SelectBoost: A General Algorithm to Enhance the Performance of Variable
Selection Methods in Correlated Datasets
An implementation of the selectboost algorithm (Bertrand et al. 2020, 'Bioinformatics', <doi:10.1093/bioinformatics/btaa855>), which is a general algorithm that improves the precision of any existing variable selection method. This algorithm is based on highly intensive simulations and takes into account the correlation structure of the data. It can either produce a confidence index for variable selection or it can be used in an experimental design planning perspective.
Version: |
2.2.2 |
Depends: |
R (≥ 2.10) |
Imports: |
lars, glmnet, igraph, parallel, msgps, Rfast, methods, Cascade, graphics, grDevices, varbvs, spls, abind |
Suggests: |
knitr, markdown, rmarkdown, mixOmics, CascadeData |
Published: |
2022-11-30 |
DOI: |
10.32614/CRAN.package.SelectBoost |
Author: |
Frederic Bertrand
[cre, aut],
Myriam Maumy-Bertrand
[aut],
Ismail Aouadi [ctb],
Nicolas Jung [ctb] |
Maintainer: |
Frederic Bertrand <frederic.bertrand at utt.fr> |
BugReports: |
https://github.com/fbertran/SelectBoost/issues/ |
License: |
GPL-3 |
URL: |
https://fbertran.github.io/SelectBoost/,
https://github.com/fbertran/SelectBoost/ |
NeedsCompilation: |
no |
Classification/MSC: |
62H11, 62J12, 62J99 |
Citation: |
SelectBoost citation info |
Materials: |
README NEWS |
CRAN checks: |
SelectBoost results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=SelectBoost
to link to this page.