x
of class
sparseMatrix
(provided by the {Matrix}
package) for abclass()
and
predict.abclass()
.cv.abclass()
and
et.abclass()
for training and tuning the angle-based
classifiers with cross-validation and an efficient tuning procedure for
lasso-type algorithms, respectively. See the corresponding function
documentation for details.supclass()
and cv.supclass()
for
details.abclass()
and moved the tuning
procedure by cross-validation to the function
cv.abclass()
.abclass.control()
.
alpha
: from 0.5
to 1.0
epsilon
: from 1e-3
to
1e-4
alignment
in abclass.control()
.abclass.control()
to specify
the control parameters and simplify the main function interface.max_iter
to maxit
for
abclass()
.abclass()
to avoid unnecessarily large returned objectslum_c
for
abclass()
from 0 to 1.rel_tol
to epsilon
for abclass()
.AbclassNet
lum_c
in the associated header
files.