pen_loglik", "BIC", "EBIC"). Only used when type = "criteria".

reverse A logical indicating whether to plot the value of the criteria in the "natural"
direction (loglik - 0.5 penalty) or in the "reverse" direction (-2 loglik + penalty).
Default to FALSE, i.e use the natural direction, on the same scale as the log-
likelihood.

log.x logical: should the x-axis be represented in log-scale? Default is TRUE.

stability scalar: the targeted level of stability in stability plot. Default is .9.

... additional parameters for S3 compatibility. Not used

Details

The BIC and ICL criteria have the form ’loglik - 1/2 * penalty’ so that they are on the same scale
as the model log-likelihood. You can change this direction and use the alternate form ’-2*loglik +
penalty’, as some authors do, by setting reverse = TRUE.

Value

Produces either a diagnostic plot (with type = 'diagnostic'), a stability plot (with type = 'stability')
or the evolution of the criteria of the different models considered (with type = 'criteria', the de-
fault).

plot.PLNfamily 77

Functions

• plot(PLNnetworkfamily): Display various outputs associated with a collection of network
fits

• plot(ZIPLNnetworkfamily): Display various outputs associated with a collection of net-
work fits

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
Not run:
plot(fits)

End(Not run)

plot.PLNfamily Display the criteria associated with a collection of PLN fits (a PLN-
family)

Description

Display the criteria associated with a collection of PLN fits (a PLNfamily)

Usage

S3 method for class 'PLNfamily'
plot(x, criteria = c("loglik", "BIC", "ICL"), reverse = FALSE, ...)

Arguments

x an R6 object with class PLNfamily

criteria vector of characters. The criteria to plot in c("loglik", "BIC", "ICL"). Default is
c("loglik", "BIC", "ICL").

reverse A logical indicating whether to plot the value of the criteria in the "natural"
direction (loglik - 0.5 penalty) or in the "reverse" direction (-2 loglik + penalty).
Default to FALSE, i.e use the natural direction, on the same scale as the log-
likelihood.

... additional parameters for S3 compatibility. Not used

Details

The BIC and ICL criteria have the form ’loglik - 1/2 * penalty’ so that they are on the same scale
as the model log-likelihood. You can change this direction and use the alternate form ’-2*loglik +
penalty’, as some authors do, by setting reverse = TRUE.

78 plot.PLNLDAfit

Value

Produces a plot representing the evolution of the criteria of the different models considered, high-
lighting the best model in terms of BIC and ICL (see details).

See Also

plot.PLNPCAfamily() and plot.PLNnetworkfamily()

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPCAs <- PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = trichoptera, ranks = 1:5)
Not run:
plot(myPCAs)

End(Not run)

plot.PLNLDAfit LDA visualization (individual and/or variable factor map(s)) for a
PLNPCAfit object

Description

LDA visualization (individual and/or variable factor map(s)) for a PLNPCAfit object

Usage

S3 method for class 'PLNLDAfit'
plot(
x,
map = c("both", "individual", "variable"),
nb_axes = min(3, x$rank),
axes = seq.int(min(2, x$rank)),
var_cols = "var_colors",
plot = TRUE,
main = NULL,
...

)

Arguments

x an R6 object with class PLNPCAfit

map the type of output for the PCA visualization: either "individual", "variable" or
"both". Default is "both".

nb_axes scalar: the number of axes to be considered when map = "both". The default is
min(3,rank).

plot.PLNmixturefamily 79

axes numeric, the axes to use for the plot when map = "individual" or "variable".
Default it c(1,min(rank))

var_cols a character or factor to define the color associated with the variables. By default,
all variables receive the default color of the current palette.

plot logical. Should the plot be displayed or sent back as ggplot2 object

main character. A title for the single plot (individual or variable factor map). If NULL
(the default), an hopefully appropriate title will be used.

... Not used (S3 compatibility).

Value

displays an individual and/or variable factor maps for the corresponding axes, and/or sends back a
ggplot2 or gtable object

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ 1, grouping = Group, data = trichoptera)
Not run:
plot(myPLNLDA, map = "individual", nb_axes = 2)

End(Not run)

plot.PLNmixturefamily Display the criteria associated with a collection of PLNmixture fits (a
PLNmixturefamily)

Description

Display the criteria associated with a collection of PLNmixture fits (a PLNmixturefamily)

Usage

S3 method for class 'PLNmixturefamily'
plot(
x,
type = c("criteria", "diagnostic"),
criteria = c("loglik", "BIC", "ICL"),
reverse = FALSE,
...

)

80 plot.PLNmixturefit

Arguments

x an R6 object with class PLNmixturefamily

type a character, either "criteria" or "diagnostic" for the type of plot.

criteria vector of characters. The criteria to plot in c("loglik", "BIC", "ICL"). Default is
c("loglik", "BIC", "ICL").

reverse A logical indicating whether to plot the value of the criteria in the "natural"
direction (loglik - 0.5 penalty) or in the "reverse" direction (-2 loglik + penalty).
Default to FALSE, i.e use the natural direction, on the same scale as the log-
likelihood.

... additional parameters for S3 compatibility. Not used

Details

The BIC and ICL criteria have the form ’loglik - 1/2 * penalty’ so that they are on the same scale
as the model log-likelihood. You can change this direction and use the alternate form ’-2*loglik +
penalty’, as some authors do, by setting reverse = TRUE.

Value

Produces either a diagnostic plot (with type = 'diagnostic') or the evolution of the criteria of the
different models considered (with type = 'criteria', the default).

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myMixtures <- PLNmixture(Abundance ~ 1 + offset(log(Offset)),

data = trichoptera, control = PLNmixture_param(smoothing = "none"))
plot(myMixtures, reverse = TRUE)

plot.PLNmixturefit Mixture visualization of a PLNmixturefit object

Description

Represent the result of the clustering either by coloring the individual in a two-dimension PCA
factor map, or by representing the expected matrix of count reorder according to the clustering.

Usage

S3 method for class 'PLNmixturefit'
plot(x, type = c("pca", "matrix"), main = NULL, plot = TRUE, ...)

plot.PLNnetworkfit 81

Arguments

x an R6 object with class PLNmixturefit

type character for the type of plot, either "pca", for or "matrix". Default is "pca".

main character. A title for the plot. If NULL (the default), an hopefully appropriate
title will be used.

plot logical. Should the plot be displayed or sent back as ggplot object

... Not used (S3 compatibility).

Value

a ggplot graphic

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLNmixture(Abundance ~ 1 + offset(log(Offset)),

data = trichoptera, control = PLNmixture_param(smoothing = "none")) %>% getBestModel()
Not run:
plot(myPLN, "pca")
plot(myPLN, "matrix")

End(Not run)

plot.PLNnetworkfit Extract and plot the network (partial correlation, support or inverse
covariance) from a PLNnetworkfit object

Description

Extract and plot the network (partial correlation, support or inverse covariance) from a PLNnetworkfit
object

Usage

S3 method for class 'PLNnetworkfit'
plot(
x,
type = c("partial_cor", "support"),
output = c("igraph", "corrplot"),
edge.color = c("#F8766D", "#00BFC4"),
remove.isolated = FALSE,
node.labels = NULL,
layout = layout_in_circle,
plot = TRUE,
...

)

82 plot.PLNPCAfamily

Arguments

x an R6 object with class PLNnetworkfit

type character. Value of the weight of the edges in the network, either "partial_cor"
(partial correlation) or "support" (binary). Default is "partial_cor".

output the type of output used: either ’igraph’ or ’corrplot’. Default is 'igraph'.

edge.color Length 2 color vector. Color for positive/negative edges. Default is c("#F8766D",
"#00BFC4"). Only relevant for igraph output.

remove.isolated

if TRUE, isolated node are remove before plotting. Only relevant for igraph out-
put.

node.labels vector of character. The labels of the nodes. The default will use the column
names ot the response matrix.

layout an optional igraph layout. Only relevant for igraph output.

plot logical. Should the final network be displayed or only sent back to the user.
Default is TRUE.

... Not used (S3 compatibility).

Value

Send back an invisible object (igraph or Matrix, depending on the output chosen) and optionally
displays a graph (via igraph or corrplot for large ones)

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
myNet <- getBestModel(fits)
Not run:
plot(myNet)

End(Not run)

plot.PLNPCAfamily Display the criteria associated with a collection of PLNPCA fits (a
PLNPCAfamily)

Description

Display the criteria associated with a collection of PLNPCA fits (a PLNPCAfamily)

Usage

S3 method for class 'PLNPCAfamily'
plot(x, criteria = c("loglik", "BIC", "ICL"), reverse = FALSE, ...)

plot.PLNPCAfit 83

Arguments

x an R6 object with class PLNPCAfamily

criteria vector of characters. The criteria to plot in c("loglik", "BIC", "ICL"). Default is
c("loglik", "BIC", "ICL").

reverse A logical indicating whether to plot the value of the criteria in the "natural"
direction (loglik - 0.5 penalty) or in the "reverse" direction (-2 loglik + penalty).
Default to FALSE, i.e use the natural direction, on the same scale as the log-
likelihood.

... additional parameters for S3 compatibility. Not used

Details

The BIC and ICL criteria have the form ’loglik - 1/2 * penalty’ so that they are on the same scale
as the model log-likelihood. You can change this direction and use the alternate form ’-2*loglik +
penalty’, as some authors do, by setting reverse = TRUE.

Value

Produces a plot representing the evolution of the criteria of the different models considered, high-
lighting the best model in terms of BIC and ICL (see details).

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPCAs <- PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = trichoptera, ranks = 1:5)
Not run:
plot(myPCAs)

End(Not run)

plot.PLNPCAfit PCA visualization (individual and/or variable factor map(s)) for a
PLNPCAfit object

Description

PCA visualization (individual and/or variable factor map(s)) for a PLNPCAfit object

Usage

S3 method for class 'PLNPCAfit'
plot(
x,
map = c("both", "individual", "variable"),
nb_axes = min(3, x$rank),
axes = seq.int(min(2, x$rank)),

84 plot.PLNPCAfit

ind_cols = "ind_colors",
var_cols = "var_colors",
plot = TRUE,
main = NULL,
...

)

Arguments

x an R6 object with class PLNPCAfit

map the type of output for the PCA visualization: either "individual", "variable" or
"both". Default is "both".

nb_axes scalar: the number of axes to be considered when map = "both". The default is
min(3,rank).

axes numeric, the axes to use for the plot when map = "individual" or map = "variable".
Default it c(1,min(rank))

ind_cols a character, factor or numeric to define the color associated with the individuals.
By default, all variables receive the default color of the current palette.

var_cols a character, factor or numeric to define the color associated with the variables.
By default, all variables receive the default color of the current palette.

plot logical. Should the plot be displayed or sent back as ggplot object

main character. A title for the single plot (individual or variable factor map). If NULL
(the default), an hopefully appropriate title will be used.

... Not used (S3 compatibility).

Value

displays an individual and/or variable factor maps for the corresponding axes, and/or sends back a
ggplot or gtable object

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPCAs <- PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = trichoptera, ranks = 1:5)
myPCA <- getBestModel(myPCAs)
Not run:
plot(myPCA, map = "individual", nb_axes=2, ind_cols = trichoptera$Group)
plot(myPCA, map = "variable", nb_axes=2)
plot(myPCA, map = "both", nb_axes=2, ind_cols = trichoptera$Group)

End(Not run)

plot.ZIPLNfit_sparse 85

plot.ZIPLNfit_sparse Extract and plot the network (partial correlation, support or inverse
covariance) from a ZIPLNfit_sparse object

Description

Extract and plot the network (partial correlation, support or inverse covariance) from a ZIPLNfit_sparse
object

Usage

S3 method for class 'ZIPLNfit_sparse'
plot(
x,
type = c("partial_cor", "support"),
output = c("igraph", "corrplot"),
edge.color = c("#F8766D", "#00BFC4"),
remove.isolated = FALSE,
node.labels = NULL,
layout = layout_in_circle,
plot = TRUE,
...

)

Arguments

x an R6 object with class ZIPLNfit_sparse
type character. Value of the weight of the edges in the network, either "partial_cor"

(partial correlation) or "support" (binary). Default is "partial_cor".
output the type of output used: either ’igraph’ or ’corrplot’. Default is 'igraph'.
edge.color Length 2 color vector. Color for positive/negative edges. Default is c("#F8766D",

"#00BFC4"). Only relevant for igraph output.
remove.isolated

if TRUE, isolated node are remove before plotting. Only relevant for igraph out-
put.

node.labels vector of character. The labels of the nodes. The default will use the column
names ot the response matrix.

layout an optional igraph layout. Only relevant for igraph output.
plot logical. Should the final network be displayed or only sent back to the user.

Default is TRUE.
... Not used (S3 compatibility).

Value

Send back an invisible object (igraph or Matrix, depending on the output chosen) and optionally
displays a graph (via igraph or corrplot for large ones)

86 predict.PLNfit

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fit <- ZIPLN(Abundance ~ 1, data = trichoptera, control = ZIPLN_param(penalty = 0.1))
Not run:
plot(fit)

End(Not run)

predict.PLNfit Predict counts of a new sample

Description

Predict counts of a new sample

Usage

S3 method for class 'PLNfit'
predict(
object,
newdata,
responses = NULL,
level = 1,
type = c("link", "response"),
...

)

Arguments

object an R6 object with class PLNfit

newdata A data frame in which to look for variables and offsets with which to predict

responses Optional data frame containing the count of the observed variables (matching
the names of the provided as data in the PLN function), assuming the interest in
in testing the model.

level Optional integer value the level to be used in obtaining the predictions. Level
zero corresponds to the population predictions (default if responses is not pro-
vided) while level one (default) corresponds to predictions after evaluating the
variational parameters for the new data.

type The type of prediction required. The default is on the scale of the linear predic-
tors (i.e. log average count)

... additional parameters for S3 compatibility. Not used

Value

A matrix of predicted log-counts (if type = "link") or predicted counts (if type = "response").

predict.PLNLDAfit 87

predict.PLNLDAfit Predict group of new samples

Description

Predict group of new samples

Usage

S3 method for class 'PLNLDAfit'
predict(
object,
newdata,
type = c("posterior", "response", "scores"),
scale = c("log", "prob"),
prior = NULL,
control = PLN_param(backend = "nlopt"),
...

)

Arguments

object an R6 object with class PLNLDAfit

newdata A data frame in which to look for variables, offsets and counts with which to
predict.

type The type of prediction required. The default are posterior probabilities for each
group (in either unnormalized log-scale or natural probabilities, see "scale" for
details), "response" is the group with maximal posterior probability and "scores"
is the average score along each separation axis in the latent space, with weights
equal to the posterior probabilities.

scale The scale used for the posterior probability. Either log-scale ("log", default) or
natural probabilities summing up to 1 ("prob").

prior User-specified prior group probabilities in the new data. If NULL (default),
prior probabilities are computed from the learning set.

control a list for controlling the optimization. See PLN() for details.

... additional parameters for S3 compatibility. Not used

Value

A matrix of posterior probabilities for each group (if type = "posterior"), a matrix of (average)
scores in the latent space (if type = "scores") or a vector of predicted groups (if type = "response").

88 predict.PLNmixturefit

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myLDA <- PLNLDA(Abundance ~ 0 + offset(log(Offset)),

grouping = Group,
data = trichoptera)

Not run:
post_probs <- predict(myLDA, newdata = trichoptera, type = "posterior", scale = "prob")
head(round(post_probs, digits = 3))
predicted_group <- predict(myLDA, newdata = trichoptera, type = "response")
table(predicted_group, trichoptera$Group, dnn = c("predicted", "true"))

End(Not run)

predict.PLNmixturefit Prediction for a PLNmixturefit object

Description

Predict either posterior probabilities for each group or latent positions based on new samples

Usage

S3 method for class 'PLNmixturefit'
predict(
object,
newdata,
type = c("posterior", "response", "position"),
prior = matrix(rep(1/object$k, object$k), nrow(newdata), object$k, byrow = TRUE),
control = PLNmixture_param(),
...

)

Arguments

object an R6 object with class PLNmixturefit

newdata A data frame in which to look for variables, offsets and counts with which to
predict.

type The type of prediction required. The default posterior are posterior probabil-
ities for each group , response is the group with maximal posterior probability
and latent is the averaged latent in the latent space, with weights equal to the
posterior probabilities.

prior User-specified prior group probabilities in the new data. The default uses a
uniform prior.

control a list-like structure for controlling the fit. See PLNmixture_param() for details.

... additional parameters for S3 compatibility. Not used

predict.ZIPLNfit 89

Value

A matrix of posterior probabilities for each group (if type = "posterior"), a matrix of (average) posi-
tion in the latent space (if type = "position") or a vector of predicted groups (if type = "response").

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLNmixture(Abundance ~ 1 + offset(log(Offset)),

data = trichoptera, control = PLNmixture_param(smoothing = "none")) %>% getBestModel()
predict(myPLN, trichoptera, "posterior")
predict(myPLN, trichoptera, "position")
predict(myPLN, trichoptera, "response")

predict.ZIPLNfit Predict counts of a new sample

Description

Predict counts of a new sample

Usage

S3 method for class 'ZIPLNfit'
predict(
object,
newdata,
responses = NULL,
level = 1,
type = c("link", "response", "deflated"),
...

)

Arguments

object an R6 object with class ZIPLNfit

newdata A data frame in which to look for variables and offsets with which to predict

responses Optional data frame containing the count of the observed variables (matching
the names of the provided as data in the PLN function), assuming the interest in
in testing the model.

level Optional integer value the level to be used in obtaining the predictions. Level
zero corresponds to the population predictions (default if responses is not pro-
vided) while level one (default) corresponds to predictions after evaluating the
variational parameters for the new data.

90 predict_cond

type Scale used for the prediction. Either "link" (default, predicted positions in
the latent space), "response" (predicted average counts, accounting for zero-
inflation) or "deflated" (predicted average counts, not accounting for zero-
inflation and using only the PLN part of the model).

... additional parameters for S3 compatibility. Not used

Details

Note that level = 1 can only be used if responses are provided, as the variational parameters can’t
be estimated otherwise. In the absence of responses, level is ignored and the fitted values are
returned

Note also that when type = "response" corresponds to predicting values with (1− π)A, where A
is the average count in the PLN part of the model and π the probability of zero-inflation, whereas
type = "deflated" corresponds to A.

predict_cond Predict counts conditionally

Description

Predict counts of a new sample conditionally on a (set of) observed variables

Usage

predict_cond(
object,
newdata,
cond_responses,
type = c("link", "response"),
var_par = FALSE

)

S3 method for class 'PLNfit'
predict_cond(
object,
newdata,
cond_responses,
type = c("link", "response"),
var_par = FALSE

)

Arguments

object an R6 object with class PLNfit

newdata A data frame in which to look for variables and offsets with which to predict

prepare_data 91

cond_responses a data frame containing the counts of the observed variables (matching the
names provided as data in the PLN function)

type The type of prediction required. The default is on the scale of the linear predic-
tors (i.e. log average count)

var_par Boolean. Should new estimations of the variational parameters of mean and
variance be sent back, as attributes of the matrix of predictions. Default to
FALSE.

Value

A list containing:

pred A matrix of predicted log-counts (if type = "link") or predicted counts (if type
= "response")

M A matrix containing E(Z_uncond | Y_c) for each given site.

S A matrix containing Var(Z_uncond | Y_c) for each given site (sites are the third
dimension of the array)

Methods (by class)

• predict_cond(PLNfit): Predict counts of a new sample conditionally on a (set of) observed
variables for a PLNfit

Examples

data(trichoptera)
trichoptera_prep <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ Temperature + Wind, trichoptera_prep)
#Condition on the set of the first two species in the dataset (Hym, Hys) at the ten first sites
Yc <- trichoptera$Abundance[1:10, c(1, 2), drop=FALSE]
newX <- cbind(1, trichoptera$Covariate[1:10, c("Temperature", "Wind")])
pred <- predict_cond(myPLN, newX, Yc, type = "response")

prepare_data Prepare data for use in PLN models

Description

Prepare data in proper format for use in PLN model and its variants. The function (i) merges a count
table and a covariate data frame in the most comprehensive way and (ii) computes offsets from the
count table using one of several normalization schemes (TSS, CSS, RLE, GMPR, Wrench, etc).
The function fails with informative messages when the heuristics used for sample matching fail.

Usage

prepare_data(counts, covariates, offset = "TSS", ...)

92 prepare_data

Arguments

counts Required. An abundance count table, preferably with dimensions names and
species as columns.

covariates Required. A covariates data frame, preferably with row names.

offset Optional. Normalization scheme used to compute scaling factors used as offset
during PLN inference. Available schemes are "TSS" (Total Sum Scaling, de-
fault), "CSS" (Cumulative Sum Scaling, used in metagenomeSeq), "RLE" (Rel-
ative Log Expression, used in DESeq2), "GMPR" (Geometric Mean of Pairwise
Ratio, introduced in Chen et al., 2018), Wrench (introduced in Kumar et al.,
2018) or "none". Alternatively the user can supply its own vector or matrix of
offsets (see note for specification of the user-supplied offsets).

... Additional parameters passed on to compute_offset()

Value

A data.frame suited for use in PLN() and its variants with two specials components: an abundance
count matrix (in component "Abundance") and an offset vector/matrix (in component "Offset", only
if offset is not set to "none")

Note

User supplied offsets should be either vectors/column-matrices or have the same number of column
as the original count matrix and either (i) dimension names or (ii) the same dimensions as the count
matrix. Samples are trimmed in exactly the same way to remove empty samples.

References

Chen, L., Reeve, J., Zhang, L., Huang, S., Wang, X. and Chen, J. (2018) GMPR: A robust normal-
ization method for zero-inflated count data with application to microbiome sequencing data. PeerJ,
6, e4600 doi:10.7717/peerj.4600

Paulson, J. N., Colin Stine, O., Bravo, H. C. and Pop, M. (2013) Differential abundance analysis for
microbial marker-gene surveys. Nature Methods, 10, 1200-1202 doi:10.1038/nmeth.2658

Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome
Biology, 11, R106 doi:10.1186/gb20101110r106

Kumar, M., Slud, E., Okrah, K. et al. (2018) Analysis and correction of compositional bias in sparse
sequencing count data. BMC Genomics 19, 799 doi:10.1186/s1286401851605

Robinson, M.D., Oshlack, A. (2010) A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol 11, R25 doi:10.1186/gb2010113r25

See Also

compute_offset() for details on the different normalization schemes

https://doi.org/10.7717/peerj.4600
https://doi.org/10.1038/nmeth.2658
https://doi.org/10.1186/gb-2010-11-10-r106
https://doi.org/10.1186/s12864-018-5160-5
https://doi.org/10.1186/gb-2010-11-3-r25

rPLN 93

Examples

data(trichoptera)
proper_data <- prepare_data(
counts = trichoptera$Abundance,
covariates = trichoptera$Covariate,
offset = "GMPR",
scale = "count"

)
proper_data$Abundance
proper_data$Offset

rPLN PLN RNG

Description

Random generation for the PLN model with latent mean equal to mu, latent covariance matrix equal
to Sigma and average depths (sum of counts in a sample) equal to depths

Usage

rPLN(
n = 10,
mu = rep(0, ncol(Sigma)),
Sigma = diag(1, 5, 5),
depths = rep(10000, n)

)

Arguments

n the sample size

mu vectors of means of the latent variable

Sigma covariance matrix of the latent variable

depths Numeric vector of target depths. The first is recycled if there are not n values

Details

The default value for mu and Sigma assume equal abundances and no correlation between the
different species.

Value

a n * p count matrix, with row-sums close to depths, with an attribute "offsets" corresponding to the
true generated offsets (in log-scale).

94 sigma.PLNfit

Examples

10 samples of 5 species with equal abundances, no covariance and target depths of 10,000
rPLN()
2 samples of 10 highly correlated species with target depths 1,000 and 100,000
very different abundances
mu <- rep(c(1, -1), each = 5)
Sigma <- matrix(0.8, 10, 10); diag(Sigma) <- 1
rPLN(n=2, mu = mu, Sigma = Sigma, depths = c(1e3, 1e5))

scRNA Single cell RNA-seq data

Description

A dataset containing the counts of the 500 most varying transcripts in the mixtures of 5 cell lines in
human liver (obtained with standard 10x scRNAseq Chromium protocol).

Usage

scRNA

Format

A data frame named ’scRNA’ with 3918 rows (the cells) and 3 variables:

counts a 500 trancript by 3918 count matrix

cell_line factor, the cell line of the current row (among 5)

total_counts Total number of reads for that cell ...

Source

https://github.com/LuyiTian/sc_mixology/

sigma.PLNfit Extract variance-covariance of residuals ’Sigma’

Description

Extract the variance-covariance matrix of the residuals, usually noted

Σ

in PLN models. This captures the correlation between the species in the latent space.

https://github.com/LuyiTian/sc_mixology/

sigma.PLNmixturefit 95

Usage

S3 method for class 'PLNfit'
sigma(object, ...)

Arguments

object an R6 object with class PLNfit

... additional parameters for S3 compatibility. Not used

Value

A semi definite positive matrix of size p, assuming there are p species in the model.

See Also

coef.PLNfit(), standard_error.PLNfit() and vcov.PLNfit() for other ways to access

Σ

.

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1 + offset(log(Offset)), data = trichoptera)
sigma(myPLN) ## Sigma

sigma.PLNmixturefit Extract variance-covariance of residuals ’Sigma’

Description

Extract the variance-covariance matrix of the residuals, usually noted

Σ

in PLN models. This captures the correlation between the species in the latent space. or PLNmix-
ture, it is a weighted mean of the variance-covariance matrices of each component.

Usage

S3 method for class 'PLNmixturefit'
sigma(object, ...)

Arguments

object an R6 object with class PLNmixturefit

... additional parameters for S3 compatibility. Not used

96 sigma.ZIPLNfit

Value

A semi definite positive matrix of size p, assuming there are p species in the model.

See Also

coef.PLNmixturefit() for other ways to access

Σ

.

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLNmixture(Abundance ~ 1 + offset(log(Offset)),

data = trichoptera, control = PLNmixture_param(smoothing = "none")) %>% getBestModel()
sigma(myPLN) ## Sigma

sigma.ZIPLNfit Extract variance-covariance of residuals ’Sigma’

Description

Extract the variance-covariance matrix of the residuals, usually noted Σ in ZIPLN models.

Usage

S3 method for class 'ZIPLNfit'
sigma(object, ...)

Arguments

object an R6 object with class ZIPLNfit

... additional parameters for S3 compatibility. Not used

Value

A semi definite positive matrix of size p, assuming there are p species in the model.

See Also

coef.ZIPLNfit()

stability_selection 97

stability_selection Compute the stability path by stability selection

Description

This function computes the StARS stability criteria over a path of penalties. If a path has already
been computed, the functions stops with a message unless force = TRUE has been specified.

Usage

stability_selection(
Robject,
subsamples = NULL,
control = PLNnetwork_param(),
force = FALSE

)

Arguments

Robject an object with class PLNnetworkfamily or ZIPLNnetworkfamily, i.e. an output
from PLNnetwork() or ZIPLNnetwork()

subsamples a list of vectors describing the subsamples. The number of vectors (or list length)
determines th number of subsamples used in the stability selection. Automati-
cally set to 20 subsamples with size 10*sqrt(n) if n >= 144 and 0.8*n other-
wise following Liu et al. (2010) recommendations.

control a list controlling the main optimization process in each call to PLNnetwork() or
ZIPLNnetwork(). See PLN_param() or ZIPLN_param() for details.

force force computation of the stability path, even if a previous one has been detected.

Value

the list of subsamples. The estimated probabilities of selection of the edges are stored in the fields
stability_path of the initial Robject with class Networkfamily

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
Not run:
n <- nrow(trichoptera)
subs <- replicate(10, sample.int(n, size = n/2), simplify = FALSE)
stability_selection(nets, subsamples = subs)

End(Not run)

98 standard_error.PLNPCAfit

standard_error.PLNPCAfit

Component-wise standard errors of B

Description

Extracts univariate standard errors for the estimated coefficient of B. Standard errors are computed
from the (approximate) Fisher information matrix.

Usage

S3 method for class 'PLNPCAfit'
standard_error(
object,
type = c("variational", "jackknife", "sandwich"),
parameter = c("B", "Omega")

)

standard_error(
object,
type = c("variational", "jackknife", "sandwich"),
parameter = c("B", "Omega")

)

S3 method for class 'PLNfit'
standard_error(
object,
type = c("variational", "jackknife", "bootstrap", "sandwich"),
parameter = c("B", "Omega")

)

S3 method for class 'PLNfit_fixedcov'
standard_error(
object,
type = c("variational", "jackknife", "bootstrap", "sandwich"),
parameter = c("B", "Omega")

)

S3 method for class 'PLNmixturefit'
standard_error(
object,
type = c("variational", "jackknife", "sandwich"),
parameter = c("B", "Omega")

)

S3 method for class 'PLNnetworkfit'
standard_error(

standard_error.PLNPCAfit 99

object,
type = c("variational", "jackknife", "sandwich"),
parameter = c("B", "Omega")

)

Arguments

object an R6 object with class PLNfit

type string describing the type of variance approximation: "variational", "jackknife",
"sandwich" (only for fixed covariance). Default is "variational".

parameter string describing the target parameter: either B (regression coefficients) or Omega
(inverse residual covariance)

Value

A p * d positive matrix (same size as B) with standard errors for the coefficients of B

Methods (by class)

• standard_error(PLNPCAfit): Component-wise standard errors of B in PLNPCAfit (not im-
plemented yet)

• standard_error(PLNfit): Component-wise standard errors of B in PLNfit

• standard_error(PLNfit_fixedcov): Component-wise standard errors of B in PLNfit_fixedcov

• standard_error(PLNmixturefit): Component-wise standard errors of B in PLNmixturefit
(not implemented yet)

• standard_error(PLNnetworkfit): Component-wise standard errors of B in PLNnetworkfit
(not implemented yet)

See Also

vcov.PLNfit() for the complete variance covariance estimation of the coefficient

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1 + offset(log(Offset)), data = trichoptera,

control = PLN_param(config_post = list(variational_var = TRUE)))
standard_error(myPLN)

100 trichoptera

trichoptera Trichoptera data set

Description

Data gathered between 1959 and 1960 during 49 insect trapping nights. For each trapping night,
the abundance of 17 Trichoptera species is recorded as well as 6 meteorological variables which
may influence the abundance of each species. Finally, the observations (that is to say, the trapping
nights), have been classified into 12 groups corresponding to contiguous nights between summer
1959 and summer 1960.

Usage

trichoptera

Format

A list with 2 two data frames:

Abundance a 49 x 17 matrix of abundancies/counts (49 trapping nights and 17 trichoptera species)

Covariate a 49 x 7 data frame of covariates:

Temperature Evening Temperature in Celsius
Wind Wind in m/s
Pressure Pressure in mm Hg
Humidity relative to evening humidity in percent
Cloudiness proportion of sky coverage at 9pm
Precipitation Nighttime precipitation in mm
Group a factor of 12 levels for the definition of the consecutive night groups

In order to prepare the data for using formula in multivariate analysis (multiple outputs and in-
puts), use prepare_data(). We only kept a subset of the original meteorological covariates for
illustration purposes.

Source

Data from P. Usseglio-Polatera.

References

Usseglio-Polatera, P. and Auda, Y. (1987) Influence des facteurs météorologiques sur les résultats
de piégeage lumineux. Annales de Limnologie, 23, 65–79. (code des espèces p. 76) See a data
description at http://pbil.univ-lyon1.fr/R/pdf/pps034.pdf (in French)

See Also

prepare_data()

http://pbil.univ-lyon1.fr/R/pdf/pps034.pdf

vcov.PLNfit 101

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)

vcov.PLNfit Calculate Variance-Covariance Matrix for a fitted PLN() model object

Description

Returns the variance-covariance matrix of the main parameters of a fitted PLN() model object. The
main parameters of the model correspond to

B

, as returned by coef.PLNfit(). The function can also be used to return the variance-covariance
matrix of the residuals. The latter matrix can also be accessed via sigma.PLNfit()

Usage

S3 method for class 'PLNfit'
vcov(object, type = c("main", "covariance"), ...)

Arguments

object an R6 object with class PLNfit
type type of parameter that should be extracted. Either "main" (default) for

B

or "covariance" for
Σ

... additional parameters for S3 compatibility. Not used

Value

A matrix of variance/covariance extracted from the PLNfit model. If type="main" and B is a matrix
of size d * p, the result is a block-diagonal matrix with p (number of species) blocks of size d
(number of covariates). if type="main", it is a symmetric matrix of size p. .

See Also

sigma.PLNfit(), coef.PLNfit(), standard_error.PLNfit()

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1 + offset(log(Offset)), data = trichoptera)
vcov(myPLN, type = "covariance") ## Sigma

102 ZIPLN

ZIPLN Zero Inflated Poisson lognormal model

Description

Fit the multivariate Zero Inflated Poisson lognormal model with a variational algorithm. Use the
(g)lm syntax for model specification (covariates, offsets, subset).

Usage

ZIPLN(
formula,
data,
subset,
zi = c("single", "row", "col"),
control = ZIPLN_param()

)

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which PLN is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

zi a character describing the model used for zero inflation, either of

• "single" (default, one parameter shared by all counts)
• "col" (one parameter per variable / feature)
• "row" (one parameter per sample / individual). If covariates are specified in

the formula RHS (see details) this parameter is ignored.

control a list-like structure for controlling the optimization, with default generated by
ZIPLN_param(). See the associated documentation for details.

Details

Covariates for the Zero-Inflation parameter (using a logistic regression model) can be specified in
the formula RHS using the pipe (~ PLN effect | ZI effect) to separate covariates for the PLN
part of the model from those for the Zero-Inflation part. Note that different covariates can be used
for each part.

Value

an R6 object with class ZIPLNfit

ZIPLNfit 103

See Also

The class ZIPLNfit

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
Use different models for zero-inflation...
myZIPLN_single <- ZIPLN(Abundance ~ 1, data = trichoptera, zi = "single")
Not run:
myZIPLN_row <- ZIPLN(Abundance ~ 1, data = trichoptera, zi = "row")
myZIPLN_col <- ZIPLN(Abundance ~ 1, data = trichoptera, zi = "col")
...including logistic regression on covariates
myZIPLN_covar <- ZIPLN(Abundance ~ 1 | 1 + Wind, data = trichoptera)

End(Not run)

ZIPLNfit An R6 Class to represent a ZIPLNfit

Description

The function ZIPLN() fits a model which is an instance of an object with class ZIPLNfit.

This class comes with a set of R6 methods, some of which are useful for the end-user and exported
as S3 methods. See the documentation for coef(), sigma(), predict().

Fields are accessed via active binding and cannot be changed by the user.

Details

Covariates for the Zero-Inflation parameter (using a logistic regression model) can be specified in
the formula RHS using the pipe (~ PLN effect | ZI effect) to separate covariates for the PLN
part of the model from those for the Zero-Inflation part. Note that different covariates can be used
for each part.

Active bindings

n number of samples/sites

q number of dimensions of the latent space

p number of variables/species

d number of covariates in the PLN part

d0 number of covariates in the ZI part

nb_param_zi number of parameters in the ZI part of the model

nb_param_pln number of parameters in the PLN part of the model

nb_param number of parameters in the ZIPLN model

104 ZIPLNfit

model_par a list with the matrices of parameters found in the model (B, Sigma, plus some others
depending on the variant)

var_par a list with two matrices, M and S2, which are the estimated parameters in the variational
approximation

optim_par a list with parameters useful for monitoring the optimization

latent a matrix: values of the latent vector (Z in the model)

latent_pos a matrix: values of the latent position vector (Z) without covariates effects or offset

fitted a matrix: fitted values of the observations (A in the model)

vcov_model character: the model used for the covariance (either "spherical", "diagonal", "full" or
"sparse")

zi_model character: the model used for the zero inflation (either "single", "row", "col" or "covar")

loglik (weighted) variational lower bound of the loglikelihood

loglik_vec element-wise variational lower bound of the loglikelihood

BIC variational lower bound of the BIC

entropy Entropy of the variational distribution

entropy_ZI Entropy of the variational distribution

entropy_PLN Entropy of the Gaussian variational distribution in the PLN component

ICL variational lower bound of the ICL

criteria a vector with loglik, BIC, ICL and number of parameters

Methods

Public methods:
• ZIPLNfit$update()

• ZIPLNfit$new()

• ZIPLNfit$optimize()

• ZIPLNfit$optimize_vestep()

• ZIPLNfit$predict()

• ZIPLNfit$show()

• ZIPLNfit$print()

• ZIPLNfit$clone()

Method update(): Update a ZIPLNfit object

Usage:
ZIPLNfit$update(
B = NA,
B0 = NA,
Pi = NA,
Omega = NA,
Sigma = NA,
M = NA,
S = NA,

ZIPLNfit 105

R = NA,
Ji = NA,
Z = NA,
A = NA,
monitoring = NA

)

Arguments:
B matrix of regression parameters in the Poisson lognormal component
B0 matrix of regression parameters in the zero inflated component
Pi Zero inflated probability parameter (either scalar, row-vector, col-vector or matrix)
Omega precision matrix of the latent variables
Sigma covariance matrix of the latent variables
M matrix of mean vectors for the variational approximation
S matrix of standard deviation parameters for the variational approximation
R matrix of probabilities for the variational approximation
Ji vector of variational lower bounds of the log-likelihoods (one value per sample)
Z matrix of latent vectors (includes covariates and offset effects)
A matrix of fitted values
monitoring a list with optimization monitoring quantities
Returns: Update the current ZIPLNfit object

Method new(): Initialize a ZIPLNfit model
Usage:
ZIPLNfit$new(data, control)

Arguments:
data a named list used internally to carry the data matrices
control a list for controlling the optimization. See details.

Method optimize(): Call to the Cpp optimizer and update of the relevant fields
Usage:
ZIPLNfit$optimize(data, control)

Arguments:
data a named list used internally to carry the data matrices
control a list for controlling the optimization. See details.

Method optimize_vestep(): Result of one call to the VE step of the optimization procedure:
optimal variational parameters (M, S, R) and corresponding log likelihood values for fixed model
parameters (Sigma, B, B0). Intended to position new data in the latent space.

Usage:
ZIPLNfit$optimize_vestep(
data,
B = self$model_par$B,
B0 = self$model_par$B0,
Omega = self$model_par$Omega,
control = ZIPLN_param(backend = "nlopt")$config_optim

)

106 ZIPLNfit

Arguments:
data a named list used internally to carry the data matrices
B Optional fixed value of the regression parameters in the PLN component
B0 Optional fixed value of the regression parameters in the ZI component
Omega inverse variance-covariance matrix of the latent variables
control a list for controlling the optimization. See details.

Returns: A list with three components:
• the matrix M of variational means,
• the matrix S of variational standard deviations
• the matrix R of variational ZI probabilities
• the vector Ji of (variational) log-likelihood of each new observation
• a list monitoring with information about convergence status

Method predict(): Predict position, scores or observations of new data. See predict.ZIPLNfit()
for the S3 method and additional details

Usage:
ZIPLNfit$predict(
newdata,
responses = NULL,
type = c("link", "response", "deflated"),
level = 1,
envir = parent.frame()

)

Arguments:
newdata A data frame in which to look for variables with which to predict. If omitted, the fitted

values are used.
responses Optional data frame containing the count of the observed variables (matching the

names of the provided as data in the PLN function), assuming the interest in in testing the
model.

type Scale used for the prediction. Either "link" (default, predicted positions in the latent
space), "response" (predicted average counts, accounting for zero-inflation) or "deflated"
(predicted average counts, not accounting for zero-inflation and using only the PLN part of
the model).

level Optional integer value the level to be used in obtaining the predictions. Level zero
corresponds to the population predictions (default if responses is not provided) while level
one (default) corresponds to predictions after evaluating the variational parameters for the
new data.

envir Environment in which the prediction is evaluated

Returns: A matrix with predictions scores or counts.

Method show(): User friendly print method
Usage:
ZIPLNfit$show(
model = paste("A multivariate Zero Inflated Poisson Lognormal fit with",
private$covariance, "covariance model.\n")

)

ZIPLNfit_diagonal 107

Arguments:

model First line of the print output

Method print(): User friendly print method

Usage:
ZIPLNfit$print()

Method clone(): The objects of this class are cloneable with this method.

Usage:
ZIPLNfit$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:
See other examples in function ZIPLN
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- ZIPLN(Abundance ~ 1, data = trichoptera)
class(myPLN)
print(myPLN)

End(Not run)

ZIPLNfit_diagonal An R6 Class to represent a ZIPLNfit in a standard, general framework,
with diagonal residual covariance

Description

An R6 Class to represent a ZIPLNfit in a standard, general framework, with diagonal residual
covariance

An R6 Class to represent a ZIPLNfit in a standard, general framework, with diagonal residual
covariance

Super class

PLNmodels::ZIPLNfit -> ZIPLNfit_diagonal

Active bindings

nb_param_pln number of parameters in the PLN part of the current model

vcov_model character: the model used for the residual covariance

108 ZIPLNfit_fixed

Methods

Public methods:
• ZIPLNfit_diagonal$new()

• ZIPLNfit_diagonal$clone()

Method new(): Initialize a ZIPLNfit_diagonal model

Usage:
ZIPLNfit_diagonal$new(data, control)

Arguments:

data a named list used internally to carry the data matrices
control a list for controlling the optimization. See details.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ZIPLNfit_diagonal$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:
See other examples in function ZIPLN
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- ZIPLN(Abundance ~ 1, data = trichoptera, control = ZIPLN_param(covariance = "diagonal"))
class(myPLN)
print(myPLN)

End(Not run)

ZIPLNfit_fixed An R6 Class to represent a ZIPLNfit in a standard, general framework,
with fixed (inverse) residual covariance

Description

An R6 Class to represent a ZIPLNfit in a standard, general framework, with fixed (inverse) residual
covariance

An R6 Class to represent a ZIPLNfit in a standard, general framework, with fixed (inverse) residual
covariance

Super class

PLNmodels::ZIPLNfit -> ZIPLNfit_fixed

ZIPLNfit_sparse 109

Active bindings

nb_param_pln number of parameters in the PLN part of the current model

vcov_model character: the model used for the residual covariance

Methods

Public methods:
• ZIPLNfit_fixed$new()

• ZIPLNfit_fixed$clone()

Method new(): Initialize a ZIPLNfit_fixed model

Usage:
ZIPLNfit_fixed$new(data, control)

Arguments:
data a named list used internally to carry the data matrices
control a list for controlling the optimization. See details.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ZIPLNfit_fixed$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

Not run:
See other examples in function ZIPLN
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- ZIPLN(Abundance ~ 1, data = trichoptera,

control = ZIPLN_param(Omega = diag(ncol(trichoptera$Abundance))))
class(myPLN)
print(myPLN)

End(Not run)

ZIPLNfit_sparse An R6 Class to represent a ZIPLNfit in a standard, general framework,
with sparse inverse residual covariance

Description

An R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual
covariance

An R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual
covariance

110 ZIPLNfit_sparse

Super class

PLNmodels::ZIPLNfit -> ZIPLNfit_sparse

Active bindings

penalty the global level of sparsity in the current model

penalty_weights a matrix of weights controlling the amount of penalty element-wise.

n_edges number of edges if the network (non null coefficient of the sparse precision matrix)

nb_param_pln number of parameters in the PLN part of the current model

vcov_model character: the model used for the residual covariance

pen_loglik variational lower bound of the l1-penalized loglikelihood

EBIC variational lower bound of the EBIC

density proportion of non-null edges in the network

criteria a vector with loglik, penalized loglik, BIC, EBIC, ICL, R_squared, number of parame-
ters, number of edges and graph density

Methods

Public methods:

• ZIPLNfit_sparse$new()

• ZIPLNfit_sparse$latent_network()

• ZIPLNfit_sparse$plot_network()

• ZIPLNfit_sparse$clone()

Method new(): Initialize a ZIPLNfit_fixed model

Usage:
ZIPLNfit_sparse$new(data, control)

Arguments:

data a named list used internally to carry the data matrices
control a list for controlling the optimization. See details.

Method latent_network(): Extract interaction network in the latent space

Usage:
ZIPLNfit_sparse$latent_network(type = c("partial_cor", "support", "precision"))

Arguments:

type edge value in the network. Can be "support" (binary edges), "precision" (coefficient of
the precision matrix) or "partial_cor" (partial correlation between species)

Returns: a square matrix of size ZIPLNfit_sparse$n

Method plot_network(): plot the latent network.

Usage:

ZIPLNfit_sparse 111

ZIPLNfit_sparse$plot_network(
type = c("partial_cor", "support"),
output = c("igraph", "corrplot"),
edge.color = c("#F8766D", "#00BFC4"),
remove.isolated = FALSE,
node.labels = NULL,
layout = layout_in_circle,
plot = TRUE

)

Arguments:

type edge value in the network. Either "precision" (coefficient of the precision matrix) or
"partial_cor" (partial correlation between species).

output Output type. Either igraph (for the network) or corrplot (for the adjacency matrix)

edge.color Length 2 color vector. Color for positive/negative edges. Default is c("#F8766D",
"#00BFC4"). Only relevant for igraph output.

remove.isolated if TRUE, isolated node are remove before plotting. Only relevant for igraph
output.

node.labels vector of character. The labels of the nodes. The default will use the column
names ot the response matrix.

layout an optional igraph layout. Only relevant for igraph output.

plot logical. Should the final network be displayed or only sent back to the user. Default is
TRUE.

Method clone(): The objects of this class are cloneable with this method.

Usage:

ZIPLNfit_sparse$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

Not run:
See other examples in function ZIPLN
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- ZIPLN(Abundance ~ 1, data = trichoptera, control= ZIPLN_param(penalty = 1))
class(myPLN)
print(myPLN)
plot(myPLN)

End(Not run)

112 ZIPLNfit_spherical

ZIPLNfit_spherical An R6 Class to represent a ZIPLNfit in a standard, general framework,
with spherical residual covariance

Description

An R6 Class to represent a ZIPLNfit in a standard, general framework, with spherical residual
covariance

An R6 Class to represent a ZIPLNfit in a standard, general framework, with spherical residual
covariance

Super class

PLNmodels::ZIPLNfit -> ZIPLNfit_spherical

Active bindings

nb_param_pln number of parameters in the PLN part of the current model

vcov_model character: the model used for the residual covariance

Methods

Public methods:

• ZIPLNfit_spherical$new()

• ZIPLNfit_spherical$clone()

Method new(): Initialize a ZIPLNfit_spherical model

Usage:

ZIPLNfit_spherical$new(data, control)

Arguments:

data a named list used internally to carry the data matrices

control a list for controlling the optimization. See details.

Method clone(): The objects of this class are cloneable with this method.

Usage:

ZIPLNfit_spherical$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

ZIPLNnetwork 113

Examples

Not run:
See other examples in function ZIPLN
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- ZIPLN(Abundance ~ 1, data = trichoptera, control = ZIPLN_param(covariance = "spherical"))
class(myPLN)
print(myPLN)

End(Not run)

ZIPLNnetwork Zero Inflated Sparse Poisson lognormal model for network inference

Description

Perform sparse inverse covariance estimation for the Zero Inflated Poisson lognormal model using
a variational algorithm. Iterate over a range of logarithmically spaced sparsity parameter values.
Use the (g)lm syntax to specify the model (including covariates and offsets).

Usage

ZIPLNnetwork(
formula,
data,
subset,
weights,
zi = c("single", "row", "col"),
penalties = NULL,
control = ZIPLNnetwork_param()

)

Arguments

formula an object of class "formula": a symbolic description of the model to be fitted.

data an optional data frame, list or environment (or object coercible by as.data.frame
to a data frame) containing the variables in the model. If not found in data, the
variables are taken from environment(formula), typically the environment from
which lm is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of observation weights to be used in the fitting process.

zi a character describing the model used for zero inflation, either of

• "single" (default, one parameter shared by all counts)
• "col" (one parameter per variable / feature)

114 ZIPLNnetworkfamily

• "row" (one parameter per sample / individual). If covariates are specified in
the formula RHS (see details) this parameter is ignored.

penalties an optional vector of positive real number controlling the level of sparsity of
the underlying network. if NULL (the default), will be set internally. See
PLNnetwork_param() for additional tuning of the penalty.

control a list-like structure for controlling the optimization, with default generated by
ZIPLNnetwork_param(). See the associated documentation for details.

Details

Covariates for the Zero-Inflation parameter (using a logistic regression model) can be specified in
the formula RHS using the pipe (~ PLN effect | ZI effect) to separate covariates for the PLN
part of the model from those for the Zero-Inflation part. Note that different covariates can be used
for each part.

Value

an R6 object with class ZIPLNnetworkfamily

See Also

The classes ZIPLNfit and ZIPLNnetworkfamily

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myZIPLNs <- ZIPLNnetwork(Abundance ~ 1, data = trichoptera, zi = "single")

ZIPLNnetworkfamily An R6 Class to represent a collection of ZIPLNnetwork

Description

The function ZIPLNnetwork() produces an instance of this class.

This class comes with a set of methods, some of them being useful for the user: See the documen-
tation for getBestModel(), getModel() and plot()

Super classes

PLNmodels::PLNfamily -> PLNmodels::Networkfamily -> ZIPLNnetworkfamily

Public fields

covariates0 the matrix of covariates included in the ZI component

ZIPLNnetworkfamily 115

Methods

Public methods:
• ZIPLNnetworkfamily$new()

• ZIPLNnetworkfamily$stability_selection()

• ZIPLNnetworkfamily$clone()

Method new(): Initialize all models in the collection
Usage:
ZIPLNnetworkfamily$new(penalties, data, control)

Arguments:
penalties a vector of positive real number controlling the level of sparsity of the underlying

network.
data a named list used internally to carry the data matrices
control a list for controlling the optimization.

Returns: Update current PLNnetworkfit with smart starting values

Method stability_selection(): Compute the stability path by stability selection
Usage:
ZIPLNnetworkfamily$stability_selection(
subsamples = NULL,
control = ZIPLNnetwork_param()

)

Arguments:
subsamples a list of vectors describing the subsamples. The number of vectors (or list length)

determines the number of subsamples used in the stability selection. Automatically set to
20 subsamples with size 10*sqrt(n) if n >= 144 and 0.8*n otherwise following Liu et al.
(2010) recommendations.

control a list controlling the main optimization process in each call to PLNnetwork(). See
ZIPLNnetwork() and ZIPLN_param() for details.

Method clone(): The objects of this class are cloneable with this method.
Usage:
ZIPLNnetworkfamily$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

The function ZIPLNnetwork(), the class ZIPLNfit_sparse

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
class(fits)

116 ZIPLNnetwork_param

ZIPLNnetwork_param Control of ZIPLNnetwork fit

Description

Helper to define list of parameters to control the ZIPLNnetwork fit. All arguments have defaults.

Usage

ZIPLNnetwork_param(
backend = c("nlopt"),
inception_cov = c("full", "spherical", "diagonal"),
trace = 1,
n_penalties = 30,
min_ratio = 0.1,
penalize_diagonal = TRUE,
penalty_weights = NULL,
config_post = list(),
config_optim = list(),
inception = NULL

)

Arguments

backend optimization back used, either "nlopt" or "torch". Default is "nlopt"

inception_cov Covariance structure used for the inception model used to initialize the PLN-
family. Defaults to "full" and can be constrained to "diagonal" and "spherical".

trace a integer for verbosity.

n_penalties an integer that specifies the number of values for the penalty grid when internally
generated. Ignored when penalties is non NULL

min_ratio the penalty grid ranges from the minimal value that produces a sparse to this
value multiplied by min_ratio. Default is 0.1.

penalize_diagonal

boolean: should the diagonal terms be penalized in the graphical-Lasso? Default
is TRUE

penalty_weights

either a single or a list of p x p matrix of weights (default: all weights equal to
1) to adapt the amount of shrinkage to each pairs of node. Must be symmetric
with positive values.

config_post a list for controlling the post-treatment (optional bootstrap, jackknife, R2, etc).

config_optim a list for controlling the optimizer (either "nlopt" or "torch" backend). See de-
tails

ZIPLN_param 117

inception Set up the parameters initialization: by default, the model is initialized with a
multivariate linear model applied on log-transformed data, and with the same
formula as the one provided by the user. However, the user can provide a PLNfit
(typically obtained from a previous fit), which sometimes speeds up the infer-
ence.

Details

See PLNnetwork_param() for a full description of the optimization parameters. Note that some
defaults values are different than those used in PLNnetwork_param():

• "ftol_out" (outer loop convergence tolerance the objective function) is set by default to 1e-6

• "maxit_out" (max number of iterations for the outer loop) is set by default to 100

Value

list of parameters configuring the fit.

See Also

PLNnetwork_param() and PLN_param()

ZIPLN_param Control of a ZIPLN fit

Description

Helper to define list of parameters to control the PLN fit. All arguments have defaults.

Usage

ZIPLN_param(
backend = c("nlopt"),
trace = 1,
covariance = c("full", "diagonal", "spherical", "fixed", "sparse"),
Omega = NULL,
penalty = 0,
penalize_diagonal = TRUE,
penalty_weights = NULL,
config_post = list(),
config_optim = list(),
inception = NULL

)

118 ZIPLN_param

Arguments

backend optimization back used, either "nlopt" or "torch". Default is "nlopt"

trace a integer for verbosity.

covariance character setting the model for the covariance matrix. Either "full", "diagonal",
"spherical" or "fixed". Default is "full".

Omega precision matrix of the latent variables. Inverse of Sigma. Must be specified if
covariance is "fixed"

penalty a user-defined penalty to sparsify the residual covariance. Defaults to 0 (no
sparsity).

penalize_diagonal

boolean: should the diagonal terms be penalized in the graphical-Lasso? Default
is TRUE

penalty_weights

either a single or a list of p x p matrix of weights (default: all weights equal to
1) to adapt the amount of shrinkage to each pairs of node. Must be symmetric
with positive values.

config_post a list for controlling the post-treatments (optional bootstrap, jackknife, R2, etc.).
See details

config_optim a list for controlling the optimizer (either "nlopt" or "torch" backend). See de-
tails

inception Set up the parameters initialization: by default, the model is initialized with a
multivariate linear model applied on log-transformed data, and with the same
formula as the one provided by the user. However, the user can provide a PLNfit
(typically obtained from a previous fit), which sometimes speeds up the infer-
ence.

Details

See PLN_param() and PLNnetwork_param() for a full description of the generic optimization pa-
rameters. Like PLNnetwork_param(), ZIPLN_param() has two parameters controlling the opti-
mization due the inner-outer loop structure of the optimizer:

• "ftol_out" outer solver stops when an optimization step changes the objective function by less
than ftol_out multiplied by the absolute value of the parameter. Default is 1e-6

• "maxit_out" outer solver stops when the number of iteration exceeds maxit_out. Default is
100 and one additional parameter controlling the form of the variational approximation of the
zero inflation:

• "approx_ZI" either uses an exact or approximated conditional distribution for the zero infla-
tion. Default is FALSE

Value

list of parameters used during the fit and post-processing steps

Index

∗ datasets
barents, 4
mollusk, 17
oaks, 21
scRNA, 94
trichoptera, 100

barents, 4

coef(), 25, 103
coef.PLNfit, 5
coef.PLNfit(), 95, 101
coef.PLNLDAfit, 6
coef.PLNmixturefit, 6
coef.PLNmixturefit(), 96
coef.ZIPLNfit, 7
coef.ZIPLNfit(), 96
coefficient_path, 8
compute_offset, 9
compute_offset(), 92
compute_PLN_starting_point, 11

extract_probs, 12

factoextra::fviz(), 63
fitted.PLNfit, 13
fitted.PLNmixturefit, 14
fitted.ZIPLNfit, 14

getBestModel
(getBestModel.PLNPCAfamily), 15

getBestModel(), 18, 47, 56, 62, 114
getBestModel.PLNPCAfamily, 15
getModel (getModel.PLNPCAfamily), 16
getModel(), 18, 25, 47, 56, 62, 114
getModel.PLNPCAfamily, 16
ggplot, 20, 40, 41, 49, 52, 69, 70, 81, 84
ggplot2, 24, 49, 64, 79
grob, 41, 70

mollusk, 17

Networkfamily, 8, 18, 19, 20, 97

oaks, 21

PLN, 22
PLN(), 5, 6, 11, 13, 25, 42, 68, 87, 92, 101
PLN_param, 73
PLN_param(), 22, 26, 28, 37, 54, 55, 57, 61,

97, 117, 118
PLNfamily, 23, 23, 24, 66–68, 77
PLNfit, 5, 13, 22–25, 25, 26, 27, 31–33, 36,

43, 57, 65, 86, 90, 91, 95, 99, 101
PLNfit(), 25, 30, 38, 42
PLNfit_diagonal, 30
PLNfit_fixedcov, 33, 99
PLNfit_spherical, 35
PLNLDA, 36, 42
PLNLDA(), 6, 25, 30, 38, 42
PLNLDA_param, 44
PLNLDAfit, 30, 38, 38, 39–42, 69, 87
PLNLDAfit(), 37
PLNLDAfit_diagonal, 42
PLNLDAfit_spherical (PLNfit_diagonal),

30
PLNmixture, 46, 49, 50, 53
PLNmixture(), 14, 25, 47
PLNmixture_param, 54
PLNmixture_param(), 46, 47, 52, 88
PLNmixturefamily, 16, 17, 47, 47, 53, 80
PLNmixturefit, 7, 14, 47, 49, 50, 51, 80, 81,

88, 95, 99
PLNmodels::Networkfamily, 56, 114
PLNmodels::PLNfamily, 18, 47, 56, 62, 114
PLNmodels::PLNfit, 31, 33, 35, 38, 43, 57, 65
PLNmodels::PLNfit_fixedcov, 57
PLNmodels::PLNLDAfit, 31, 43
PLNmodels::ZIPLNfit, 107, 108, 110, 112
PLNnetwork, 55
PLNnetwork(), 8, 12, 18, 21, 25, 56, 57, 59,

97, 115

119

120 INDEX

PLNnetwork_param, 60
PLNnetwork_param(), 55, 56, 117, 118
PLNnetworkfamily, 12, 16, 17, 23, 56, 56, 59,

75, 76, 97
PLNnetworkfit, 15, 17, 18, 21, 56, 57, 57, 58,

81, 82, 99, 115
PLNPCA, 61, 70
PLNPCA(), 25, 62, 64, 65
PLNPCA_param, 71
PLNPCA_param(), 62
PLNPCAfamily, 15–17, 23, 62, 62, 70, 83
PLNPCAfit, 15, 17, 62, 64, 65, 65, 66, 67, 70,

78, 83, 99
PLNPCAfit(), 64
plot(), 18, 30, 38, 42, 47, 56, 57, 62, 65, 114
plot.Networkfamily, 75
plot.PLNfamily, 77
plot.PLNLDAfit, 78
plot.PLNmixturefamily, 79
plot.PLNmixturefit, 80
plot.PLNnetworkfamily

(plot.Networkfamily), 75
plot.PLNnetworkfamily(), 78
plot.PLNnetworkfit, 81
plot.PLNPCAfamily, 82
plot.PLNPCAfamily(), 78
plot.PLNPCAfit, 83
plot.ZIPLNfit_sparse, 85
plot.ZIPLNnetworkfamily

(plot.Networkfamily), 75
predict(), 25, 30, 38, 42, 103
predict.PLNfit, 86
predict.PLNLDAfit, 87
predict.PLNmixturefit, 88
predict.ZIPLNfit, 89
predict.ZIPLNfit(), 106
predict_cond, 90
prepare_data, 91
prepare_data(), 17, 18, 22, 100

rPLN, 93

scRNA, 94
sigma(), 25, 103
sigma.PLNfit, 94
sigma.PLNfit(), 5, 101
sigma.PLNmixturefit, 95
sigma.PLNmixturefit(), 7
sigma.ZIPLNfit, 96

sigma.ZIPLNfit(), 8
stability_selection, 97
stability_selection(), 12, 15
standard_error

(standard_error.PLNPCAfit), 98
standard_error(), 25
standard_error.PLNfit(), 5, 95, 101
standard_error.PLNPCAfit, 98

trichoptera, 100

vcov(), 25
vcov.PLNfit, 101
vcov.PLNfit(), 5, 95, 99

ZIPLN, 102
ZIPLN(), 7, 14, 103
ZIPLN_param, 117
ZIPLN_param(), 97, 102, 115
ZIPLNfit, 8, 14, 89, 96, 102, 103, 103, 104,

105, 114
ZIPLNfit_diagonal, 107, 108
ZIPLNfit_fixed, 108, 109, 110
ZIPLNfit_sparse, 18, 21, 85, 109, 115
ZIPLNfit_spherical, 112, 112
ZIPLNnetwork, 113
ZIPLNnetwork(), 18, 21, 97, 114, 115
ZIPLNnetwork_param, 116
ZIPLNnetwork_param(), 114
ZIPLNnetworkfamily, 16, 17, 75, 76, 97, 114,

114

	barents
	coef.PLNfit
	coef.PLNLDAfit
	coef.PLNmixturefit
	coef.ZIPLNfit
	coefficient_path
	compute_offset
	compute_PLN_starting_point
	extract_probs
	fitted.PLNfit
	fitted.PLNmixturefit
	fitted.ZIPLNfit
	getBestModel.PLNPCAfamily
	getModel.PLNPCAfamily
	mollusk
	Networkfamily
	oaks
	PLN
	PLNfamily
	PLNfit
	PLNfit_diagonal
	PLNfit_fixedcov
	PLNfit_spherical
	PLNLDA
	PLNLDAfit
	PLNLDAfit_diagonal
	PLNLDA_param
	PLNmixture
	PLNmixturefamily
	PLNmixturefit
	PLNmixture_param
	PLNnetwork
	PLNnetworkfamily
	PLNnetworkfit
	PLNnetwork_param
	PLNPCA
	PLNPCAfamily
	PLNPCAfit
	PLNPCA_param
	PLN_param
	plot.Networkfamily
	plot.PLNfamily
	plot.PLNLDAfit
	plot.PLNmixturefamily
	plot.PLNmixturefit
	plot.PLNnetworkfit
	plot.PLNPCAfamily
	plot.PLNPCAfit
	plot.ZIPLNfit_sparse
	predict.PLNfit
	predict.PLNLDAfit
	predict.PLNmixturefit
	predict.ZIPLNfit
	predict_cond
	prepare_data
	rPLN
	scRNA
	sigma.PLNfit
	sigma.PLNmixturefit
	sigma.ZIPLNfit
	stability_selection
	standard_error.PLNPCAfit
	trichoptera
	vcov.PLNfit
	ZIPLN
	ZIPLNfit
	ZIPLNfit_diagonal
	ZIPLNfit_fixed
	ZIPLNfit_sparse
	ZIPLNfit_spherical
	ZIPLNnetwork
	ZIPLNnetworkfamily
	ZIPLNnetwork_param
	ZIPLN_param
	Index

