Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

crossurr: Cross-Fitting for Doubly Robust Evaluation of High-Dimensional Surrogate Markers

Doubly robust methods for evaluating surrogate markers as outlined in: Agniel D, Hejblum BP, Thiebaut R & Parast L (2022). "Doubly robust evaluation of high-dimensional surrogate markers", Biostatistics <doi:10.1093/biostatistics/kxac020>. You can use these methods to determine how much of the overall treatment effect is explained by a (possibly high-dimensional) set of surrogate markers.

Version: 1.1.1
Depends: R (≥ 3.6.0)
Imports: dplyr, gbm, glmnet, glue, parallel, pbapply, purrr, ranger, RCAL, rlang, SIS, stats, SuperLearner, tibble, tidyr
Published: 2024-06-14
DOI: 10.32614/CRAN.package.crossurr
Author: Denis Agniel [aut, cre], Boris P. Hejblum [aut]
Maintainer: Denis Agniel <dagniel at rand.org>
License: MIT + file LICENSE
NeedsCompilation: no
Citation: crossurr citation info
Materials: README NEWS
CRAN checks: crossurr results

Documentation:

Reference manual: crossurr.pdf

Downloads:

Package source: crossurr_1.1.1.tar.gz
Windows binaries: r-devel: crossurr_1.1.1.zip, r-release: crossurr_1.1.1.zip, r-oldrel: crossurr_1.1.1.zip
macOS binaries: r-release (arm64): crossurr_1.1.1.tgz, r-oldrel (arm64): crossurr_1.1.1.tgz, r-release (x86_64): crossurr_1.1.1.tgz, r-oldrel (x86_64): crossurr_1.1.1.tgz
Old sources: crossurr archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=crossurr to link to this page.