smurf: Sparse Multi-Type Regularized Feature Modeling
Implementation of the SMuRF algorithm of Devriendt et al. (2021) <doi:10.1016/j.insmatheco.2020.11.010> to fit generalized linear models (GLMs) with multiple types of predictors via regularized maximum likelihood.
Version: |
1.1.6 |
Depends: |
R (≥ 3.4) |
Imports: |
catdata, glmnet (≥ 4.0), graphics, MASS, Matrix, methods, mgcv, parallel, RColorBrewer, Rcpp (≥ 0.12.12), stats |
LinkingTo: |
Rcpp, RcppArmadillo (≥ 0.8.300.1.0) |
Suggests: |
bookdown, knitr, rmarkdown, roxygen2 (≥ 6.0.0), testthat |
Published: |
2024-12-02 |
DOI: |
10.32614/CRAN.package.smurf |
Author: |
Tom Reynkens
[aut, cre],
Sander Devriendt [aut],
Katrien Antonio [aut] |
Maintainer: |
Tom Reynkens <tomreynkens.r at gmail.com> |
BugReports: |
https://gitlab.com/TReynkens/smurf/-/issues |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: |
https://gitlab.com/TReynkens/smurf |
NeedsCompilation: |
yes |
Materials: |
NEWS |
CRAN checks: |
smurf results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=smurf
to link to this page.