BART: Bayesian Additive Regression Trees
Bayesian Additive Regression Trees (BART) provide flexible nonparametric modeling of covariates for continuous, binary, categorical and time-to-event outcomes. For more information see Sparapani, Spanbauer and McCulloch <doi:10.18637/jss.v097.i01>.
Version: |
2.9.9 |
Depends: |
R (≥ 3.6), nlme, survival |
Imports: |
Rcpp (≥ 0.12.3), parallel, tools |
LinkingTo: |
Rcpp |
Suggests: |
MASS, knitr, rmarkdown |
Published: |
2024-06-21 |
DOI: |
10.32614/CRAN.package.BART |
Author: |
Robert McCulloch [aut],
Rodney Sparapani [aut, cre],
Robert Gramacy [ctb],
Matthew Pratola [ctb],
Charles Spanbauer [ctb],
Martyn Plummer [ctb],
Nicky Best [ctb],
Kate Cowles [ctb],
Karen Vines [ctb] |
Maintainer: |
Rodney Sparapani <rsparapa at mcw.edu> |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
NeedsCompilation: |
yes |
Citation: |
BART citation info |
Materials: |
NEWS |
In views: |
Bayesian, MachineLearning |
CRAN checks: |
BART results |
Documentation:
Downloads:
Reverse dependencies:
Reverse depends: |
cjbart |
Reverse imports: |
AuxSurvey, bartMan, borrowr, CIMTx, paths, RCTrep, riAFTBART, SAMTx, tidytreatment |
Reverse suggests: |
bark, condvis2, CRE, familiar, MachineShop, StratifiedMedicine |
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=BART
to link to this page.