Package 'Seurat'

January 13, 2025

Version 5.2.0

Title Tools for Single Cell Genomics

Description

A toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. 'Seurat' aims to enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data. See Satija R, Farrell J, Gennert D, et al (2015) <doi:10.1038/nbt.3192>, Macosko E, Basu A, Satija R, et al (2015) <doi:10.1016/j.cell.2015.05.002>, Stuart T, Butler A, et al (2019) <doi:10.1016/j.cell.2019.05.031>, and Hao, Hao, et al (2020) <doi:10.1101/2020.10.12.335331> tails.

 ${\bf License} \ {\rm MIT} + {\rm file} \ {\rm LICENSE}$

URL https://satijalab.org/seurat, https://github.com/satijalab/seurat

BugReports https://github.com/satijalab/seurat/issues

Additional repositories

https://satijalab.r-universe.dev, https://bnprks.r-universe.dev

Depends R (>= 4.0.0), methods,

SeuratObject (>= 5.0.2)

Imports cluster,

cowplot, fastDummies, fitdistrplus, future, future.apply, generics (>= 0.1.3), ggplot2 (>= 3.3.0), ggrepel, ggridges, graphics, grDevices, grid, httr, ica,

igraph, irlba, jsonlite, KernSmooth, leidenbase, lifecycle, lmtest, MASS, Matrix (>= 1.5-0), matrixStats, miniUI, patchwork, pbapply, plotly (>= 4.9.0), png, progressr, RANN, RColorBrewer, Rcpp (>= 1.0.7), RcppAnnoy (>= 0.0.18), RcppHNSW, reticulate, rlang, ROCR, RSpectra, Rtsne, scales, scattermore (>= 1.2), sctransform (>= 0.4.1), shiny, spatstat.explore, spatstat.geom, stats, tibble, tools, utils, uwot (>= 0.1.10) Suggests ape, arrow, Biobase,

BioGenerics, BiocGenerics, BPCells, data.table, DESeq2, DelayedArray, enrichR, GenomicRanges, GenomeInfoDb,

 $\mathbf{2}$

glmGamPoi, ggrastr, harmony, hdf5r, IRanges, limma, MAST, metap, mixtools, monocle, presto, rsvd, R.utils, Rfast2, rtracklayer, S4Vectors, sf (>= 1.0.0), SingleCellExperiment, SummarizedExperiment, testthat, VGAM

LinkingTo Rcpp (>= 0.11.0), RcppEigen, RcppProgress

BuildManual true

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

 $Collate \ 'RcppExports.R'$ 'reexports.R' 'generics.R' 'clustering.R' 'visualization.R' 'convenience.R' 'data.R' $'differential_expression.R'$ 'dimensional reduction.R' 'integration.R' 'zzz.R' 'integration5.R' 'mixscape.R' 'objects.R' 'preprocessing.R' 'preprocessing5.R' 'roxygen.R' 'sketching.R''tree.R''utilities.R'

Contents

Seurat-package	 	 	 	 	 . 8
AddAzimuthResults	 	 	 	 	 . 10
AddModuleScore	 	 	 	 	 . 11
AggregateExpression	 	 	 	 	 . 13
AnchorSet-class	 	 	 	 	 . 14
AnnotateAnchors					
as.CellDataSet	 	 	 	 	 . 16
as.Seurat.CellDataSet					
as.SingleCellExperiment	 	 	 	 	 . 17
as.sparse.H5Group	 	 	 	 	 . 18
Assay-class	 	 	 	 	 . 19
AugmentPlot	 	 	 	 	 . 19
AutoPointSize	 	 	 	 	 . 20
AverageExpression					
BarcodeInflectionsPlot					
BGTextColor					
BlackAndWhite					
BridgeCellsRepresentation					
BridgeReferenceSet-class					
BuildClusterTree					
BuildNicheAssay					
CalcPerturbSig					
CalculateBarcodeInflections					
CaseMatch					
cc.genes					
cc.genes.updated.2019					
CCAIntegration					
CellCycleScoring					
Cells.SCTModel					
CellScatter					
CellSelector					
CollapseEmbeddingOutliers					
CollapseSpeciesExpressionMatrix .					
ColorDimSplit					
CombinePlots					
contrast-theory					
CreateCategoryMatrix					
CreateSCTAssayObject					
CustomDistance					
DEenrichRPlot					
DietSeurat					
DimHeatmap					
DimPlot					
DimReduc-class					
DiscretePalette					
DoHeatmap					
DotPlot					

Contents

ElbowPlot	
ExpMean	60
ExpSD	60
ExpVar	61
FastRowScale	62
FastRPCAIntegration	62
FeaturePlot	63
FeatureScatter	
FetchResiduals	68
FilterSlideSeq	70
FindAllMarkers	
FindBridgeIntegrationAnchors	
FindBridgeTransferAnchors	
FindClusters	
FindConservedMarkers	
FindIntegrationAnchors	
FindMarkers	
FindMultiModalNeighbors	
FindNeighbors	
FindSpatiallyVariableFeatures	
FindSubCluster	
FindTransferAnchors	
FindVariableFeatures	
FoldChange	
GetAssay	
GetImage.SlideSeq	
GetIntegrationData	
GetResidual	
GetTissueCoordinates.SlideSeq	
GetTransferPredictions	
Graph-class	
GroupCorrelation	
GroupCorrelationPlot	
HarmonyIntegration	
HoverLocator	
HTODemux	
HTOHeatmap	
HVFInfo.SCTAssay	
IFeaturePlot	
ImageDimPlot	
ImageFeaturePlot	
IntegrateData	
IntegrateEmbeddings	
IntegrateLayers	
IntegrationAnchorSet-class	
IntegrationData-class	
ISpatialDimPlot	
ISpatialFeaturePlot	
-	

JackStraw	132
JackStrawData-class	133
JackStrawPlot	134
JointPCAIntegration	135
L2CCA	137
L2Dim	
LabelClusters	138
LabelPoints	139
LeverageScore	140
LinkedPlots	142
Load10X Spatial	143
LoadAnnoyIndex	145
LoadCurioSeeker	
LoadSTARmap	
LoadXenium	
LocalStruct	
LogNormalize	
LogVMR	
MappingScore	
MapQuery	
merge.SCTAssay	
MetaFeature	
MinMax	
MixingMetric	
MixscapeHeatmap	
MixscapeLDA	
ModalityWeights-class	
MULTIseqDemux	
Neighbor-class	
NNPlot	
NNtoGraph	
NormalizeData	
PCASigGenes	
PercentAbove	
PercentageFeatureSet	
PlotClusterTree	
PlotPerturbScore	
•	
PredictAssay	
PrepareBridgeReference	
PrepLDA	
PrepSCTFindMarkers	
PrepSCTIntegration	
ProjectData	
Project Dim	
Project Dim Reduc	
ProjectIntegration	182

Project UMAP	
PseudobulkExpression	. 185
Radius.SlideSeq	. 187
Read10X	. 188
Read10X Coordinates	. 189
Read10X ⁻ h5	. 190
Read10X Image	. 190
Read10X probe metadata	
Read10X ScaleFactors	
Read Akoya	
ReadMtx	
ReadNanostring	
ReadParseBio	
ReadSlideSeq	
ReadSTARsolo	
ReadVitessce	
ReadVizgen	
RegroupIdents	
RelativeCounts	
RenameCells.SCTAssay	
RidgePlot	
RPCAIntegration	
RunCCA	
RunGraphLaplacian	
RunICA	
RunLDA	
RunLeiden	
RunMarkVario	
RunMixscape	
RunMoransI	
RunPCA	
RunSLSI	
RunSPCA	
RunTSNE	
RunUMAP	
SampleUMI	
SaveAnnoyIndex	
ScaleData	
ScaleFactors	
ScoreJackStraw	
SCTAssay-class	
SCTransform	
SCTResults	
SelectIntegrationFeatures	
SelectIntegrationFeatures5	
SelectSCTIntegrationFeatures	
SetIntegrationData	
SetQuantile	

Seurat-class	47
SeuratCommand-class	47
SeuratTheme	48
SketchData	50
SlideSeq-class	51
SpatialImage-class	51
SpatialPlot	52
SplitObject	55
STARmap-class	56
subset.AnchorSet	57
SubsetByBarcodeInflections	58
TopCells	59
TopFeatures	59
TopNeighbors	60
TransferAnchorSet-class	61
TransferData	61
TransferSketchLabels	64
UnSketchEmbeddings	65
UpdateSCTAssays	66
UpdateSymbolList	66
VariableFeaturePlot	68
VisiumV1-class $\ldots \ldots 2$	69
VisiumV2-class $\ldots \ldots 2$	69
VizDimLoadings	70
VlnPlot	71
2'	73

Index

Seurat-package

Seurat: Tools for Single Cell Genomics

Description

A toolkit for quality control, analysis, and exploration of single cell RNA sequencing data. 'Seurat' aims to enable users to identify and interpret sources of heterogeneity from single cell transcriptomic measurements, and to integrate diverse types of single cell data. See Satija R, Farrell J, Gennert D, et al (2015) doi:10.1038/nbt.3192, Macosko E, Basu A, Satija R, et al (2015) doi:10.1016/j.cell.2015.05.002, Stuart T, Butler A, et al (2019) doi:10.1016/j.cell.2019.05.031, and Hao, Hao, et al (2020) doi:10.1101/2020.10.12.335331 for more details.

Package options

Seurat uses the following [options()] to configure behaviour:

Seurat.memsafe global option to call gc() after many operations. This can be helpful in cleaning up the memory status of the R session and prevent use of swap space. However, it does add to the computational overhead and setting to FALSE can speed things up if you're working in an environment where RAM availability is not a concern.

- Seurat.warn.umap.uwot Show warning about the default backend for RunUMAP changing from Python UMAP via reticulate to UWOT
- Seurat.checkdots For functions that have ... as a parameter, this controls the behavior when an item isn't used. Can be one of warn, stop, or silent.
- Seurat.limma.wilcox.msg Show message about more efficient Wilcoxon Rank Sum test available via the limma package
- Seurat.Rfast2.msg Show message about more efficient Moran's I function available via the Rfast2 package
- Seurat.warn.vlnplot.split Show message about changes to default behavior of split/multi violin plots

Author(s)

Maintainer: Rahul Satija <seurat@nygenome.org> (ORCID) Other contributors:

- Andrew Butler <abutler@nygenome.org> (ORCID) [contributor]
- Saket Choudhary <schoudhary@nygenome.org> (ORCID) [contributor]
- David Collins <dcollins@nygenome.org> (ORCID) [contributor]
- Charlotte Darby <cdarby@nygenome.org> (ORCID) [contributor]
- Jeff Farrell <jfarrell@g.harvard.edu> [contributor]
- Isabella Grabski <igrabski@nygenome.org> (ORCID) [contributor]
- Christoph Hafemeister <chafemeister@nygenome.org> (ORCID) [contributor]
- Yuhan Hao <yhao@nygenome.org> (ORCID) [contributor]
- Austin Hartman <ahartman@nygenome.org> (ORCID) [contributor]
- Paul Hoffman <hoff0792@umn.edu> (ORCID) [contributor]
- Jaison Jain <jjain@nygenome.org> (ORCID) [contributor]
- Longda Jiang <ljiang@nygenome.org> (ORCID) [contributor]
- Madeline Kowalski <mkowalski@nygenome.org> (ORCID) [contributor]
- Skylar Li <sli@nygenome.org> [contributor]
- Gesmira Molla <gmolla@nygenome.org> (ORCID) [contributor]
- Efthymia Papalexi <epapalexi@nygenome.org> (ORCID) [contributor]
- Patrick Roelli <proelli@nygenome.org> [contributor]
- Karthik Shekhar <kshekhar@berkeley.edu> [contributor]
- Avi Srivastava <asrivastava@nygenome.org> (ORCID) [contributor]
- Tim Stuart <tstuart@nygenome.org> (ORCID) [contributor]
- Kristof Torkenczy (ORCID) [contributor]
- Shiwei Zheng <szheng@nygenome.org> (ORCID) [contributor]
- Satija Lab and Collaborators [funder]

See Also

Useful links:

- https://satijalab.org/seurat
- https://github.com/satijalab/seurat
- Report bugs at https://github.com/satijalab/seurat/issues

AddAzimuthResults Add Azimuth Results

Description

Add mapping and prediction scores, UMAP embeddings, and imputed assay (if available) from Azimuth to an existing or new **Seurat** object

Usage

AddAzimuthResults(object = NULL, filename)

Arguments

object	A Seurat object
filename	Path to Azimuth mapping scores file

Value

object with Azimuth results added

Examples

```
## Not run:
object <- AddAzimuthResults(object, filename = "azimuth_results.Rds")
## End(Not run)
```

10

AddModuleScore

 $\label{eq:calculate} Calculate\ module\ scores\ for\ feature\ expression\ programs\ in\ single\ cells$

Description

Calculate the average expression levels of each program (cluster) on single cell level, subtracted by the aggregated expression of control feature sets. All analyzed features are binned based on averaged expression, and the control features are randomly selected from each bin.

Usage

```
AddModuleScore(
   object,
   features,
   pool = NULL,
   nbin = 24,
   ctrl = 100,
   k = FALSE,
   assay = NULL,
   name = "Cluster",
   seed = 1,
   search = FALSE,
   slot = "data",
   ...
)
```

Arguments

object	Seurat object
features	A list of vectors of features for expression programs; each entry should be a vector of feature names
pool	List of features to check expression levels against, defaults to <code>rownames(x = object)</code>
nbin	Number of bins of aggregate expression levels for all analyzed features
ctrl	Number of control features selected from the same bin per analyzed feature
k	Use feature clusters returned from DoKMeans
assay	Name of assay to use
name	Name for the expression programs; will append a number to the end for each entry in features (eg. if features has three programs, the results will be stored as name1, name2, name3, respectively)
seed	Set a random seed. If NULL, seed is not set.

search	Search for symbol synonyms for features in features that don't match features in object? Searches the HGNC's gene names database; see UpdateSymbolList for more details
slot	Slot to calculate score values off of . Defaults to data slot (i.e log-normalized counts)
	Extra parameters passed to UpdateSymbolList

Value

Returns a Seurat object with module scores added to object meta data; each module is stored as name# for each module program present in features

References

Tirosh et al, Science (2016)

Examples

```
## Not run:
data("pbmc_small")
cd_features <- list(c(</pre>
  'CD79B',
  'CD79A',
  'CD19',
  'CD180',
  'CD200',
  'CD3D',
  'CD2',
  'CD3E',
  'CD7',
  'CD8A',
  'CD14',
  'CD1C',
  'CD68',
  'CD9',
  'CD247'
))
pbmc_small <- AddModuleScore(</pre>
  object = pbmc_small,
  features = cd_features,
  ctrl = 5,
  name = 'CD_Features'
)
head(x = pbmc_small[])
## End(Not run)
```

AggregateExpression Aggregated feature expression by identity class

Description

Returns summed counts ("pseudobulk") for each identity class.

Usage

```
AggregateExpression(
   object,
   assays = NULL,
   features = NULL,
   return.seurat = FALSE,
   group.by = "ident",
   add.ident = NULL,
   normalization.method = "LogNormalize",
   scale.factor = 10000,
   margin = 1,
   verbose = TRUE,
   ...
)
```

Arguments

object	Seurat object
assays	Which assays to use. Default is all assays
features	Features to analyze. Default is all features in the assay
return.seurat	Whether to return the data as a Seurat object. Default is FALSE
group.by	Category (or vector of categories) for grouping (e.g, ident, replicate, cell- type); 'ident' by default To use multiple categories, specify a vector, such as c('ident', 'replicate', 'celltype')
add.ident	(Deprecated). Place an additional label on each cell prior to pseudobulk- ing
normalization.	0
	Method for normalization, see NormalizeData
scale.factor	Scale factor for normalization, see NormalizeData
margin	Margin to perform CLR normalization, see NormalizeData
verbose	Print messages and show progress bar
	Arguments to be passed to methods such as CreateSeuratObject

Details

If return.seurat = TRUE, aggregated values are placed in the 'counts' layer of the returned object. The data is then normalized by running NormalizeData on the aggregated counts. ScaleData is then run on the default assay before returning the object.

Value

Returns a matrix with genes as rows, identity classes as columns. If return.seurat is TRUE, returns an object of class Seurat.

Examples

```
## Not run:
data("pbmc_small")
head(AggregateExpression(object = pbmc_small)$RNA)
head(AggregateExpression(object = pbmc_small, group.by = c('ident', 'groups'))$RNA)
```

End(Not run)

AnchorSet-class The AnchorSet Class

Description

The AnchorSet class is an intermediate data storage class that stores the anchors and other related information needed for performing downstream analyses - namely data integration (IntegrateData) and data transfer (TransferData).

\mathbf{Slots}

object.list List of objects used to create anchors

- reference.cells List of cell names in the reference dataset needed when performing data transfer.
- reference.objects Position of reference object/s in object.list
- query.cells List of cell names in the query dataset needed when performing data transfer
- anchors The anchor matrix. This contains the cell indices of both anchor pair cells, the anchor score, and the index of the original dataset in the object.list for cell1 and cell2 of the anchor.
- offsets The offsets used to enable cell look up in downstream functions

weight.reduction The weight dimensional reduction used to calculate weight matrix

anchor.features The features used when performing anchor finding.

neighbors List containing Neighbor objects for reuse later (e.g. mapping)

command Store log of parameters that were used

14

AnnotateAnchors Add info to anchor matrix

Description

Add info to anchor matrix

Usage

```
AnnotateAnchors(anchors, vars, slot, ...)
## Default S3 method:
AnnotateAnchors(
  anchors,
 vars = NULL,
  slot = NULL,
 object.list,
  assay = NULL,
  . . .
)
## S3 method for class 'IntegrationAnchorSet'
AnnotateAnchors(
 anchors,
 vars = NULL,
  slot = NULL,
 object.list = NULL,
 assay = NULL,
  . . .
)
## S3 method for class 'TransferAnchorSet'
AnnotateAnchors(
 anchors,
 vars = NULL,
  slot = NULL,
  reference = NULL,
 query = NULL,
  assay = NULL,
  . . .
)
```

Arguments

anchors	An AnchorSet object
vars	Variables to pull for each object via ${\rm FetchData}$
slot	Slot to pull feature data for

	Arguments passed to other methods
object.list	List of Seurat objects
assay	Specify the Assay per object if annotating with expression data
reference	Reference object used in FindTransferAnchors
query	Query object used in FindTransferAnchors

Value

Returns the anchor dataframe with additional columns for annotation metadata

as.CellDataSet Convert objects to CellDataSet objects

Description

Convert objects to CellDataSet objects

Usage

```
as.CellDataSet(x, ...)
## S3 method for class 'Seurat'
as.CellDataSet(x, assay = NULL, reduction = NULL, ...)
```

Arguments

An object to convert to class CellDataSet
Arguments passed to other methods
Assay to convert
Name of $\operatorname{Dim} \operatorname{Reduc}$ to set to main reduced Dim in cds

as.Seurat.CellDataSet Convert objects to Seurat objects

Description

Convert objects to Seurat objects

as. Single Cell Experiment

Usage

```
## S3 method for class 'CellDataSet'
as.Seurat(x, slot = "counts", assay = "RNA", verbose = TRUE, ...)
## S3 method for class 'SingleCellExperiment'
as.Seurat(
    x,
    counts = "counts",
    data = "logcounts",
    assay = NULL,
    project = "SingleCellExperiment",
    ...
)
```

Arguments

х	An object to convert to class Seurat
slot	Slot to store expression data as
assay	Name of assays to convert; set to $NULL$ for all assays to be converted
verbose	Show progress updates
	Arguments passed to other methods
counts	name of the SingleCellExperiment as say to store as ${\tt counts};$ set to ${\tt NULL}$ if only normalized data are present
data	name of the SingleCellExperiment as say to slot as ${\tt data}.$ Set to NULL if only counts are present
project	Project name for new Seurat object

Value

A Seurat object generated from \boldsymbol{x}

See Also

SeuratObject::as.Seurat

as.SingleCellExperiment

Convert objects to SingleCellExperiment objects

Description

Convert objects to SingleCellExperiment objects

Usage

```
as.SingleCellExperiment(x, ...)
## S3 method for class 'Seurat'
as.SingleCellExperiment(x, assay = NULL, ...)
```

Arguments

х	An object to convert to class ${\tt SingleCellExperiment}$
	Arguments passed to other methods
assay	Assays to convert

as.sparse.H5Group Cast to Sparse

Description

Cast to Sparse

Usage

```
## S3 method for class 'H5Group'
as.sparse(x, ...)
## S3 method for class 'Matrix'
as.data.frame(
    x,
    row.names = NULL,
    optional = FALSE,
    ...,
    stringsAsFactors = getOption(x = "stringsAsFactors", default = FALSE)
)
```

Arguments

х	An object
	Arguments passed to other methods
row.names	NULL or a character vector giving the row names for the data; missing values are not allowed
optional	<pre>logical. If TRUE, setting row names and converting column names (to syntactic names: see make.names) is optional. Note that all of R's base package as.data.frame() methods use optional only for column names treatment, basically with the meaning of data.frame(*, check.names = !optional). See also the make.names argument of the matrix method.</pre>
stringsAsFacto	rs

logical: should the character vector be converted to a factor?

18

Assay-class

Value

as.data.frame.Matrix: A data frame representation of the S4 Matrix

See Also

SeuratObject::as.sparse

Assay-class

The Assay Class

Description

The Assay object is the basic unit of Seurat; for more details, please see the documentation in SeuratObject

See Also

SeuratObject::Assay-class

AugmentPlot

Augments ggplot2-based plot with a PNG image.

Description

Creates "vector-friendly" plots. Does this by saving a copy of the plot as a PNG file, then adding the PNG image with annotation_raster to a blank plot of the same dimensions as plot. Please note: original legends and axes will be lost during augmentation.

Usage

AugmentPlot(plot, width = 10, height = 10, dpi = 100)

Arguments

plot	A ggplot object
width, height	Width and height of PNG version of plot
dpi	Plot resolution

Value

A ggplot object

Examples

```
## Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
AugmentPlot(plot = plot)
## End(Not run)
```

AutoPointSize	Automagically	calculate	a	point	size	for	$ggplot \ensuremath{\mathcal{2}}\xspace$ based	scatter
	plots							

Description

It happens to look good

Usage

```
AutoPointSize(data, raster = NULL)
```

Arguments

data	A data frame being passed to ggplot2
raster	If TRUE, point size is set to 1

Value

The "optimal" point size for visualizing these data

Examples

```
df <- data.frame(x = rnorm(n = 10000), y = runif(n = 10000))
AutoPointSize(data = df)</pre>
```

 AverageExpression
 Averaged feature expression by identity class

Description

Returns averaged expression values for each identity class.

20

AverageExpression

Usage

```
AverageExpression(
   object,
   assays = NULL,
   features = NULL,
   return.seurat = FALSE,
   group.by = "ident",
   add.ident = NULL,
   layer = "data",
   slot = deprecated(),
   verbose = TRUE,
   ...
)
```

Arguments

object	Seurat object
assays	Which assays to use. Default is all assays
features	Features to analyze. Default is all features in the assay
return.seurat	Whether to return the data as a Seurat object. Default is FALSE
group.by	Category (or vector of categories) for grouping (e.g, ident, replicate, cell- type); 'ident' by default To use multiple categories, specify a vector, such as c('ident', 'replicate', 'celltype')
add.ident	(Deprecated). Place an additional label on each cell prior to pseudobulk- ing
layer	Layer(s) to use; if multiple layers are given, assumed to follow the order of 'assays' (if specified) or object's assays
slot	(Deprecated). Slots(s) to use
verbose	Print messages and show progress bar
	Arguments to be passed to methods such as CreateSeuratObject

Details

If layer is set to 'data', this function assumes that the data has been log normalized and therefore feature values are exponentiated prior to averaging so that averaging is done in non-log space. Otherwise, if layer is set to either 'counts' or 'scale.data', no exponentiation is performed prior to averaging. If return.seurat = TRUE and layer is not 'scale.data', averaged values are placed in the 'counts' layer of the returned object and 'log1p' is run on the averaged counts and placed in the 'data' layer ScaleData is then run on the default assay before returning the object. If return.seurat = TRUE and layer is 'scale.data', the 'counts' layer contains average counts and 'scale.data' is set to the averaged values of 'scale.data'.

Value

Returns a matrix with genes as rows, identity classes as columns. If return.seurat is TRUE, returns an object of class Seurat.

Examples

```
data("pbmc_small")
head(AverageExpression(object = pbmc_small)$RNA)
head(AverageExpression(object = pbmc_small, group.by = c('ident', 'groups'))$RNA)
```

BarcodeInflectionsPlot

Plot the Barcode Distribution and Calculated Inflection Points

Description

This function plots the calculated inflection points derived from the barcode-rank distribution.

Usage

```
BarcodeInflectionsPlot(object)
```

Arguments

object Seurat object

Details

See [CalculateBarcodeInflections()] to calculate inflection points and [SubsetByBarcodeInflections()] to subsequently subset the Seurat object.

Value

Returns a 'ggplot2' object showing the by-group inflection points and provided (or default) rank threshold values in grey.

Author(s)

Robert A. Amezquita, <robert.amezquita@fredhutch.org>

See Also

CalculateBarcodeInflections SubsetByBarcodeInflections

Examples

```
data("pbmc_small")
pbmc_small <- CalculateBarcodeInflections(pbmc_small, group.column = 'groups')
BarcodeInflectionsPlot(pbmc_small)</pre>
```

22

BGTextColor

Description

Determine text color based on background color

Usage

```
BGTextColor(
   background,
   threshold = 186,
   w3c = FALSE,
   dark = "black",
   light = "white"
)
```

Arguments

background	A vector of background colors; supports R color names and hexadecimal codes
threshold	Intensity threshold for light/dark cutoff; intensities greater than the shold yield dark, others yield <code>light</code>
w3c	Use $\ensuremath{\textbf{W3C}}$ formula for calculating background text color; ignores <code>threshold</code>
dark	Color for dark text
light	Color for light text

Value

A named vector of either dark or light, depending on ${\tt background};$ names of vector are ${\tt background}$

Source

https://stackoverflow.com/questions/3942878/how-to-decide-font-color-in-white-or-black-depending-o

Examples

BGTextColor(background = c('black', 'white', '#E76BF3'))

BlackAndWhite

Description

Creates a custom color palette based on low, middle, and high color values

Usage

```
BlackAndWhite(mid = NULL, k = 50)
BlueAndRed(k = 50)
CustomPalette(low = "white", high = "red", mid = NULL, k = 50)
```

```
PurpleAndYellow(k = 50)
```

Arguments

mid	middle color. Optional.
k	number of steps (colors levels) to include between low and high values
low	low color
high	high color

Value

A color palette for plotting

Examples

```
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
plot(df, col = BlackAndWhite())</pre>
```

df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
plot(df, col = BlueAndRed())</pre>

myPalette <- CustomPalette()
myPalette</pre>

df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
plot(df, col = PurpleAndYellow())</pre>

BridgeCellsRepresentation

 $Construct\ a\ dictionary\ representation\ for\ each\ unimodal\ dataset$

Description

Construct a dictionary representation for each unimodal dataset

Usage

```
BridgeCellsRepresentation(
   object.list,
   bridge.object,
   object.reduction,
   bridge.reduction,
   laplacian.reduction = "lap",
   laplacian.dims = 1:50,
   bridge.assay.name = "Bridge",
   return.all.assays = FALSE,
   l2.norm = TRUE,
   verbose = TRUE
)
```

Arguments

object.list	A list of Seurat objects		
bridge.object	A multi-omic bridge Seurat which is used as the basis to represent uni- modal datasets		
object.reductio	on		
	A list of dimensional reductions from object.list used to be reconstructed by bridge.object		
bridge.reductio	on		
	A list of dimensional reductions from bridge.object used to reconstruct object.reduction		
laplacian.reduc	ction		
	Name of bridge graph laplacian dimensional reduction		
laplacian.dims	Dimensions used for bridge graph laplacian dimensional reduction		
bridge.assay.na	ame		
	Assay name used for bridge object reconstruction value (default is 'Bridge')		
return.all.assays			
	Whether to return all assays in the object.list. Only bridge assay is re- turned by default.		
12.norm	Whether to 12 normalize the dictionary representation		
	, model to 12 normanico the distribution of the province of the		

Value

Returns a object list in which each object has a bridge cell derived assay

```
BridgeReferenceSet-class
```

The BridgeReferenceSet Class The BridgeReferenceSet is an output from PrepareBridgeReference

Description

 $The BridgeReferenceSet\ Class\ The\ BridgeReferenceSet\ is\ an\ output\ from\ PrepareBridgeReferenceSet\ erence$

Slots

bridge The multi-omic object

reference The Reference object only containing bridge representation assay params A list of parameters used in the PrepareBridgeReference command Store log of parameters that were used

BuildClusterTree Phylogenetic Analysis of Identity Classes

Description

Constructs a phylogenetic tree relating the 'aggregate' cell from each identity class. Tree is estimated based on a distance matrix constructed in either gene expression space or PCA space.

Usage

```
BuildClusterTree(
   object,
   assay = NULL,
   features = NULL,
   dims = NULL,
   reduction = "pca",
   graph = NULL,
   slot = "data",
   reorder = FALSE,
   reorder.numeric = FALSE,
   verbose = TRUE
)
```

BuildClusterTree

Arguments

object	Seurat object
assay	Assay to use for the analysis.
features	Genes to use for the analysis. Default is the set of variable genes (VariableFeatures(object = object))
dims	If set, tree is calculated in dimension reduction space; overrides features
reduction	Name of dimension reduction to use. Only used if dims is not NULL.
graph	If graph is passed, build tree based on graph connectivity between clusters; overrides dims and features
slot	slot/layer to use.
reorder	Re-order identity classes (factor ordering), according to position on the tree. This groups similar classes together which can be helpful, for example, when drawing violin plots.
reorder.numeri	c
	Re-order identity classes according to position on the tree, assigning a numeric value ('1' is the leftmost node)
verbose	Show progress updates

Details

Note that the tree is calculated for an 'aggregate' cell, so gene expression or PC scores are summed across all cells in an identity class before the tree is constructed.

Value

A Seurat object where the cluster tree can be accessed with ${\tt Tool}$

Examples

```
## Not run:
if (requireNamespace("ape", quietly = TRUE)) {
    data("pbmc_small")
    pbmc_small
    pbmc_small <- BuildClusterTree(object = pbmc_small)
    Tool(object = pbmc_small, slot = 'BuildClusterTree')
}
```

End(Not run)

BuildNicheAssay

Description

This function will construct a new assay where each feature is a cell label. The values represents the sum of a particular cell label neighboring a given cell.

Usage

```
BuildNicheAssay(
   object,
   fov,
   group.by,
   assay = "niche",
   cluster.name = "niches",
   neighbors.k = 20,
   niches.k = 4
)
```

Arguments

object	A Seurat object
fov	FOV object to gather cell positions from
group.by	Cell classifications to count in spatial neighborhood
assay	Name for spatial neighborhoods assay
cluster.name	Name of output clusters
neighbors.k	Number of neighbors to consider for each cell
niches.k	Number of clusters to return based on the niche assay

Value

Seurat object containing a new assay

CalcPerturbSig Calculate a perturbation Signature	
---	--

Description

Function to calculate perturbation signature for pooled CRISPR screen datasets. For each target cell (expressing one target gRNA), we identified 20 cells from the control pool (non-targeting cells) with the most similar mRNA expression profiles. The perturbation signature is calculated by subtracting the averaged mRNA expression profile of the non-targeting neighbors from the mRNA expression profile of the target cell.

CalcPerturbSig

Usage

```
CalcPerturbSig(
   object,
   assay = NULL,
   features = NULL,
   slot = "data",
   gd.class = "guide_ID",
   nt.cell.class = "NT",
   split.by = NULL,
   num.neighbors = NULL,
   reduction = "pca",
   ndims = 15,
   new.assay.name = "PRTB",
   verbose = TRUE
)
```

Arguments

object	An object of class Seurat.
assay	Name of Assay PRTB signature is being calculated on.
features	Features to compute PRTB signature for. Defaults to the variable features set in the assay specified.
slot	Data slot to use for PRTB signature calculation.
gd.class	Metadata column containing target gene classification.
nt.cell.class	Non-targeting gRNA cell classification identity.
split.by	Provide metadata column if multiple biological replicates exist to calculate PRTB signature for every replicate separately.
num.neighbors	Number of nearest neighbors to consider.
reduction	Reduction method used to calculate nearest neighbors.
ndims	Number of dimensions to use from dimensionality reduction method.
new.assay.name	Name for the new assay.
verbose	Display progress + messages

Value

Returns a Seurat object with a new assay added containing the perturbation signature for all cells in the data slot.

CalculateBarcodeInflections

Calculate the Barcode Distribution Inflection

Description

This function calculates an adaptive inflection point ("knee") of the barcode distribution for each sample group. This is useful for determining a threshold for removing low-quality samples.

Usage

```
CalculateBarcodeInflections(
   object,
   barcode.column = "nCount_RNA",
   group.column = "orig.ident",
   threshold.low = NULL,
   threshold.high = NULL
)
```

Arguments

object	Seurat object
barcode.column	Column to use as proxy for barcodes ("nCount_RNA" by default) $-$
group.column	Column to group by ("orig.ident" by default)
threshold.low	Ignore barcodes of rank below this threshold in inflection calculation
threshold.high	Ignore barcodes of rank above this threshold in inflection calculation

Details

The function operates by calculating the slope of the barcode number vs. rank distribution, and then finding the point at which the distribution changes most steeply (the "knee"). Of note, this calculation often must be restricted as to the range at which it performs, so 'threshold' parameters are provided to restrict the range of the calculation based on the rank of the barcodes. [BarcodeInflectionsPlot()] is provided as a convenience function to visualize and test different thresholds and thus provide more sensical end results.

See [BarcodeInflectionsPlot()] to visualize the calculated inflection points and [SubsetBy-BarcodeInflections()] to subsequently subset the Seurat object.

Value

Returns Seurat object with a new list in the 'tools' slot, 'CalculateBarcodeInflections' with values:

* 'barcode_distribution' - contains the full barcode distribution across the entire dataset * 'inflection_points' - the calculated inflection points within the thresholds * 'threshold_values' - the provided (or default) threshold values to search within for inflections * 'cells pass' - the cells that pass the inflection point calculation

CaseMatch

Author(s)

Robert A. Amezquita, <robert.amezquita@fredhutch.org>

See Also

BarcodeInflectionsPlot SubsetByBarcodeInflections

Examples

```
data("pbmc_small")
CalculateBarcodeInflections(pbmc_small, group.column = 'groups')
```

CaseMatch

Match the case of character vectors

Description

Match the case of character vectors

Usage

```
CaseMatch(search, match)
```

Arguments

search	A vector of search terms
match	A vector of characters whose case should be matched

Value

Values from search present in match with the case of match

Examples

```
data("pbmc_small")
cd_genes <- c('Cd79b', 'Cd19', 'Cd200')
CaseMatch(search = cd_genes, match = rownames(x = pbmc_small))</pre>
```

cc.genes

Description

A list of genes used in cell-cycle regression

Usage

cc.genes

Format

A list of two vectors

s.genes Genes associated with S-phase

g2m.genes Genes associated with G2M-phase

Source

https://www.science.org/doi/abs/10.1126/science.aad0501

cc.genes.updated.2019 Cell cycle genes: 2019 update

Description

A list of genes used in cell-cycle regression, updated with 2019 symbols

Usage

cc.genes.updated.2019

Format

A list of two vectors

s.genes Genes associated with S-phase

 ${\bf g2m.genes}$ Genes associated with G2M-phase

CCAIntegration

Updated symbols

The following symbols were updated from cc.genes

```
s.genes ● MCM2: MCM7
```

- MLF1IP: CENPU
- RPA2: POLR1B
- BRIP1: MRPL36

```
g2m.genes • FAM64A: PIMREG
```

• *HN1*: *JPT1*

Source

https://www.science.org/doi/abs/10.1126/science.aad0501

See Also

cc.genes

Examples

Not run: cc.genes.updated.2019 <- cc.genes cc.genes.updated.2019\$s.genes <- UpdateSymbolList(symbols = cc.genes.updated.2019\$s.genes) cc.genes.updated.2019\$g2m.genes <- UpdateSymbolList(symbols = cc.genes.updated.2019\$g2m.genes)</pre>

End(Not run)

CCAIntegration Seurat-CCA Integration

Description

Seurat-CCA Integration

Usage

```
CCAIntegration(
  object = NULL,
  assay = NULL,
  layers = NULL,
  orig = NULL,
  new.reduction = "integrated.dr",
  reference = NULL,
  features = NULL,
  normalization.method = c("LogNormalize", "SCT"),
  dims = 1:30,
```

```
k.filter = NA,
scale.layer = "scale.data",
dims.to.integrate = NULL,
k.weight = 100,
weight.reduction = NULL,
sd.weight = 1,
sample.tree = NULL,
preserve.order = FALSE,
verbose = TRUE,
...
```

Arguments

object	A Seurat object
assay	Name of Assay in the Seurat object
layers	Names of layers in assay
orig	A DimReduc to correct
new.reduction	Name of new integrated dimensional reduction
reference	A reference Seurat object
features	A vector of features to use for integration
normalization.	method
	Name of normalization method used: LogNormalize or SCT
dims	Dimensions of dimensional reduction to use for integration
k.filter	Number of anchors to filter
scale.layer	Name of scaled layer in Assay
dims.to.integr	ate
	Number of dimensions to return integrated values for
k.weight	Number of neighbors to consider when weighting anchors
weight.reducti	
	Dimension reduction to use when calculating anchor weights. This can be one of:
	• A string, specifying the name of a dimension reduction present in all objects to be integrated
	• A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
	• A vector of DimReduc objects, specifying the object to use for each object in the integration
	• NULL, in which case the full corrected space is used for computing anchor weights.
sd.weight	Controls the bandwidth of the Gaussian kernel for weighting
sample.tree	Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the

34

integration results from a given row (the format of the merge matrix included in the hclust function output). For example: matrix(c(-2, 1, -3, -1), ncol = 2) gives:

Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1.

If NULL, the sample tree will be computed automatically.

preserve.order Do not reorder objects based on size for each pairwise integration.

verbose	Print progress
	$\label{eq:arguments} Arguments \ \texttt{passed} \ \texttt{on to FindIntegrationAnchors}$

Examples

```
## Not run:
# Preprocessing
obj <- SeuratData::LoadData("pbmcsca")</pre>
obj[["RNA"]] <- split(obj[["RNA"]], f = obj$Method)</pre>
obj <- NormalizeData(obj)</pre>
obj <- FindVariableFeatures(obj)</pre>
obj <- ScaleData(obj)</pre>
obj <- RunPCA(obj)</pre>
# After preprocessing, we integrate layers.
obj <- IntegrateLayers(object = obj, method = CCAIntegration,</pre>
  orig.reduction = "pca", new.reduction = "integrated.cca",
  verbose = FALSE)
# Modifying parameters
# We can also specify parameters such as `k.anchor` to increase the strength of integration
obj <- IntegrateLayers(object = obj, method = CCAIntegration,</pre>
  orig.reduction = "pca", new.reduction = "integrated.cca",
  k.anchor = 20, verbose = FALSE)
# Integrating SCTransformed data
obj <- SCTransform(object = obj)</pre>
obj <- IntegrateLayers(object = obj, method = CCAIntegration,</pre>
  orig.reduction = "pca", new.reduction = "integrated.cca",
  assay = "SCT", verbose = FALSE)
## End(Not run)
```

CellCycleScoring Score cell cycle phases

Description

Score cell cycle phases

Usage

```
CellCycleScoring(
   object,
   s.features,
   g2m.features,
   ctrl = NULL,
   set.ident = FALSE,
   ...
)
```

Arguments

object	A Seurat object
s.features	A vector of features associated with S phase
g2m.features	A vector of features associated with G2M phase
ctrl	Number of control features selected from the same bin per analyzed fea- ture supplied to AddModuleScore. Defaults to value equivalent to mini- mum number of features present in 's.features' and 'g2m.features'.
set.ident	If true, sets identity to phase assignments Stashes old identities in 'old.ident
	Arguments to be passed to AddModuleScore

Value

A Seurat object with the following columns added to object meta data: S.Score, G2M.Score, and Phase $\,$

See Also

AddModuleScore

Examples

```
## Not run:
data("pbmc_small")
# pbmc_small doesn't have any cell-cycle genes
# To run CellCycleScoring, please use a dataset with cell-cycle genes
# An example is available at http://satijalab.org/seurat/cell_cycle_vignette.html
pbmc_small <- CellCycleScoring(
    object = pbmc_small,
```

```
g2m.features = cc.genes$g2m.genes,
    s.features = cc.genes$s.genes
)
head(x = pbmc_small@meta.data)
## End(Not run)
```

Cells.SCTModel Get Cell Names

Description

Get Cell Names

Usage

```
## S3 method for class 'SCTModel'
Cells(x, ...)
## S3 method for class 'SlideSeq'
Cells(x, ...)
```

S3 method for class 'STARmap'
Cells(x, ...)

S3 method for class 'VisiumV1'
Cells(x, ...)

Arguments

х	An object
	Arguments passed to other methods

See Also

SeuratObject::Cells

CellScatter

Description

Creates a plot of scatter plot of features across two single cells. Pearson correlation between the two cells is displayed above the plot.

Usage

```
CellScatter(
   object,
   cell1,
   cell2,
   features = NULL,
   highlight = NULL,
   cols = NULL,
   pt.size = 1,
   smooth = FALSE,
   raster = NULL,
   raster.dpi = c(512, 512)
)
```

Arguments

object	Seurat object
cell1	Cell 1 name
cell2	Cell 2 name
features	Features to plot (default, all features)
highlight	Features to highlight
cols	Colors to use for identity class plotting.
pt.size	Size of the points on the plot
smooth	Smooth the graph (similar to smoothScatter)
raster	Convert points to raster format, default is NULL which will automatically use raster if the number of points plotted is greater than 100,000
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore (). Default is c(512, 512).

Value

A ggplot object

Examples

```
data("pbmc_small")
CellScatter(object = pbmc_small, cell1 = 'ATAGGAGAAACAGA', cell2 = 'CATCAGGATGCACA')
```

CellSelector Cell Selector

Description

Select points on a scatterplot and get information about them

Usage

```
CellSelector(plot, object = NULL, ident = "SelectedCells", ...)
```

```
FeatureLocator(plot, ...)
```

Arguments

plot	A ggplot2 plot
object	An optional Seurat object; if passes, will return an object with the identities of selected cells set to ${\tt ident}$
ident	An optional new identity class to assign the selected cells
	Ignored

Value

If object is NULL, the names of the points selected; otherwise, a Seurat object with the selected cells identity classes set to ident

See Also

DimPlot FeaturePlot

Examples

```
## Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
# Follow instructions in the terminal to select points
cells.located <- CellSelector(plot = plot)
cells.located
# Automatically set the identity class of selected cells and return a new Seurat object
pbmc_small <- CellSelector(plot = plot, object = pbmc_small, ident = 'SelectedCells')</pre>
```

```
CollapseEmbeddingOutliers
```

Move outliers towards center on dimension reduction plot

Description

Move outliers towards center on dimension reduction plot

Usage

```
CollapseEmbeddingOutliers(
   object,
   reduction = "umap",
   dims = 1:2,
   group.by = "ident",
   outlier.sd = 2,
   reduction.key = "UMAP_"
)
```

Arguments

object	Seurat object
reduction	Name of DimReduc to adjust
dims	Dimensions to visualize
group.by	Group (color) cells in different ways (for example, orig.ident)
outlier.sd	Controls the outlier distance
reduction.key	Key for DimReduc that is returned

Value

Returns a DimReduc object with the modified embeddings

Examples

```
## Not run:
data("pbmc_small")
pbmc_small <- FindClusters(pbmc_small, resolution = 1.1)
pbmc_small <- RunUMAP(pbmc_small, dims = 1:5)
DimPlot(pbmc_small, reduction = "umap")
pbmc_small[["umap_new"]] <- CollapseEmbeddingOutliers(pbmc_small,
    reduction = "umap", reduction.key = 'umap_', outlier.sd = 0.5)
DimPlot(pbmc_small, reduction = "umap_new")
```

CollapseSpeciesExpressionMatrix

Slim down a multi-species expression matrix, when only one species is primarily of interenst.

Description

Valuable for CITE-seq analyses, where we typically spike in rare populations of 'negative control' cells from a different species.

Usage

```
CollapseSpeciesExpressionMatrix(
   object,
   prefix = "HUMAN_",
   controls = "MOUSE_",
   ncontrols = 100
)
```

Arguments

object	A UMI count matrix. Should contain rownames that start with the ensuing arguments prefix.1 or prefix.2
prefix	The prefix denoting rownames for the species of interest. Default is "HU-MAN_". These rownames will have this prefix removed in the returned matrix.
controls	The prefix denoting rownames for the species of 'negative control' cells. Default is "MOUSE_".
ncontrols	How many of the most highly expressed (average) negative control fea- tures (by default, 100 mouse genes), should be kept? All other rownames starting with prefix.2 are discarded.

Value

A UMI count matrix. Rownames that started with prefix have this prefix discarded. For rownames starting with controls, only the ncontrols most highly expressed features are kept, and the prefix is kept. All other rows are retained.

Examples

```
## Not run:
cbmc.rna.collapsed <- CollapseSpeciesExpressionMatrix(cbmc.rna)</pre>
```

ColorDimSplit

Description

Returns a DimPlot colored based on whether the cells fall in clusters to the left or to the right of a node split in the cluster tree.

Usage

```
ColorDimSplit(
   object,
   node,
   left.color = "red",
   right.color = "blue",
   other.color = "grey50",
   ...
)
```

object	Seurat object
node	Node in cluster tree on which to base the split
left.color	Color for the left side of the split
right.color	Color for the right side of the split
other.color	Color for all other cells
	Arguments passed on to DimPlot
	$dims\ Dimensions\ to\ plot,\ must\ be\ a\ two-length\ numeric\ vector\ specifying\ x-\ and\ y-dimensions$
	cells Vector of cells to plot (default is all cells)
	<pre>cols Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by brewer.pal.info. By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.</pre>
	pt.size Adjust point size for plotting
	<pre>reduction Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca</pre>
	<pre>group.by Name of one or more metadata columns to group (color) cells</pre>
	<pre>split.by A factor in object metadata to split the plot by, pass 'ident' to split by cell identity</pre>

- shape.by If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if raster = FALSE.
- order Specify the order of plotting for the idents. This can be useful for crowded plots if points of interest are being buried. Provide either a full list of valid idents or a subset to be plotted last (on top)
- shuffle Whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. (default is FALSE)
- seed Sets the seed if randomly shuffling the order of points.
- label Whether to label the clusters
- label.size Sets size of labels
- label.color Sets the color of the label text
- label.box Whether to put a box around the label text (geom_text vs geom_label)
- alpha Alpha value for plotting (default is 1)

repel Repel labels

stroke.size Adjust stroke (outline) size of points

- cells.highlight A list of character or numeric vectors of cells to highlight. If only one group of cells desired, can simply pass a vector instead of a list. If set, colors selected cells to the color(s) in cols.highlight and other cells black (white if dark.theme = TRUE); will also resize to the size(s) passed to sizes.highlight
- cols.highlight A vector of colors to highlight the cells as; will repeat to the length groups in cells.highlight
- sizes.highlight Size of highlighted cells; will repeat to the length groups
 in cells.highlight. If sizes.highlight = TRUE size of all points will be
 this value.
- na.value Color value for NA points when using custom scale
- ncol Number of columns for display when combining plots
- combine Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects
- raster Convert points to raster format, default is NULL which automatically rasterizes if plotting more than 100,000 cells
- raster.dpi Pixel resolution for rasterized plots, passed to geom_scattermore(). Default is c(512, 512).

Value

Returns a DimPlot

See Also

DimPlot

Examples

```
## Not run:
if (requireNamespace("ape", quietly = TRUE)) {
    data("pbmc_small")
    pbmc_small <- BuildClusterTree(object = pbmc_small, verbose = FALSE)
    PlotClusterTree(pbmc_small)
    ColorDimSplit(pbmc_small, node = 5)
}
## End(Not run)
```

CombinePlots Combine ggplot2-based plots into a single plot

Description

Combine ggplot2-based plots into a single plot

Usage

CombinePlots(plots, ncol = NULL, legend = NULL, ...)

Arguments

plots	A list of gg objects
ncol	Number of columns
legend	Combine legends into a single legend choose from 'right' or 'bottom'; pass 'none' to remove legends, or NULL to leave legends as they are
	Extra parameters passed to plot_grid

Value

A combined plot

Examples

```
data("pbmc_small")
pbmc_small[['group']] <- sample(
  x = c('g1', 'g2'),
  size = ncol(x = pbmc_small),
  replace = TRUE
)
plot1 <- FeaturePlot(
  object = pbmc_small,
  features = 'MS4A1',
  split.by = 'group'
)</pre>
```

44

contrast-theory

```
plot2 <- FeaturePlot(
    object = pbmc_small,
    features = 'FCN1',
    split.by = 'group'
)
CombinePlots(
    plots = list(plot1, plot2),
    legend = 'none',
    nrow = length(x = unique(x = pbmc_small[['group', drop = TRUE]]))
)
```

contrast-theory Get the intensity and/or luminance of a color

Description

Get the intensity and/or luminance of a color

Usage

Intensity(color)

Luminance(color)

Arguments

color A vector of colors

Value

A vector of intensities/luminances for each color

Source

https://stackoverflow.com/questions/3942878/how-to-decide-font-color-in-white-or-black-depending-o

Examples

```
Intensity(color = c('black', 'white', '#E76BF3'))
Luminance(color = c('black', 'white', '#E76BF3'))
```

CreateCategoryMatrix Create one hot matrix for a given label

Description

Create one hot matrix for a given label

Usage

```
CreateCategoryMatrix(
  labels,
  method = c("aggregate", "average"),
  cells.name = NULL
)
```

Arguments

labels	A vector of labels
method	Method to aggregate cells with the same label. Either 'aggregate' or 'average'
cells.name	A vector of cell names

CreateSCTAssayObject Create a SCT Assay object

Description

Create a SCT object from a feature (e.g. gene) expression matrix and a list of SCTModels. The expected format of the input matrix is features x cells.

Usage

```
CreateSCTAssayObject(
  counts,
  data,
  scale.data = NULL,
  umi.assay = "RNA",
  min.cells = 0,
  min.features = 0,
  SCTModel.list = NULL
)
```

Custom Distance

Arguments

counts	Unnormalized data such as raw counts or TPMs	
data	Prenormalized data; if provided, do not pass counts	
scale.data	a residual matrix	
umi.assay	The UMI assay name. Default is RNA	
min.cells	Include features detected in at least this many cells. Will subset the counts matrix as well. To reintroduce excluded features, create a new object with a lower cutoff	
min.features	Include cells where at least this many features are detected	
SCTModel.list	list of SCTModels	

Details

Non-unique cell or feature names are not allowed. Please make unique before calling this function.

CustomDistance	Run a custom a	listance function of	n an input data matrix
----------------	----------------	----------------------	------------------------

Description

Run a custom distance function on an input data matrix

Usage

```
CustomDistance(my.mat, my.function, ...)
```

Arguments

my.mat	A matrix to calculate distance on
my.function	A function to calculate distance
	Extra parameters to my.function

Value

A distance matrix

Author(s)

Jean Fan

Examples

```
data("pbmc_small")
# Define custom distance matrix
manhattan.distance <- function(x, y) return(sum(abs(x-y)))
input.data <- GetAssayData(pbmc_small, assay.type = "RNA", slot = "scale.data")
cell.manhattan.dist <- CustomDistance(input.data, manhattan.distance)</pre>
```

DEenrichRPlot DE and EnrichR pathway visualization barplot

Description

DE and EnrichR pathway visualization barplot

Usage

```
DEenrichRPlot(
   object,
   ident.1 = NULL,
   ident.2 = NULL,
   balanced = TRUE,
   logfc.threshold = 0.25,
   assay = NULL,
   max.genes,
   test.use = "wilcox",
   p.val.cutoff = 0.05,
   cols = NULL,
   enrich.database = NULL,
   num.pathway = 10,
   return.gene.list = FALSE,
   ...
)
```

Arguments

object	Name of object class Seurat.
ident.1	Cell class identity 1.
ident.2	Cell class identity 2.
balanced	Option to display pathway enrichments for both negative and positive DE genes. If false, only positive DE gene will be displayed.
logfc.threshold	1

Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.25. Increasing logfc.threshold speeds up the function, but can miss weaker signals.

48

assay	Assay to use in differential expression testing
max.genes	Maximum number of genes to use as input to enrichR.
test.use	Denotes which test to use. Available options are:
	 "wilcox": Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed "wilcox_limma": Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
	 "bimod" : Likelihood-ratio test for single cell gene expression, (Mc- David et al., Bioinformatics, 2013)
	 "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes. "t" : Identify differentially expressed genes. "negbinom" : Identifies differentially expressed genes between two
	• negotion . Identifies differentiarly expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
	• "poisson": Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI- based datasets
	• "LR" : Uses a logistic regression framework to determine differen- tially expressed genes. Constructs a logistic regression model pre- dicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
	• "MAST": Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
	• "DESeq2": Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative bino- mial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of genes based on average difference (or per- cent detection rate) between cell groups. However, genes may be pre- filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the in- structions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html
p.val.cutoff	Cutoff to select DE genes.
cols	A list of colors to use for barplots.

enrich.database	
	Database to use from enrichR.
num.pathway	Number of pathways to display in barplot.
return.gene.lis	t
	Return list of DE genes
	Arguments passed to other methods and to specific DE methods

Value

Returns one (only enriched) or two (both enriched and depleted) barplots with the top enriched/depleted GO terms from EnrichR.

DietSeurat

Slim down a Seurat object

Description

Keep only certain aspects of the Seurat object. Can be useful in functions that utilize merge as it reduces the amount of data in the merge

Usage

```
DietSeurat(
   object,
   layers = NULL,
   features = NULL,
   assays = NULL,
   dimreducs = NULL,
   graphs = NULL,
   misc = TRUE,
   counts = deprecated(),
   data = deprecated(),
   scale.data = deprecated(),
   ...
)
```

object	A Seurat object
layers	A vector or named list of layers to keep
features	Only keep a subset of features, defaults to all features
assays	Only keep a subset of assays specified here
dimreducs	Only keep a subset of $\operatorname{Dim} \operatorname{Reducs}$ specified here (if NULL, remove all Dim-Reducs)
graphs	Only keep a subset of Graphs specified here (if $NULL,$ remove all Graphs)

DimHeatmap

misc	Preserve the misc slot; default is TRUE $% \mathcal{A}$
counts	Preserve the count matrices for the assays specified
data	Preserve the data matrices for the assays specified
scale.data	Preserve the scale data matrices for the assays specified
•••	Ignored

Value

object with only the sub-object specified retained

DimHeatmap

Dimensional reduction heatmap

Description

Draws a heatmap focusing on a principal component. Both cells and genes are sorted by their principal component scores. Allows for nice visualization of sources of heterogeneity in the dataset.

Usage

```
DimHeatmap(
 object,
 dims = 1,
  nfeatures = 30,
  cells = NULL,
  reduction = "pca",
  disp.min = -2.5,
  disp.max = NULL,
  balanced = TRUE,
  projected = FALSE,
  ncol = NULL,
  fast = TRUE,
  raster = TRUE,
  slot = "scale.data",
  assays = NULL,
  combine = TRUE
)
```

PCHeatmap(object, ...)

object	Seurat object
dims	Dimensions to plot
nfeatures	Number of genes to plot

cells	A list of cells to plot. If numeric, just plots the top cells.
reduction	Which dimensional reduction to use
disp.min	Minimum display value (all values below are clipped)
disp.max	Maximum display value (all values above are clipped); defaults to 2.5 if slot is 'scale.data', 6 otherwise
balanced	Plot an equal number of genes with both $+$ and $-$ scores.
projected	Use the full projected dimensional reduction
ncol	Number of columns to plot
fast	If true, use image to generate plots; faster than using ggplot2, but not customizable
raster	If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry on some viewing applications such as Preview due to how the raster is interpolated. Set this to FALSE if you are encountering that issue (note that plots may take longer to produce/render).
slot	Data slot to use, choose from 'raw.data', 'data', or 'scale.data'
assays	A vector of assays to pull data from
combine	Combine plots into a single ${\tt patchworked}$ ggplot object. If ${\tt FALSE},$ return a list of ggplot objects
	Extra parameters passed to DimHeatmap

Value

No return value by default. If using fast = FALSE, will return a patchworked ggplot object if combine = TRUE, otherwise returns a list of ggplot objects

See Also

image geom_raster

Examples

```
data("pbmc_small")
DimHeatmap(object = pbmc_small)
```

DimPlot

Dimensional reduction plot

Description

Graphs the output of a dimensional reduction technique on a 2D scatter plot where each point is a cell and it's positioned based on the cell embeddings determined by the reduction technique. By default, cells are colored by their identity class (can be changed with the group.by parameter).

DimPlot

Usage

```
DimPlot(
 object,
  dims = c(1, 2),
  cells = NULL,
  cols = NULL,
  pt.size = NULL,
  reduction = NULL,
  group.by = NULL,
  split.by = NULL,
  shape.by = NULL,
  order = NULL,
  shuffle = FALSE,
  seed = 1,
  label = FALSE,
  label.size = 4,
  label.color = "black",
  label.box = FALSE,
  repel = FALSE,
  alpha = 1,
  stroke.size = NULL,
  cells.highlight = NULL,
  cols.highlight = "#DE2D26",
  sizes.highlight = 1,
  na.value = "grey50",
  ncol = NULL,
  combine = TRUE,
  raster = NULL,
  raster.dpi = c(512, 512)
)
PCAPlot(object, ...)
TSNEPlot(object, ...)
```

UMAPPlot(object, ...)

object	Seurat object
dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions
cells	Vector of cells to plot (default is all cells)
cols	Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by brewer.pal.info . By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.

pt.size	Adjust point size for plotting
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
split.by	A factor in object metadata to split the plot by, pass 'ident' to split by cell identity
shape.by	If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if raster = FALSE.
order	Specify the order of plotting for the idents. This can be useful for crowded plots if points of interest are being buried. Provide either a full list of valid idents or a subset to be plotted last (on top)
shuffle	Whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. (default is FALSE)
seed	Sets the seed if randomly shuffling the order of points.
label	Whether to label the clusters
label.size	Sets size of labels
label.color	Sets the color of the label text
label.box	Whether to put a box around the label text (geom_text vs geom_label)
repel	Repel labels
alpha	Alpha value for plotting (default is 1)
stroke.size	Adjust stroke (outline) size of points
cells.highligh	
	A list of character or numeric vectors of cells to highlight. If only one group of cells desired, can simply pass a vector instead of a list. If set, colors selected cells to the color(s) in cols.highlight and other cells black (white if dark.theme = TRUE); will also resize to the size(s) passed to sizes.highlight
cols.highlight	A vector of colors to highlight the cells as; will repeat to the length groups in cells.highlight
sizes.highligh	
	Size of highlighted cells; will repeat to the length groups in cells.highlight. If sizes.highlight = TRUE size of all points will be this value.
na.value	Color value for NA points when using custom scale
ncol	Number of columns for display when combining plots
combine	Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects
raster	Convert points to raster format, default is NULL which automatically rasterizes if plotting more than 100,000 cells
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore (). Default is c(512, 512).
	Extra parameters passed to DimPlot

DimReduc-class

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Note

For the old do.hover and do.identify functionality, please see HoverLocator and CellSelector, respectively.

See Also

FeaturePlot HoverLocator CellSelector FetchData

Examples

```
data("pbmc_small")
DimPlot(object = pbmc_small)
DimPlot(object = pbmc_small, split.by = 'letter.idents')
```

DimReduc-class The DimReduc Class

Description

The DimReduc object stores a dimensionality reduction taken out in Seurat; for more details, please see the documentation in SeuratObject

See Also

SeuratObject::DimReduc-class

DiscretePalette Discrete colour palettes from pals

Description

These are included here because pals depends on a number of compiled packages, and this can lead to increases in run time for Travis, and generally should be avoided when possible.

Usage

```
DiscretePalette(n, palette = NULL, shuffle = FALSE)
```

Arguments

n	Number of colours to be generated.
palette	Options are "alphabet", "alphabet2", "glasbey", "polychrome", "stepped", and "parade". Can be omitted and the function will use the one based on the requested n.
shuffle	Shuffle the colors in the selected palette.

Details

These palettes are a much better default for data with many classes than the default ggplot2 palette.

Many thanks to Kevin Wright for writing the pals package.

Taken from the pals package (Licence: GPL-3). https://cran.r-project.org/package=pals Credit: Kevin Wright

Value

A vector of colors

DoHeatmap

Feature expression heatmap

Description

Draws a heatmap of single cell feature expression.

Usage

```
DoHeatmap(
  object,
  features = NULL,
  cells = NULL,
  group.by = "ident",
  group.bar = TRUE,
  group.colors = NULL,
  disp.min = -2.5,
  disp.max = NULL,
  slot = "scale.data",
  assay = NULL,
  label = TRUE,
  size = 5.5,
  hjust = 0,
  vjust = 0,
  angle = 45,
  raster = TRUE,
  draw.lines = TRUE,
```

DoHeatmap

```
lines.width = NULL,
group.bar.height = 0.02,
combine = TRUE
)
```

Arguments

object	Seurat object
features	A vector of features to plot, defaults to VariableFeatures(object = object)
cells	A vector of cells to plot
group.by	A vector of variables to group cells by; pass 'ident' to group by cell identity classes
group.bar	Add a color bar showing group status for cells
group.colors	Colors to use for the color bar
disp.min	Minimum display value (all values below are clipped)
disp.max	Maximum display value (all values above are clipped); defaults to 2.5 if slot is 'scale.data', 6 otherwise
slot	Data slot to use, choose from 'raw.data', 'data', or 'scale.data'
assay	Assay to pull from
label	Label the cell identies above the color bar
size	Size of text above color bar
hjust	Horizontal justification of text above color bar
vjust	Vertical justification of text above color bar
angle	Angle of text above color bar
raster	If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry on some viewing applications such as Preview due to how the raster is interpolated. Set this to FALSE if you are encountering that issue (note that plots may take longer to produce/render).
draw.lines	Include white lines to separate the groups
lines.width	Integer number to adjust the width of the separating white lines. Corresponds to the number of "cells" between each group.
group.bar.height	
	Scale the height of the color bar
combine	Combine plots into a single ${\tt patchworked}$ ggplot object. If ${\tt FALSE},$ return a list of ggplot objects

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Examples

data("pbmc_small")
DoHeatmap(object = pbmc_small)

DotPlot

Description

Intuitive way of visualizing how feature expression changes across different identity classes (clusters). The size of the dot encodes the percentage of cells within a class, while the color encodes the AverageExpression level across all cells within a class (blue is high).

Usage

```
DotPlot(
  object,
  features,
  assay = NULL,
  cols = c("lightgrey", "blue"),
  col.min = -2.5,
  col.max = 2.5,
  dot.min = 0,
  dot.scale = 6,
  idents = NULL,
  group.by = NULL,
  split.by = NULL,
  cluster.idents = FALSE,
  scale = TRUE,
  scale.by = "radius",
  scale.min = NA,
  scale.max = NA
)
```

object	Seurat object
features	Input vector of features, or named list of feature vectors if feature-grouped panels are desired (replicates the functionality of the old $PlitDotPlotGG$)
assay	Name of assay to use, defaults to the active assay
cols	Colors to plot: the name of a palette from RColorBrewer::brewer.pal.info, a pair of colors defining a gradient, or $3+$ colors defining multiple gradients (if split.by is set)
col.min	Minimum scaled average expression threshold (everything smaller will be set to this)
col.max	Maximum scaled average expression threshold (everything larger will be set to this)
dot.min	The fraction of cells at which to draw the smallest dot (default is 0). All cell groups with less than this expressing the given gene will have no dot drawn.

ElbowPlot

dot.scale	Scale the size of the points, similar to cex
idents	Identity classes to include in plot (default is all)
group.by	Factor to group the cells by
split.by	A factor in object metadata to split the plot by, pass 'ident' to split by cell identity see FetchData for more details
cluster.idents	Whether to order identities by hierarchical clusters based on given features, default is FALSE
scale	Determine whether the data is scaled, TRUE for default
scale.by	Scale the size of the points by 'size' or by 'radius'
scale.min	Set lower limit for scaling, use NA for default
<pre>scale.max</pre>	Set upper limit for scaling, use NA for default

Value

A ggplot object

See Also

RColorBrewer::brewer.pal.info

Examples

```
data("pbmc_small")
cd_genes <- c("CD247", "CD3E", "CD9")
DotPlot(object = pbmc_small, features = cd_genes)
pbmc_small[['groups']] <- sample(x = c('g1', 'g2'), size = ncol(x = pbmc_small), replace = TRUE)
DotPlot(object = pbmc_small, features = cd_genes, split.by = 'groups')</pre>
```

ElbowPlot

Quickly Pick Relevant Dimensions

Description

Plots the standard deviations (or approximate singular values if running PCAFast) of the principle components for easy identification of an elbow in the graph. This elbow often corresponds well with the significant dims and is much faster to run than Jackstraw

Usage

ElbowPlot(object, ndims = 20, reduction = "pca")

object	Seurat object
ndims	Number of dimensions to plot standard deviation for
reduction	Reduction technique to plot standard deviation for

Value

A ggplot object

Examples

```
data("pbmc_small")
ElbowPlot(object = pbmc_small)
```

ExpMean

Calculate the mean of logged values

Description

Calculate mean of logged values in non-log space (return answer in log-space)

Usage

ExpMean(x, ...)

Arguments

х	A vector of values
	Other arguments (not used)

Value

Returns the mean in log-space

Examples

ExpMean(x = c(1, 2, 3))

ExpSDCalculate the standard deviation of logged values	
--	--

Description

Calculate SD of logged values in non-log space (return answer in log-space)

Usage

ExpSD(x)

ExpVar

Arguments

x A vector of values

Value

Returns the standard deviation in log-space

Examples

ExpSD(x = c(1, 2, 3))

ExpVar

Calculate the variance of logged values

Description

Calculate variance of logged values in non-log space (return answer in log-space)

Usage

ExpVar(x)

Arguments

x A vector of values

Value

Returns the variance in log-space

Examples

ExpVar(x = c(1, 2, 3))

FastRowScale

Description

Performs row scaling and/or centering. Equivalent to using t(scale(t(mat))) in R except in the case of NA values.

Usage

```
FastRowScale(mat, center = TRUE, scale = TRUE, scale_max = 10)
```

Arguments

mat	A matrix
center	a logical value indicating whether to center the rows
scale	a logical value indicating whether to scale the rows
<pre>scale_max</pre>	clip all values greater than scale_max to scale_max. Don't clip if Inf.

Value

Returns the center/scaled matrix

FastRPCAIntegration Perform integration on the joint PCA cell embeddings.

Description

This is a convenience wrapper function around the following three functions that are often run together when perform integration. FindIntegrationAnchors, RunPCA, IntegrateEmbeddings.

Usage

```
FastRPCAIntegration(
    object.list,
    reference = NULL,
    anchor.features = 2000,
    k.anchor = 20,
    dims = 1:30,
    scale = TRUE,
    normalization.method = c("LogNormalize", "SCT"),
    new.reduction.name = "integrated_dr",
    npcs = 50,
    findintegrationanchors.args = list(),
    verbose = TRUE
)
```

FeaturePlot

Arguments

object.list	A list of Seurat objects between which to find anchors for downstream integration.	
reference	A vector specifying the object/s to be used as a reference during integra- tion. If NULL (default), all pairwise anchors are found (no reference/s). If not NULL, the corresponding objects in object.list will be used as references. When using a set of specified references, anchors are first found between each query and each reference. The references are then integrated through pairwise integration. Each query is then mapped to the integrated reference.	
anchor.features		
	Can be either:	
	 A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding A vector of features to be used as input to the anchor finding process 	
k.anchor	How many neighbors (k) to use when picking anchors	
dims	Which dimensions to use from the CCA to specify the neighbor search space	
scale	Whether or not to scale the features provided. Only set to FALSE if you have previously scaled the features you want to use for each object in the object.list	
normalization.method		
	Name of normalization method used: LogNormalize or SCT	
new.reduction.name		
	Name of integrated dimensional reduction	
npcs	Total Number of PCs to compute and store (50 by default)	
findintegrationanchors.args		
	A named list of additional arguments to FindIntegrationAnchors	
verbose	Print messages and progress	

Value

Returns a Seurat object with integrated dimensional reduction

FeaturePlot

Visualize 'features' on a dimensional reduction plot

Description

Colors single cells on a dimensional reduction plot according to a 'feature' (i.e. gene expression, PC scores, number of genes detected, etc.)

Usage

```
FeaturePlot(
  object,
  features,
  dims = c(1, 2),
 cells = NULL,
  cols = if (blend) {
     c("lightgrey", "#ff0000", "#00ff00")
 } else {
   c("lightgrey", "blue")
},
 pt.size = NULL,
  alpha = 1,
  order = FALSE,
 min.cutoff = NA,
 max.cutoff = NA,
  reduction = NULL,
  split.by = NULL,
  keep.scale = "feature",
  shape.by = NULL,
  slot = "data",
  blend = FALSE,
 blend.threshold = 0.5,
  label = FALSE,
  label.size = 4,
  label.color = "black",
  repel = FALSE,
  ncol = NULL,
  coord.fixed = FALSE,
  by.col = TRUE,
  sort.cell = deprecated(),
  interactive = FALSE,
  combine = TRUE,
 raster = NULL,
  raster.dpi = c(512, 512)
)
```

Arguments

object	Seurat object
features	Vector of features to plot. Features can come from:
	• An Assay feature (e.g. a gene name - "MS4A1")
	• A column name from meta.data (e.g. mitochondrial percentage - "percent.mito")
	• A column name from a DimReduc object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC 1")

64

dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions
cells	Vector of cells to plot (default is all cells)
cols	The two colors to form the gradient over. Provide as string vector with the first color corresponding to low values, the second to high. Also accepts a Brewer color scale or vector of colors. Note: this will bin the data into number of colors provided. When blend is TRUE, takes anywhere from 1-3 colors:
	1 color: Treated as color for double-negatives, will use default colors 2 and 3 for per-feature expression
	2 colors: Treated as colors for per-feature expression, will use default color 1 for double-negatives
	$\mathbf{3+}$ colors: First color used for double-negatives, colors 2 and 3 used for per-feature expression, all others ignored
pt.size	Adjust point size for plotting
alpha	Alpha value for plotting (default is 1)
order	Boolean determining whether to plot cells in order of expression. Can be useful if cells expressing given feature are getting buried.
<pre>min.cutoff, max.</pre>	
	Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of ' $q##$ ' where ' $##$ ' is the quantile (eg, 'q1', 'q10')
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
split.by	A factor in object metadata to split the plot by, pass 'ident' to split by cell identity
keep.scale	How to handle the color scale across multiple plots. Options are:
	• "feature" (default; by row/feature scaling): The plots for each indi- vidual feature are scaled to the maximum expression of the feature across the conditions provided to split.by
	 "all" (universal scaling): The plots for all features and conditions are scaled to the maximum expression value for the feature with the highest overall expression Nuul (no cooling): Each individual plot is cooled to the maximum expression
	• NULL (no scaling): Each individual plot is scaled to the maximum expression value of the feature in the condition provided to split.by. Be aware setting NULL will result in color scales that are not comparable between plots
shape.by	If NULL, all points are circles (default). You can specify any cell attribute (that can be pulled with FetchData) allowing for both different colors and different shapes on cells. Only applicable if raster = FALSE.
slot	Which slot to pull expression data from?
blend	Scale and blend expression values to visualize coexpression of two features
blend.threshold	

The color cutoff from weak signal to strong signal; ranges from 0 to 1.

label	Whether to label the clusters
label.size	Sets size of labels
label.color	Sets the color of the label text
repel	Repel labels
ncol	Number of columns to combine multiple feature plots to, ignored if $\verb+split.by$ is not <code>NULL</code>
coord.fixed	Plot cartesian coordinates with fixed aspect ratio
by.col	If splitting by a factor, plot the splits per column with the features as rows; ignored if ${\sf blend}={\sf TRUE}$
sort.cell	Redundant with order. This argument is being deprecated. Please use order instead.
interactive	Launch an interactive FeaturePlot
combine	Combine plots into a single $\verb+patchworked+$ ggplot object. If FALSE, return a list of ggplot objects
raster	Convert points to raster format, default is NULL which automatically rasterizes if plotting more than 100,000 cells
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore (). Default is c(512, 512).

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Note

For the old do.hover and do.identify functionality, please see HoverLocator and CellSelector, respectively.

See Also

DimPlot HoverLocator CellSelector

Examples

```
data("pbmc_small")
FeaturePlot(object = pbmc_small, features = 'PC_1')
```

FeatureScatter

Description

Creates a scatter plot of two features (typically feature expression), across a set of single cells. Cells are colored by their identity class. Pearson correlation between the two features is displayed above the plot.

Usage

```
FeatureScatter(
  object,
  feature1,
  feature2,
  cells = NULL,
  shuffle = FALSE,
  seed = 1,
  group.by = NULL,
  split.by = NULL,
  cols = NULL,
  pt.size = 1,
  shape.by = NULL,
  span = NULL,
  smooth = FALSE,
  combine = TRUE,
  slot = "data",
  plot.cor = TRUE,
 ncol = NULL,
  raster = NULL,
  raster.dpi = c(512, 512),
  jitter = FALSE,
 log = FALSE
)
```

object	Seurat object
feature1	First feature to plot. Typically feature expression but can also be metrics, PC scores, etc anything that can be retreived with FetchData
feature2	Second feature to plot.
cells	Cells to include on the scatter plot.
shuffle	Whether to randomly shuffle the order of points. This can be useful for crowded plots if points of interest are being buried. (default is FALSE)
seed	Sets the seed if randomly shuffling the order of points.

group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
split.by	A factor in object metadata to split the feature plot by, pass 'ident' to split by cell identity
cols	Colors to use for identity class plotting.
pt.size	Size of the points on the plot
shape.by	Ignored for now
span	Spline span in loess function call, if NULL, no spline added
smooth	Smooth the graph (similar to smoothScatter)
combine	Combine plots into a single patchworked
slot	Slot to pull data from, should be one of 'counts', 'data', or 'scale.data'
plot.cor	Display correlation in plot title
ncol	Number of columns if plotting multiple plots
raster	Convert points to raster format, default is NULL which will automatically use raster if the number of points plotted is greater than $100,000$
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore (). Default is c(512, 512).
jitter	Jitter for easier visualization of crowded points (default is FALSE)
log	Plot features on the log scale (default is FALSE)

Value

A ggplot object

Examples

```
data("pbmc_small")
FeatureScatter(object = pbmc_small, feature1 = 'CD9', feature2 = 'CD3E')
```

FetchResiduals Calculate pearson residuals of features not in the scale.data

Description

This function calls sctransform::get_residuals.

FetchResiduals

Usage

```
FetchResiduals(
   object,
   features,
   assay = NULL,
   umi.assay = "RNA",
   layer = "counts",
   clip.range = NULL,
   reference.SCT.model = NULL,
   replace.value = FALSE,
   na.rm = TRUE,
   verbose = TRUE
)
```

Arguments

object	A seurat object	
features	Name of features to add into the scale.data	
assay	Name of the assay of the seurat object generated by SCTransform	
umi.assay	Name of the assay of the seurat object containing UMI matrix and the default is RNA	
layer	Name (prefix) of the layer to pull counts from	
clip.range	Numeric of length two specifying the min and max values the Pearson residual will be clipped to	
reference.SCT.model		
	reference.SCT.model If a reference SCT model should be used for cal- culating the residuals. When set to not NULL, ignores the 'SCTModel' paramater.	
replace.value	Recalculate residuals for all features, even if they are already present. Useful if you want to change the clip.range.	
na.rm	For features where there is no feature model stored, return NA for residual value in scale.data when $na.rm = FALSE$. When $na.rm$ is TRUE, only return residuals for features with a model stored for all cells.	
verbose	Whether to print messages and progress bars	

Value

Returns a Seurat object containing Pearson residuals of added features in its scale.data

See Also

get_residuals

FilterSlideSeq

Description

This function is useful for removing stray beads that fall outside the main Slide-seq puck area. Essentially, it's a circular filter where you set a center and radius defining a circle of beads to keep. If the center is not set, it will be estimated from the bead coordinates (removing the 1st and 99th quantile to avoid skewing the center by the stray beads). By default, this function will display a SpatialDimPlot showing which cells were removed for easy adjustment of the center and/or radius.

Usage

```
FilterSlideSeq(
  object,
  image = "image",
  center = NULL,
  radius = NULL,
  do.plot = TRUE
)
```

Arguments

object	Seurat object with slide-seq data
image	Name of the image where the coordinates are stored
center	Vector specifying the x and y coordinates for the center of the inclusion circle
radius	Radius of the circle of inclusion
do.plot	Display a SpatialDimPlot with the cells being removed labeled.

Value

Returns a Seurat object with only the subset of cells that pass the circular filter

Examples

```
## Not run:
# This example uses the ssHippo dataset which you can download
# using the SeuratData package.
library(SeuratData)
data('ssHippo')
# perform filtering of beads
ssHippo.filtered <- FilterSlideSeq(ssHippo, radius = 2300)</pre>
# This radius looks to small so increase and repeat until satisfied
```

FindAllMarkers

Description

Finds markers (differentially expressed genes) for each of the identity classes in a dataset

Usage

```
FindAllMarkers(
  object,
  assay = NULL,
  features = NULL,
  group.by = NULL,
  logfc.threshold = 0.1,
  test.use = "wilcox",
  slot = "data",
 min.pct = 0.01,
 min.diff.pct = -Inf,
  node = NULL,
  verbose = TRUE,
  only.pos = FALSE,
 max.cells.per.ident = Inf,
  random.seed = 1,
  latent.vars = NULL,
 min.cells.feature = 3,
 min.cells.group = 3,
 mean.fxn = NULL,
  fc.name = NULL,
  base = 2,
  return.thresh = 0.01,
  densify = FALSE,
  . . .
)
```

Arguments

object	An object
assay	Assay to use in differential expression testing
features	Genes to test. Default is to use all genes
group.by	Regroup cells into a different identity class prior to performing differential expression (see example); "ident" to use Idents
logfc.threshold	
	Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.1 Increasing logfc threshold speeds up the function, but can miss weaker signals. If

logfc.threshold speeds up the function, but can miss weaker signals. If the **slot** parameter is "scale.data" no filtering is performed. test.use

slot

Denotes which test to use. Available options are:

- "wilcox" : Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed
- "wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
- "bimod" : Likelihood-ratio test for single cell gene expression, (Mc-David et al., Bioinformatics, 2013)
- "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.
- "t" : Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMIbased datasets
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST": Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2": Identifies differentially expressed genes between two groups
 of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does
 not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be prefiltered based on their minimum detection rate (min.pct) across both
 cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html
- Slot to pull data from; note that if test.use is "negbinom", "poisson", or "DESeq2", slot will be set to "counts"
- min.pctonly test genes that are detected in a minimum fraction of min.pct cells
in either of the two populations. Meant to speed up the function by not
testing genes that are very infrequently expressed. Default is 0.01

<pre>min.diff.pct</pre>	only test genes that show a minimum difference in the fraction of detection between the two groups. Set to -Inf by default
node	A node to find markers for and all its children; requires BuildClusterTree to have been run previously; replaces FindAllMarkersNode
verbose	Print a progress bar once expression testing begins
only.pos	Only return positive markers (FALSE by default)
<pre>max.cells.per.:</pre>	ident
	Down sample each identity class to a max number. Default is no down-sampling. Not activated by default (set to Inf)
random.seed	Random seed for downsampling
latent.vars	Variables to test, used only when test.use is one of 'LR', 'negbinom', 'poisson', or 'MAST'
<pre>min.cells.featu</pre>	ure
	Minimum number of cells expressing the feature in at least one of the two groups, currently only used for poisson and negative binomial tests
min.cells.group	0
	Minimum number of cells in one of the groups
mean.fxn	Function to use for fold change or average difference calculation. The default depends on the the value of $fc.slot$:
	• "counts" : difference in the log of the mean counts, with pseudocount.
	• "data" : difference in the log of the average exponentiated data, with pseudocount. This adjusts for differences in sequencing depth between cells, and assumes that "data" has been log-normalized.
	\bullet "scale.data" : difference in the means of scale.data.
fc.name	Name of the fold change, average difference, or custom function column in the output data.frame. If NULL, the fold change column will be named according to the logarithm base (eg, "avg_log2FC"), or if using the scale.data slot "avg_diff".
base	The base with respect to which logarithms are computed.
return.thresh	Only return markers that have a p-value $<$ return. thresh, or a power $>$ return.thresh (if the test is ROC)
densify	Convert the sparse matrix to a dense form before running the DE test. This can provide speedups but might require higher memory; default is FALSE
	Arguments passed to other methods and to specific DE methods

Value

Matrix containing a ranked list of putative markers, and associated statistics (p-values, ROC score, etc.)

Examples

```
data("pbmc_small")
# Find markers for all clusters
all.markers <- FindAllMarkers(object = pbmc_small)
head(x = all.markers)
## Not run:
# Pass a value to node as a replacement for FindAllMarkersNode
pbmc_small <- BuildClusterTree(object = pbmc_small)
all.markers <- FindAllMarkers(object = pbmc_small, node = 4)
head(x = all.markers)</pre>
```

End(Not run)

```
FindBridgeIntegrationAnchors
```

 $Find \ integration \ bridge \ anchors \ between \ query \ and \ extended \\ bridge-reference$

Description

Find a set of anchors between unimodal query and the other unimodal reference using a precomputed BridgeReferenceSet. These integration anchors can later be used to integrate query and reference using the IntegrateEmbeddings object.

Usage

```
FindBridgeIntegrationAnchors(
    extended.reference,
    query,
    query.assay = NULL,
    dims = 1:30,
    scale = FALSE,
    reduction = c("lsiproject", "pcaproject"),
    integration.reduction = c("direct", "cca"),
    verbose = TRUE
)
```

Arguments

extended.reference

	$Bridge Reference Set \ object \ generated \ from \ {\tt PrepareBridge Reference}$
query	A query Seurat object
query.assay	Assay name for query-bridge integration
dims	Number of dimensions for query-bridge integration
scale	Determine if scale the query data for projection

74

reduction	Dimensional reduction to perform when finding anchors. Options are:
	• pcaproject: Project the PCA from the bridge onto the query. We recommend using PCA when bridge and query datasets are from scRNA-seq
	• lsiproject: Project the LSI from the bridge onto the query. We recom- mend using LSI when bridge and query datasets are from scATAC-seq or scCUT&TAG data. This requires that LSI or supervised LSI has been computed for the bridge dataset, and the same features (eg, peaks or genome bins) are present in both the bridge and query.
integration.	reduction
	Dimensional reduction to perform when finding anchors between query and reference. Options are:
	direct: find anchors directly on the bridge representation spacecca: perform cca on the on the bridge representation space and then
	find anahona

find anchors

verbose

Print messages and progress

Value

Returns an AnchorSet object that can be used as input to IntegrateEmbeddings.

FindBridgeTransferAnchors

Find bridge anchors between query and extended bridge-reference

Description

Find a set of anchors between unimodal query and the other unimodal reference using a pre-computed BridgeReferenceSet. This function performs three steps: 1. Harmonize the bridge and query cells in the bridge query reduction space 2. Construct the bridge dictionary representations for query cells 3. Find a set of anchors between query and reference in the bridge graph laplacian eigenspace These anchors can later be used to integrate embeddings or transfer data from the reference to query object using the MapQuery object.

Usage

```
FindBridgeTransferAnchors(
  extended.reference,
  query,
  query.assay = NULL,
  dims = 1:30,
  scale = FALSE,
  reduction = c("lsiproject", "pcaproject"),
 bridge.reduction = c("direct", "cca"),
  verbose = TRUE
)
```

Arguments

extended.reference		
	$Bridge Reference Set \ object \ generated \ from \ {\tt PrepareBridge Reference}$	
query	A query Seurat object	
query.assay	Assay name for query-bridge integration	
dims	Number of dimensions for query-bridge integration	
scale	Determine if scale the query data for projection	
reduction	Dimensional reduction to perform when finding anchors. Options are:	
	• pcaproject: Project the PCA from the bridge onto the query. We recommend using PCA when bridge and query datasets are from scRNA-seq	
	• lsiproject: Project the LSI from the bridge onto the query. We recom- mend using LSI when bridge and query datasets are from scATAC-seq or scCUT&TAG data. This requires that LSI or supervised LSI has been computed for the bridge dataset, and the same features (eg, peaks or genome bins) are present in both the bridge and query.	
bridge.reduction		
	Dimensional reduction to perform when finding anchors. Can be one of:	
	• cca: Canonical correlation analysis	
	\bullet direct: Use as say data as a dimensional reduction	
verbose	Print messages and progress	

Value

Returns an AnchorSet object that can be used as input to TransferData, IntegrateEmbeddings and MapQuery.

FindClusters

Cluster Determination

Description

Identify clusters of cells by a shared nearest neighbor (SNN) modularity optimization based clustering algorithm. First calculate k-nearest neighbors and construct the SNN graph. Then optimize the modularity function to determine clusters. For a full description of the algorithms, see Waltman and van Eck (2013) *The European Physical Journal B*. Thanks to Nigel Delaney (evolvedmicrobe@github) for the rewrite of the Java modularity optimizer code in Rcpp!

76

FindClusters

Usage

```
FindClusters(object, ...)
## Default S3 method:
FindClusters(
  object,
 modularity.fxn = 1,
  initial.membership = NULL,
  node.sizes = NULL,
  resolution = 0.8,
  method = deprecated(),
  algorithm = 1,
  n.start = 10,
  n.iter = 10,
  random.seed = 0,
  group.singletons = TRUE,
  temp.file.location = NULL,
  edge.file.name = NULL,
  verbose = TRUE,
  . . .
)
## S3 method for class 'Seurat'
FindClusters(
  object,
  graph.name = NULL,
  cluster.name = NULL,
 modularity.fxn = 1,
  initial.membership = NULL,
  node.sizes = NULL,
  resolution = 0.8,
 method = NULL,
  algorithm = 1,
  n.start = 10,
  n.iter = 10,
  random.seed = 0,
  group.singletons = TRUE,
  temp.file.location = NULL,
  edge.file.name = NULL,
  verbose = TRUE,
  . . .
)
```

Arguments

objectAn object...Arguments passed to other methodsmodularity.fxnModularity function (1 = standard; 2 = alternative).

initial.membership		
	$Passed to the `initial_membership` parameter of `leidenbase::leiden_find_partition`.$	
node.sizes	$Passed to the `node_sizes' parameter of `leidenbase::leiden_find_partition'.$	
resolution	Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities.	
method	DEPRECATED.	
algorithm	Algorithm for modularity optimization $(1 = \text{original Louvain algorithm}; 2 = \text{Louvain algorithm with multilevel refinement}; 3 = \text{SLM algorithm}; 4 = \text{Leiden algorithm}).$	
n.start	Number of random starts.	
n.iter	Maximal number of iterations per random start.	
random.seed	Seed of the random number generator.	
group.singletor	IS	
	Group singletons into nearest cluster. If FALSE, assign all singletons to a "singleton" group	
temp.file.location		
	Directory where intermediate files will be written. Specify the ABSO-LUTE path.	
edge.file.name	Edge file to use as input for modularity optimizer jar.	
verbose	Print output	
graph.name	Name of graph to use for the clustering algorithm	
cluster.name	Name of output clusters	

Details

To run Leiden algorithm, you must first install the leidenalg python package (e.g. via pip install leidenalg), see Traag et al (2018).

Value

Returns a Seurat object where the idents have been updated with new cluster info; latest clustering results will be stored in object metadata under 'seurat_clusters'. Note that 'seurat_clusters' will be overwritten everytime FindClusters is run

FindConservedMarkers Finds markers that are conserved between the groups

Description

Finds markers that are conserved between the groups

Usage

```
FindConservedMarkers(
    object,
    ident.1,
    ident.2 = NULL,
    grouping.var,
    assay = "RNA",
    slot = "data",
    min.cells.group = 3,
    meta.method = metap::minimump,
    verbose = TRUE,
    ...
)
```

Arguments

object	An object	
ident.1	Identity class to define markers for	
ident.2	A second identity class for comparison. If NULL (default) - use all other cells for comparison.	
grouping.var	grouping variable	
assay	of assay to fetch data for (default is RNA)	
slot	Slot to pull data from; note that if test.use is "negbinom", "poisson", or "DESeq2", slot will be set to "counts"	
min.cells.group		
	Minimum number of cells in one of the groups	
meta.method	method for combining p-values. Should be a function from the metap package (NOTE: pass the function, not a string)	
verbose	Print a progress bar once expression testing begins	
	parameters to pass to FindMarkers	

Value

data.frame containing a ranked list of putative conserved markers, and associated statistics (p-values within each group and a combined p-value (such as Fishers combined p-value or others from the metap package), percentage of cells expressing the marker, average differences). Name of group is appended to each associated output column (e.g. CTRL_p_val). If only one group is tested in the grouping.var, max and combined p-values are not returned.

Examples

```
## Not run:
data("pbmc_small")
pbmc_small
# Create a simulated grouping variable
pbmc_small[['groups']] <- sample(x = c('g1', 'g2'), size = ncol(x = pbmc_small), replace = TRUE)
FindConservedMarkers(pbmc_small, ident.1 = 0, ident.2 = 1, grouping.var = "groups")
```

End(Not run)

FindIntegrationAnchors

Find integration anchors

Description

Find a set of anchors between a list of **Seurat** objects. These anchors can later be used to integrate the objects using the **IntegrateData** function.

Usage

```
FindIntegrationAnchors(
  object.list = NULL,
  assay = NULL,
  reference = NULL,
  anchor.features = 2000,
  scale = TRUE,
  normalization.method = c("LogNormalize", "SCT"),
  sct.clip.range = NULL,
  reduction = c("cca", "rpca", "jpca", "rlsi"),
  12.norm = TRUE,
  dims = 1:30,
  k.anchor = 5,
  k.filter = 200,
  k.score = 30,
 max.features = 200,
  nn.method = "annoy",
  n.trees = 50,
  eps = 0,
  verbose = TRUE
)
```

Arguments

object.list	A list of Seurat objects between which to find anchors for downstream integration.
assay	A vector of assay names specifying which assay to use when constructing anchors. If NULL, the current default assay for each object is used.
reference	A vector specifying the object/s to be used as a reference during integra- tion. If NULL (default), all pairwise anchors are found (no reference/s). If not NULL, the corresponding objects in object.list will be used as references. When using a set of specified references, anchors are first found between each query and each reference. The references are then

	integrated through pairwise integration. Each query is then mapped to the integrated reference.
anchor.feature	S
	Can be either:
	 A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding A vector of features to be used as input to the anchor finding process
scale	Whether or not to scale the features provided. Only set to FALSE if you have previously scaled the features you want to use for each object in the object.list
normalization.	
	Name of normalization method used: LogNormalize or SCT
<pre>sct.clip.range</pre>	Numeric of length two specifying the min and max values the Pearson residual will be clipped to
reduction	Dimensional reduction to perform when finding anchors. Can be one of:
	 cca: Canonical correlation analysis rpca: Reciprocal PCA jpca: Joint PCA rlsi: Reciprocal LSI
l2.norm	Perform L2 normalization on the CCA cell embeddings after dimensional reduction
dims	Which dimensions to use from the CCA to specify the neighbor search space
k.anchor	How many neighbors (k) to use when picking anchors
k.filter	How many neighbors (k) to use when filtering anchors
k.score	How many neighbors (k) to use when scoring anchors
max.features	The maximum number of features to use when specifying the neighborhood search space in the anchor filtering
nn.method	Method for nearest neighbor finding. Options include: rann, annoy
n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search
eps	Error bound on the neighbor finding algorithm (from $RANN/Annoy$)
verbose	Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019: doi:10.1016/j.cell.2019.05.031; doi:10.1101/460147

First, determine anchor.features if not explicitly specified using SelectIntegrationFeatures. Then for all pairwise combinations of reference and query datasets:

- Perform dimensional reduction on the dataset pair as specified via the reduction parameter. If 12.norm is set to TRUE, perform L2 normalization of the embedding vectors.
- Identify anchors pairs of cells from each dataset that are contained within each other's neighborhoods (also known as mutual nearest neighbors).
- Filter low confidence anchors to ensure anchors in the low dimension space are in broad agreement with the high dimensional measurements. This is done by looking at the neighbors of each query cell in the reference dataset using max.features to define this space. If the reference cell isn't found within the first k.filter neighbors, remove the anchor.
- Assign each remaining anchor a score. For each anchor cell, determine the nearest k.score anchors within its own dataset and within its pair's dataset. Based on these neighborhoods, construct an overall neighbor graph and then compute the shared neighbor overlap between anchor and query cells (analogous to an SNN graph). We use the 0.01 and 0.90 quantiles on these scores to dampen outlier effects and rescale to range between 0-1.

Value

Returns an AnchorSet object that can be used as input to IntegrateData.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")
# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset
pancreas.list <- SplitObject(panc8, split.by = "tech")</pre>
# perform standard preprocessing on each object
for (i in 1:length(pancreas.list)) {
 pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)</pre>
 pancreas.list[[i]] <- FindVariableFeatures(</pre>
    pancreas.list[[i]], selection.method = "vst",
    nfeatures = 2000, verbose = FALSE
 )
}
# find anchors
anchors <- FindIntegrationAnchors(object.list = pancreas.list)</pre>
# integrate data
```

FindMarkers

```
integrated <- IntegrateData(anchorset = anchors)
## End(Not run)</pre>
```

FindMarkers

Gene expression markers of identity classes

Description

Finds markers (differentially expressed genes) for identity classes

Usage

```
FindMarkers(object, ...)
## Default S3 method:
FindMarkers(
  object,
  slot = "data",
  cells.1 = NULL,
  cells.2 = NULL,
  features = NULL,
  logfc.threshold = 0.1,
  test.use = "wilcox",
 min.pct = 0.01,
 min.diff.pct = -Inf,
  verbose = TRUE,
  only.pos = FALSE,
 max.cells.per.ident = Inf,
  random.seed = 1,
  latent.vars = NULL,
 min.cells.feature = 3,
 min.cells.group = 3,
  fc.results = NULL,
  densify = FALSE,
  . . .
)
## S3 method for class 'Assay'
FindMarkers(
  object,
  slot = "data",
  cells.1 = NULL,
  cells.2 = NULL,
  features = NULL,
  test.use = "wilcox",
```

FindMarkers

```
fc.slot = "data",
  pseudocount.use = 1,
  norm.method = NULL,
 mean.fxn = NULL,
  fc.name = NULL,
 base = 2,
  . . .
)
## S3 method for class 'SCTAssay'
FindMarkers(
  object,
  cells.1 = NULL,
  cells.2 = NULL,
  features = NULL,
  test.use = "wilcox",
  pseudocount.use = 1,
  slot = "data",
  fc.slot = "data",
 mean.fxn = NULL,
  fc.name = NULL,
  base = 2,
  recorrect_umi = TRUE,
  . . .
)
## S3 method for class 'DimReduc'
FindMarkers(
  object,
  cells.1 = NULL,
  cells.2 = NULL,
  features = NULL,
  logfc.threshold = 0.1,
  test.use = "wilcox",
  min.pct = 0.01,
 min.diff.pct = -Inf,
  verbose = TRUE,
  only.pos = FALSE,
  max.cells.per.ident = Inf,
  random.seed = 1,
  latent.vars = NULL,
 min.cells.feature = 3,
 min.cells.group = 3,
  densify = FALSE,
 mean.fxn = rowMeans,
  fc.name = NULL,
  . . .
)
```

84

```
## S3 method for class 'Seurat'
FindMarkers(
    object,
    ident.1 = NULL,
    ident.2 = NULL,
    latent.vars = NULL,
    group.by = NULL,
    subset.ident = NULL,
    assay = NULL,
    reduction = NULL,
    ...
)
```

Arguments

object	An object
	Arguments passed to other methods and to specific DE methods
slot	Slot to pull data from; note that if test.use is "negbinom", "poisson", or "DESeq2", slot will be set to "counts"
cells.1	Vector of cell names belonging to group 1
cells.2	Vector of cell names belonging to group 2
features	Genes to test. Default is to use all genes
logfc.threshold	d
	Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.1 Increasing logfc.threshold speeds up the function, but can miss weaker signals. If the slot parameter is "scale.data" no filtering is performed.
test.use	Denotes which test to use. Available options are:
	 "wilcox": Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed "wilcox_limma": Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4 "bimod": Likelihood-ratio test for single cell gene expression, (McDavid et al., Bioinformatics, 2013)
	• "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.

	 "t" : Identify differentially expressed genes between two groups of cells using the Student's t-test. "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets "poisson": Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMI-based datasets "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test. "MAST": Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing. "DESeq2": Identifies differentially expressed genes between two groups of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be pre-filtered based on their minimum detection rate (min.pct) across both cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html
min.pct	only test genes that are detected in a minimum fraction of min.pct cells in either of the two populations. Meant to speed up the function by not testing genes that are very infrequently expressed. Default is 0.01
<pre>min.diff.pct</pre>	only test genes that show a minimum difference in the fraction of detection between the two groups. Set to -Inf by default
verbose	Print a progress bar once expression testing begins
only.pos	Only return positive markers (FALSE by default)
<pre>max.cells.per.</pre>	
	Down sample each identity class to a max number. Default is no down- sampling. Not activated by default (set to Inf)
random.seed	Random seed for downsampling
latent.vars	Variables to test, used only when test.use is one of 'LR', 'negbinom', 'poisson', or 'MAST'
<pre>min.cells.feat</pre>	
	Minimum number of cells expressing the feature in at least one of the two groups, currently only used for poisson and negative binomial tests
min.cells.grou	
	Minimum number of cells in one of the groups
fc.results	data.frame from FoldChange
densify	Convert the sparse matrix to a dense form before running the DE test. This can provide speedups but might require higher memory; default is FALSE

fc.slot	Slot used to calculate fold-change - will also affect the default for mean.fxn, see below for more details.
pseudocount.use	
	Pseudocount to add to averaged expression values when calculating logFC. 1 by default.
norm.method	Normalization method for fold change calculation when slot is "data"
mean.fxn	Function to use for fold change or average difference calculation. The default depends on the the value of $fc.slot$:
	 "counts": difference in the log of the mean counts, with pseudocount. "data": difference in the log of the average exponentiated data, with pseudocount. This adjusts for differences in sequencing depth between cells, and assumes that "data" has been log-normalized. "scale.data": difference in the means of scale.data.
fc.name	Name of the fold change, average difference, or custom function column in the output data.frame. If NULL, the fold change column will be named according to the logarithm base (eg, "avg_log2FC"), or if using the scale.data slot "avg_diff".
base	The base with respect to which logarithms are computed.
recorrect_umi	Recalculate corrected UMI counts using minimum of the median UMIs when performing DE using multiple SCT objects; default is TRUE
ident.1	Identity class to define markers for; pass an object of class phylo or 'clus- tertree' to find markers for a node in a cluster tree; passing 'clustertree' requires BuildClusterTree to have been run
ident.2	A second identity class for comparison; if NULL, use all other cells for comparison; if an object of class phylo or 'clustertree' is passed to ident.1, must pass a node to find markers for
group.by	Regroup cells into a different identity class prior to performing differential expression (see example); "ident" to use Idents
subset.ident	Subset a particular identity class prior to regrouping. Only relevant if group.by is set (see example)
assay	Assay to use in differential expression testing
reduction	Reduction to use in differential expression testing - will test for DE on cell embeddings

Details

p-value adjustment is performed using bonferroni correction based on the total number of genes in the dataset. Other correction methods are not recommended, as Seurat prefilters genes using the arguments above, reducing the number of tests performed. Lastly, as Aaron Lun has pointed out, p-values should be interpreted cautiously, as the genes used for clustering are the same genes tested for differential expression.

Value

data.frame with a ranked list of putative markers as rows, and associated statistics as columns (p-values, ROC score, etc., depending on the test used (test.use)). The following columns are always present:

- avg_logFC: log fold-chage of the average expression between the two groups. Positive values indicate that the gene is more highly expressed in the first group
- pct.1: The percentage of cells where the gene is detected in the first group
- pct.2: The percentage of cells where the gene is detected in the second group
- p_val_adj: Adjusted p-value, based on bonferroni correction using all genes in the dataset

References

McDavid A, Finak G, Chattopadyay PK, et al. Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments. Bioinformatics. 2013;29(4):461-467. doi:10.1093/bioinformatics/bts714

Trapnell C, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology volume 32, pages 381-386 (2014)

Andrew McDavid, Greg Finak and Masanao Yajima (2017). MAST: Model-based Analysis of Single Cell Transcriptomics. R package version 1.2.1. https://github.com/RGLab/MAST/

Love MI, Huber W and Anders S (2014). "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2." Genome Biology. https://bioconductor.org/packages/release/bioc/html/DES

See Also

FoldChange

Examples

```
## Not run:
data("pbmc_small")
# Find markers for cluster 2
markers <- FindMarkers(object = pbmc_small, ident.1 = 2)</pre>
head(x = markers)
# Take all cells in cluster 2, and find markers that separate cells in the 'g1' group (metadata
# variable 'group')
markers <- FindMarkers(pbmc_small, ident.1 = "g1", group.by = 'groups', subset.ident = "2")
head(x = markers)
# Pass 'clustertree' or an object of class phylo to ident.1 and
# a node to ident.2 as a replacement for FindMarkersNode
if (requireNamespace("ape", quietly = TRUE)) {
 pbmc_small <- BuildClusterTree(object = pbmc_small)</pre>
 markers <- FindMarkers(object = pbmc_small, ident.1 = 'clustertree', ident.2 = 5)</pre>
 head(x = markers)
}
```

End(Not run)

FindMultiModalNeighbors

Construct weighted nearest neighbor graph

Description

This function will construct a weighted nearest neighbor (WNN) graph. For each cell, we identify the nearest neighbors based on a weighted combination of two modalities. Takes as input two dimensional reductions, one computed for each modality. Other parameters are listed for debugging, but can be left as default values.

Usage

```
FindMultiModalNeighbors(
  object,
  reduction.list,
 dims.list,
  k.nn = 20,
  12.norm = TRUE,
  knn.graph.name = "wknn",
  snn.graph.name = "wsnn",
 weighted.nn.name = "weighted.nn",
 modality.weight.name = NULL,
 knn.range = 200,
 prune.SNN = 1/15,
  sd.scale = 1,
  cross.contant.list = NULL,
  smooth = FALSE,
  return.intermediate = FALSE,
 modality.weight = NULL,
  verbose = TRUE
)
```

Arguments

object	A Seurat object
reduction.list	A list of two dimensional reductions, one for each of the modalities to be integrated
dims.list	A list containing the dimensions for each reduction to use
k.nn	the number of multimodal neighbors to compute. 20 by default
12.norm	Perform L2 normalization on the cell embeddings after dimensional reduction. TRUE by default.
knn.graph.name	Multimodal knn graph name

<pre>snn.graph.name</pre>	Multimodal snn graph name	
weighted.nn.nam	ne	
	Multimodal neighbor object name	
modality.weight	name	
	Variable name to store modality weight in object meta data	
knn.range	The number of approximate neighbors to compute	
prune.SNN	Cutoff not to discard edge in SNN graph	
sd.scale	The scaling factor for kernel width. 1 by default	
cross.contant.l	ist	
	Constant used to avoid divide-by-zero errors. 1e-4 by default	
smooth	Smoothing modality score across each individual modality neighbors. FALSE by default	
return.intermed	liate	
	Store intermediate results in misc	
modality.weight		
	A ModalityWeights $object generated by FindModalityWeights$	
verbose	Print progress bars and output	

Value

Seurat object containing a nearest-neighbor object, KNN graph, and SNN graph - each based on a weighted combination of modalities.

FindNeighbors	(Shared) Nearest-neighbor graph construction	
---------------	--	--

Description

Computes the k.param nearest neighbors for a given dataset. Can also optionally (via compute.SNN), construct a shared nearest neighbor graph by calculating the neighborhood overlap (Jaccard index) between every cell and its k.param nearest neighbors.

Usage

```
FindNeighbors(object, ...)
```

```
## Default S3 method:
FindNeighbors(
   object,
   query = NULL,
   distance.matrix = FALSE,
   k.param = 20,
   return.neighbor = FALSE,
   compute.SNN = !return.neighbor,
   prune.SNN = 1/15,
```

FindNeighbors

```
nn.method = "annoy",
  n.trees = 50,
  annoy.metric = "euclidean",
  nn.eps = 0,
  verbose = TRUE,
  12.norm = FALSE,
  cache.index = FALSE,
  index = NULL,
  . . .
)
## S3 method for class 'Assay'
FindNeighbors(
 object,
  features = NULL,
  k.param = 20,
  return.neighbor = FALSE,
  compute.SNN = !return.neighbor,
  prune.SNN = 1/15,
  nn.method = "annoy",
 n.trees = 50,
  annoy.metric = "euclidean",
  nn.eps = 0,
  verbose = TRUE,
 12.norm = FALSE,
  cache.index = FALSE,
  . . .
)
## S3 method for class 'dist'
FindNeighbors(
  object,
  k.param = 20,
  return.neighbor = FALSE,
  compute.SNN = !return.neighbor,
  prune.SNN = 1/15,
  nn.method = "annoy",
  n.trees = 50,
  annoy.metric = "euclidean",
 nn.eps = 0,
  verbose = TRUE,
 12.norm = FALSE,
  cache.index = FALSE,
  . . .
)
## S3 method for class 'Seurat'
FindNeighbors(
```

```
object,
reduction = "pca",
dims = 1:10,
assay = NULL,
features = NULL,
k.param = 20,
return.neighbor = FALSE,
compute.SNN = !return.neighbor,
prune.SNN = 1/15,
nn.method = "annoy",
n.trees = 50,
annoy.metric = "euclidean",
nn.eps = 0,
verbose = TRUE,
do.plot = FALSE,
graph.name = NULL,
12.norm = FALSE,
cache.index = FALSE,
. . .
```

```
)
```

Arguments

object	An object
	Arguments passed to other methods
query	Matrix of data to query against object. If missing, defaults to object.
distance.matrix	
	Boolean value of whether the provided matrix is a distance matrix; note, for objects of class dist, this parameter will be set automatically
k.param	Defines k for the k-nearest neighbor algorithm
return.neighbor	
	Return result as Neighbor object. Not used with distance matrix input.
compute.SNN	also compute the shared nearest neighbor graph
prune.SNN	Sets the cutoff for acceptable Jaccard index when computing the neighborhood overlap for the SNN construction. Any edges with values less than or equal to this will be set to 0 and removed from the SNN graph. Essentially sets the stringency of pruning $(0 - no pruning, 1 - prune everything)$.
nn.method	Method for nearest neighbor finding. Options include: rann, annoy
n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search
annoy.metric	Distance metric for annoy. Options include: euclidean, cosine, manhat- tan, and hamming
nn.eps	Error bound when performing nearest neighbor search using RANN; default of 0.0 implies exact nearest neighbor search
verbose	Whether or not to print output to the console

FindSpatiallyVariableFeatures

12.norm	Take L2Norm of the data
cache.index	Include cached index in returned Neighbor object (only relevant if return.neighbor = TRUE)
index	Precomputed index. Useful if querying new data against existing index to avoid recomputing.
features	Features to use as input for building the (S)NN; used only when $dims$ is $NULL$
reduction	Reduction to use as input for building the (S)NN
dims	Dimensions of reduction to use as input
assay	Assay to use in construction of $(S)NN$; used only when dims is NULL
do.plot	Plot SNN graph on tSNE coordinates
graph.name	Optional naming parameter for stored (S)NN graph (or Neighbor object, if return.neighbor = TRUE). Default is assay.name_(s)nn. To store both the neighbor graph and the shared nearest neighbor (SNN) graph, you must supply a vector containing two names to the graph.name parameter. The first element in the vector will be used to store the nearest neighbor (NN) graph, and the second element used to store the SNN graph. If only one name is supplied, only the NN graph is stored.

Value

This function can either return a Neighbor object with the KNN information or a list of Graph objects with the KNN and SNN depending on the settings of return.neighbor and compute.SNN. When running on a Seurat object, this returns the Seurat object with the Graphs or Neighbor objects stored in their respective slots. Names of the Graph or Neighbor object can be found with Graphs or Neighbors.

Examples

```
data("pbmc_small")
pbmc_small
# Compute an SNN on the gene expression level
pbmc_small <- FindNeighbors(pbmc_small, features = VariableFeatures(object = pbmc_small))
# More commonly, we build the SNN on a dimensionally reduced form of the data
# such as the first 10 principle components.
pbmc_small <- FindNeighbors(pbmc_small, reduction = "pca", dims = 1:10)</pre>
```

FindSpatiallyVariableFeatures

Find spatially variable features

Description

Identify features whose variability in expression can be explained to some degree by spatial location.

Usage

```
FindSpatiallyVariableFeatures(object, ...)
```

```
## Default S3 method:
FindSpatiallyVariableFeatures(
  object,
  spatial.location,
  selection.method = c("markvariogram", "moransi"),
  r.metric = 5,
 x.cuts = NULL,
 y.cuts = NULL,
  verbose = TRUE,
  . . .
)
## S3 method for class 'Assay'
FindSpatiallyVariableFeatures(
  object,
  slot = "scale.data",
  spatial.location,
  selection.method = c("markvariogram", "moransi"),
  features = NULL,
  r.metric = 5,
 x.cuts = NULL,
 y.cuts = NULL,
 nfeatures = nfeatures,
  verbose = TRUE,
  . . .
)
## S3 method for class 'Seurat'
FindSpatiallyVariableFeatures(
  object,
  assay = NULL,
  slot = "scale.data",
  features = NULL,
  image = NULL,
  selection.method = c("markvariogram", "moransi"),
  r.metric = 5,
  x.cuts = NULL,
  y.cuts = NULL,
  nfeatures = 2000,
  verbose = TRUE,
```

```
• • •
)
## S3 method for class 'StdAssay'
FindSpatiallyVariableFeatures(
 object,
 layer = "scale.data",
  spatial.location,
 selection.method = c("markvariogram", "moransi"),
 features = NULL,
 r.metric = 5,
 x.cuts = NULL,
 y.cuts = NULL,
 nfeatures = nfeatures,
 verbose = TRUE,
  . . .
)
```

Arguments

object	A Seurat object, assay, or expression matrix	
	Arguments passed to other methods	
<pre>spatial.locatio</pre>	n	
	${\rm Coordinates \ for \ each \ cell/spot/bead}$	
selection.method		
	Method for selecting spatially variable features.	
	• markvariogram: See RunMarkVario for details	
	• moransi: See RunMoransI for details.	
r.metric	r value at which to report the "trans" value of the mark variogram	
x.cuts	Number of divisions to make in the x direction, helps define the grid over which binning is performed	
y.cuts	Number of divisions to make in the y direction, helps define the grid over which binning is performed	
verbose	Print messages and progress	
slot	Slot in the Assay to pull data from	
features	If provided, only compute on given features. Otherwise, compute for all features.	
nfeatures	Number of features to mark as the top spatially variable.	
assay	Assay to pull the features (marks) from	
image	Name of image to pull the coordinates from	
layer	Layer in the Assay5 to pull data from	

FindSubCluster

Description

Find subclusters under one cluster

Usage

```
FindSubCluster(
   object,
   cluster,
   graph.name,
   subcluster.name = "sub.cluster",
   resolution = 0.5,
   algorithm = 1
)
```

Arguments

object	An object	
cluster	the cluster to be sub-clustered	
graph.name	Name of graph to use for the clustering algorithm	
subcluster.name		
	the name of sub cluster added in the meta.data	
resolution	Value of the resolution parameter, use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities.	
algorithm	Algorithm for modularity optimization $(1 = \text{original Louvain algorithm}; 2 = \text{Louvain algorithm}$ with multilevel refinement; $3 = \text{SLM}$ algorithm; $4 = \text{Leiden algorithm}$).	

Value

return a object with sub cluster labels in the sub-cluster.name variable

FindTransferAnchors Find transfer anchors

Description

Find a set of anchors between a reference and query object. These anchors can later be used to transfer data from the reference to query object using the TransferData object.

Usage

```
FindTransferAnchors(
  reference,
  query,
  normalization.method = "LogNormalize",
  recompute.residuals = TRUE,
  reference.assay = NULL,
  reference.neighbors = NULL,
  query.assay = NULL,
  reduction = "pcaproject",
  reference.reduction = NULL,
  project.query = FALSE,
  features = NULL,
  scale = TRUE,
  npcs = 30,
  12.norm = TRUE,
  dims = 1:30,
  k.anchor = 5,
  k.filter = NA,
  k.score = 30,
 max.features = 200,
  nn.method = "annoy",
  n.trees = 50,
  eps = 0,
  approx.pca = TRUE,
 mapping.score.k = NULL,
  verbose = TRUE
)
```

Arguments

reference	Seurat object to use as the reference	
query	Seurat object to use as the query	
normalization.method		
	Name of normalization method used: LogNormalize or SCT.	
recompute.resid	luals	
	If using SCT as a normalization method, compute query Pearson residuals using the reference SCT model parameters.	
reference.assay	,	
	Name of the Assay to use from reference	
reference.neigh	bors	
	Name of the Neighbor to use from the reference. Optionally enables reuse of precomputed neighbors.	
query.assay	Name of the Assay to use from query	
reduction	Dimensional reduction to perform when finding anchors. Options are:	

• pcaproject: Project the PCA from the reference onto the query. We
recommend using PCA when reference and query datasets are from
$\operatorname{scRNA-seq}$

- Isiproject: Project the LSI from the reference onto the query. We recommend using LSI when reference and query datasets are from scATAC-seq. This requires that LSI has been computed for the reference dataset, and the same features (eg, peaks or genome bins) are present in both the reference and query. See RunTFIDF and RunSVD
- rpca: Project the PCA from the reference onto the query, and the PCA from the query onto the reference (reciprocal PCA projection).
- cca: Run a CCA on the reference and query

reference.reduction

- Name of dimensional reduction to use from the reference if running the pcaproject workflow. Optionally enables reuse of precomputed reference dimensional reduction. If NULL (default), use a PCA computed on the reference object.
- **project.query** Project the PCA from the query dataset onto the reference. Use only in rare cases where the query dataset has a much larger cell number, but the reference dataset has a unique assay for transfer. In this case, the default features will be set to the variable features of the query object that are alos present in the reference.

features Features to use for dimensional reduction. If not specified, set as variable features of the reference object which are also present in the query.

scale Scale query data.

- npcs Number of PCs to compute on reference if reference.reduction is not provided.
- 12.norm Perform L2 normalization on the cell embeddings after dimensional reduction
- dims Which dimensions to use from the reduction to specify the neighbor search space
- **k**.anchor How many neighbors (k) to use when finding anchors
- k.filter How many neighbors (k) to use when filtering anchors. Set to NA to turn off filtering.
- k.score How many neighbors (k) to use when scoring anchors
- max.features The maximum number of features to use when specifying the neighborhood search space in the anchor filtering
- nn.method Method for nearest neighbor finding. Options include: rann, annoy
- n.trees More trees gives higher precision when using annoy approximate nearest neighbor search
- eps Error bound on the neighbor finding algorithm (from RANN or RcppAnnoy)
- approx.pca Use truncated singular value decomposition to approximate PCA

mapping.score.k

Compute and store nearest k query neighbors in the AnchorSet object that is returned. You can optionally set this if you plan on computing the

	mapping score and want to enable reuse of some downstream neighbor
	calculations to make the mapping score function more efficient.
verbose	Print progress bars and output

Details

ν

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/460147

- Perform dimensional reduction. Exactly what is done here depends on the values set for the reduction and project.query parameters. If reduction = "pcaproject", a PCA is performed on either the reference (if project.query = FALSE) or the query (if project.query = TRUE), using the features specified. The data from the other dataset is then projected onto this learned PCA structure. If reduction = "cca", then CCA is performed on the reference and query for this dimensional reduction step. If reduction = "lisiproject", the stored LSI dimension reduction in the reference object is used to project the query dataset onto the reference. If 12.norm is set to TRUE, perform L2 normalization of the embedding vectors.
- Identify anchors between the reference and query pairs of cells from each dataset that are contained within each other's neighborhoods (also known as mutual nearest neighbors).
- Filter low confidence anchors to ensure anchors in the low dimension space are in broad agreement with the high dimensional measurements. This is done by looking at the neighbors of each query cell in the reference dataset using max.features to define this space. If the reference cell isn't found within the first k.filter neighbors, remove the anchor.
- Assign each remaining anchor a score. For each anchor cell, determine the nearest k.score anchors within its own dataset and within its pair's dataset. Based on these neighborhoods, construct an overall neighbor graph and then compute the shared neighbor overlap between anchor and query cells (analogous to an SNN graph). We use the 0.01 and 0.90 quantiles on these scores to dampen outlier effects and rescale to range between 0-1.

Value

Returns an AnchorSet object that can be used as input to TransferData, IntegrateEmbeddings and MapQuery. The dimension reduction used for finding anchors is stored in the AnchorSet object and can be used for computing anchor weights in downstream functions. Note that only the requested dimensions are stored in the dimension reduction object in the AnchorSet. This means that if dims=2:20 is used, for example, the dimension of the stored reduction is 1:19.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031;

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("pbmc3k")
# for demonstration, split the object into reference and query
pbmc.reference <- pbmc3k[, 1:1350]</pre>
pbmc.query <- pbmc3k[, 1351:2700]</pre>
# perform standard preprocessing on each object
pbmc.reference <- NormalizeData(pbmc.reference)</pre>
pbmc.reference <- FindVariableFeatures(pbmc.reference)</pre>
pbmc.reference <- ScaleData(pbmc.reference)</pre>
pbmc.query <- NormalizeData(pbmc.query)</pre>
pbmc.guery <- FindVariableFeatures(pbmc.guery)</pre>
pbmc.query <- ScaleData(pbmc.query)</pre>
# find anchors
anchors <- FindTransferAnchors(reference = pbmc.reference, query = pbmc.query)
# transfer labels
predictions <- TransferData(</pre>
  anchorset = anchors,
  refdata = pbmc.reference$seurat_annotations
)
pbmc.query <- AddMetaData(object = pbmc.query, metadata = predictions)</pre>
## End(Not run)
```

FindVariableFeatures Find variable features

Description

Identifies features that are outliers on a 'mean variability plot'.

Usage

```
FindVariableFeatures(object, ...)
## S3 method for class 'V3Matrix'
FindVariableFeatures(
   object,
   selection.method = "vst",
   loess.span = 0.3,
   clip.max = "auto",
```

100

```
mean.function = FastExpMean,
  dispersion.function = FastLogVMR,
  num.bin = 20,
  binning.method = "equal_width",
  verbose = TRUE,
  . . .
)
## S3 method for class 'Assay'
FindVariableFeatures(
  object,
  selection.method = "vst",
  loess.span = 0.3,
  clip.max = "auto",
  mean.function = FastExpMean,
  dispersion.function = FastLogVMR,
  num.bin = 20,
  binning.method = "equal_width",
  nfeatures = 2000,
  mean.cutoff = c(0.1, 8),
  dispersion.cutoff = c(1, Inf),
  verbose = TRUE,
  . . .
)
## S3 method for class 'SCTAssay'
FindVariableFeatures(object, nfeatures = 2000, ...)
## S3 method for class 'Seurat'
FindVariableFeatures(
  object,
  assay = NULL,
  selection.method = "vst",
  loess.span = 0.3,
  clip.max = "auto",
  mean.function = FastExpMean,
  dispersion.function = FastLogVMR,
  num.bin = 20,
  binning.method = "equal_width",
  nfeatures = 2000,
  mean.cutoff = c(0.1, 8),
  dispersion.cutoff = c(1, Inf),
  verbose = TRUE,
  . . .
```

)

Arguments

object An object

Arguments passed to other methods

selection.method

How to choose top variable features. Choose one of :

- "vst": First, fits a line to the relationship of log(variance) and log(mean) using local polynomial regression (loess). Then standardizes the feature values using the observed mean and expected variance (given by the fitted line). Feature variance is then calculated on the standard-ized values after clipping to a maximum (see clip.max parameter).
- "mean.var.plot" (mvp): First, uses a function to calculate average expression (mean.function) and dispersion (dispersion.function) for each feature. Next, divides features into num.bin (default 20) bins based on their average expression, and calculates z-scores for dispersion within each bin. The purpose of this is to identify variable features while controlling for the strong relationship between variability and average expression
- "dispersion" (disp): selects the genes with the highest dispersion values
- loess.span (vst method) Loess span parameter used when fitting the variance-mean relationship
- clip.max (vst method) After standardization values larger than clip.max will be set to clip.max; default is 'auto' which sets this value to the square root of the number of cells
- mean.function Function to compute x-axis value (average expression). Default is to take the mean of the detected (i.e. non-zero) values

dispersion.function

Function to compute y-axis value (dispersion). Default is to take the standard deviation of all values

- num.bin Total number of bins to use in the scaled analysis (default is 20)
- binning.method Specifies how the bins should be computed. Available methods are:
 - "equal_width": each bin is of equal width along the x-axis (default)
 - "equal_frequency": each bin contains an equal number of features (can increase statistical power to detect overdispersed features at high expression values, at the cost of reduced resolution along the x-axis)
- verbose show progress bar for calculations
- nfeatures Number of features to select as top variable features; only used when selection.method is set to 'dispersion' or 'vst'

mean.cutoff A two-length numeric vector with low- and high-cutoffs for feature means

dispersion.cutoff

A two-length numeric vector with low- and high-cutoffs for feature dispersions

assay Assay to use

. . .

FoldChange

Details

For the mean var.plot method: Exact parameter settings may vary empirically from dataset to dataset, and based on visual inspection of the plot. Setting the y.cutoff parameter to 2 identifies features that are more than two standard deviations away from the average dispersion within a bin. The default X-axis function is the mean expression level, and for Y-axis it is the log(Variance/mean). All mean/variance calculations are not performed in log-space, but the results are reported in log-space - see relevant functions for exact details.

FoldChange

Fold Change

Description

Calculate log fold change and percentage of cells expressing each feature for different identity classes.

Usage

FoldChange(object, ...)

```
## Default S3 method:
FoldChange(object, cells.1, cells.2, mean.fxn, fc.name, features = NULL, ...)
## S3 method for class 'Assay'
FoldChange(
  object,
  cells.1,
  cells.2,
  features = NULL,
  slot = "data",
  pseudocount.use = 1,
  fc.name = NULL,
 mean.fxn = NULL,
 base = 2,
 norm.method = NULL,
  . . .
)
## S3 method for class 'SCTAssay'
FoldChange(
  object,
  cells.1,
  cells.2,
  features = NULL,
  slot = "data",
  pseudocount.use = 1,
  fc.name = NULL,
```

```
mean.fxn = NULL,
 base = 2,
  . . .
)
## S3 method for class 'DimReduc'
FoldChange(
 object,
 cells.1,
  cells.2,
  features = NULL,
  slot = NULL,
  pseudocount.use = 1,
  fc.name = NULL,
 mean.fxn = NULL,
  . . .
)
## S3 method for class 'Seurat'
FoldChange(
 object,
  ident.1 = NULL,
  ident.2 = NULL,
  group.by = NULL,
  subset.ident = NULL,
  assay = NULL,
  slot = "data",
  reduction = NULL,
  features = NULL,
 pseudocount.use = 1,
 mean.fxn = NULL,
 base = 2,
  fc.name = NULL,
  . . .
)
```

Arguments

object	A Seurat object
	Arguments passed to other methods
cells.1	Vector of cell names belonging to group 1
cells.2	Vector of cell names belonging to group 2
mean.fxn	Function to use for fold change or average difference calculation
fc.name	Name of the fold change, average difference, or custom function column in the output data.frame
features	Features to calculate fold change for. If NULL, use all features
slot	Slot to pull data from

104

FoldChange

pseudocount.use		
	$Pseudocount\ to\ add\ to\ averaged\ expression\ values\ when\ calculating\ logFC.$	
base	The base with respect to which logarithms are computed.	
norm.method	Normalization method for mean function selection when slot is "data"	
ident.1	Identity class to calculate fold change for; pass an object of class phylo or 'clustertree' to calculate fold change for a node in a cluster tree; passing 'clustertree' requires BuildClusterTree to have been run	
ident.2	A second identity class for comparison; if NULL, use all other cells for comparison; if an object of class phylo or 'clustertree' is passed to ident.1, must pass a node to calculate fold change for	
group.by	Regroup cells into a different identity class prior to calculating fold change (see example in FindMarkers)	
subset.ident	Subset a particular identity class prior to regrouping. Only relevant if group.by is set (see example in FindMarkers)	
assay	Assay to use in fold change calculation	
reduction	Reduction to use - will calculate average difference on cell embeddings	

Details

If the slot is scale.data or a reduction is specified, average difference is returned instead of log fold change and the column is named "avg_diff". Otherwise, log2 fold change is returned with column named "avg_log2_FC".

Value

Returns a data frame

See Also

FindMarkers

Examples

Not run: data("pbmc_small") FoldChange(pbmc_small, ident.1 = 1)

End(Not run)

GetAssay

Description

Get an Assay object from a given Seurat object.

Usage

```
GetAssay(object, ...)
```

```
## S3 method for class 'Seurat'
GetAssay(object, assay = NULL, ...)
```

Arguments

object	An object
	Arguments passed to other methods
assay	Assay to get

Value

Returns an Assay object

Examples

data("pbmc_small")
GetAssay(object = pbmc_small, assay = "RNA")

GetImage.SlideSeq Get Image Data

Description

Get Image Data

Usage

```
## S3 method for class 'SlideSeq'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
## S3 method for class 'STARmap'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
## S3 method for class 'VisiumV1'
```

GetIntegrationData

GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)
S3 method for class 'VisiumV2'
GetImage(object, mode = c("grob", "raster", "plotly", "raw"), ...)

Arguments

object	An object
mode	How to return the image; should accept one of "grob", "raster", "plotly", or "raw"
	Arguments passed to other methods

See Also

SeuratObject::GetImage

GetIntegrationData Get integration data

Description

Get integration data

Usage

GetIntegrationData(object, integration.name, slot)

Arguments

object	Seurat object	
integration.name		
	Name of integration object	
slot	Which slot in integration object to get	

Value

Returns data from the requested slot within the integrated object

GetResidual

Description

This function calls sctransform::get_residuals.

Usage

```
GetResidual(
   object,
   features,
   assay = NULL,
   umi.assay = "RNA",
   clip.range = NULL,
   replace.value = FALSE,
   na.rm = TRUE,
   verbose = TRUE
)
```

Arguments

object	A seurat object
features	Name of features to add into the scale.data
assay	Name of the assay of the seurat object generated by SCTransform
umi.assay	Name of the assay of the seurat object containing UMI matrix and the default is RNA
clip.range	Numeric of length two specifying the min and max values the Pearson residual will be clipped to
replace.value	Recalculate residuals for all features, even if they are already present. Useful if you want to change the clip.range.
na.rm	For features where there is no feature model stored, return NA for residual value in scale.data when na.rm = FALSE. When na.rm is TRUE, only return residuals for features with a model stored for all cells.
verbose	Whether to print messages and progress bars

Value

Returns a Seurat object containing Pearson residuals of added features in its scale.data

See Also

get_residuals

Examples

```
## Not run:
data("pbmc_small")
pbmc_small <- SCTransform(object = pbmc_small, variable.features.n = 20)
pbmc_small <- GetResidual(object = pbmc_small, features = c('MS4A1', 'TCL1A'))
## End(Not run)
```

GetTissueCoordinates.SlideSeq

Get Tissue Coordinates

Description

Get Tissue Coordinates

Usage

```
## S3 method for class 'SlideSeq'
GetTissueCoordinates(object, ...)
## S3 method for class 'STARmap'
GetTissueCoordinates(object, qhulls = FALSE, ...)
## S3 method for class 'VisiumV1'
GetTissueCoordinates(
    object,
    scale = "lowres",
    cols = c("imagerow", "imagecol"),
    ...
)
## S3 method for class 'VisiumV2'
```

GetTissueCoordinates(object, scale = NULL, ...)

Arguments

object	An object
	Arguments passed to other methods
qhulls	return qhulls instead of centroids
scale	A factor to scale the coordinates by; choose from: 'tissue', 'fiducial', 'hires', 'lowres', or NULL for no scaling
cols	Columns of tissue coordinates data.frame to pull

See Also

SeuratObject::GetTissueCoordinates

GetTransferPredictions

Get the predicted identity

Description

Utility function to easily pull out the name of the class with the maximum prediction. This is useful if you've set prediction.assay = TRUE in TransferData and want to have a vector with the predicted class.

Usage

```
GetTransferPredictions(
   object,
   assay = "predictions",
   slot = "data",
   score.filter = 0.75
)
```

Arguments

object	Seurat object
assay	Name of the assay holding the predictions
slot	Slot of the assay in which the prediction scores are stored
score.filter	Return "Unassigned" for any cell with a score less than this value $% \mathcal{L}^{(n)}$

Value

Returns a vector of predicted class names

Examples

```
## Not run:
    prediction.assay <- TransferData(anchorset = anchors, refdata = reference$class)
    query[["predictions"]] <- prediction.assay
    query$predicted.id <- GetTransferPredictions(query)</pre>
```

End(Not run)

Graph-class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::Graph-class

GroupCorrelation	Compute the correlation of features broken down by groups with
	another covariate

Description

Compute the correlation of features broken down by groups with another covariate

Usage

```
GroupCorrelation(
   object,
   assay = NULL,
   slot = "scale.data",
   var = NULL,
   group.assay = NULL,
   min.cells = 5,
   ngroups = 6,
   do.plot = TRUE
)
```

Arguments

object	Seurat object
assay	Assay to pull the data from
slot	Slot in the assay to pull feature expression data from (counts, data, or scale.data)
var	Variable with which to correlate the features
group.assay	Compute the gene groups based off the data in this assay.
min.cells	Only compute for genes in at least this many cells
ngroups	Number of groups to split into
do.plot	Display the group correlation boxplot (via ${\tt GroupCorrelationPlot})$

Value

A Seurat object with the correlation stored in metafeatures

GroupCorrelationPlot Boxplot of correlation of a variable (e.g. number of UMIs) with expression data

Description

Boxplot of correlation of a variable (e.g. number of UMIs) with expression data

Usage

```
GroupCorrelationPlot(
   object,
   assay = NULL,
   feature.group = "feature.grp",
   cor = "nCount_RNA_cor"
)
```

Arguments

object	Seurat object
assay	Assay where the feature grouping info and correlations are stored
feature.group	Name of the column in meta.features where the feature grouping info is stored
cor	Name of the column in meta.features where correlation info is stored

Value

Returns a ggplot boxplot of correlations split by group

HarmonyIntegration Harmony Integration

Description

Harmony Integration

Harmony Integration

Usage

```
HarmonyIntegration(
 object,
  orig,
  features = NULL,
  scale.layer = "scale.data",
  new.reduction = "harmony",
  layers = NULL,
  npcs = 50L,
  key = "harmony_",
  theta = NULL,
  lambda = NULL,
  sigma = 0.1,
  nclust = NULL,
  tau = 0,
 block.size = 0.05,
 max.iter.harmony = 10L,
 max.iter.cluster = 20L,
 epsilon.cluster = 1e-05,
 epsilon.harmony = 1e-04,
  verbose = TRUE,
  . . .
)
```

Arguments

object	An Assay5 object	
orig	A dimensional reduction to correct	
features	Ignored	
scale.layer	Ignored	
new.reduction	Name of new integrated dimensional reduction	
layers	Ignored	
npcs	If doing PCA on input matrix, number of PCs to compute	
key	Key for Harmony dimensional reduction	
theta	Diversity clustering penalty parameter	
lambda	Ridge regression penalty parameter	
sigma	Width of soft kmeans clusters	
nclust	Number of clusters in model	
tau	Protection against overclustering small datasets with large ones	
block.size	What proportion of cells to update during clustering	
max.iter.harmony		
	Maximum number of rounds to run Harmony	
<pre>max.iter.clust</pre>	er	
	Maximum number of rounds to run clustering at each round of Harmony	

epsilon.cluster	
	Convergence tolerance for clustering round of Harmony
epsilon.harmony	
	Convergence tolerance for Harmony
verbose	Whether to print progress messages. TRUE to print, FALSE to suppress
	Ignored

Value

...

Note

This function requires the **harmony** package to be installed

See Also

harmony::HarmonyMatrix()

Examples

```
## Not run:
# Preprocessing
obj <- SeuratData::LoadData("pbmcsca")</pre>
obj[["RNA"]] <- split(obj[["RNA"]], f = obj$Method)</pre>
obj <- NormalizeData(obj)</pre>
obj <- FindVariableFeatures(obj)</pre>
obj <- ScaleData(obj)</pre>
obj <- RunPCA(obj)</pre>
# After preprocessing, we integrate layers with added parameters specific to Harmony:
obj <- IntegrateLayers(object = obj, method = HarmonyIntegration, orig.reduction = "pca",
  new.reduction = 'harmony', verbose = FALSE)
# Modifying Parameters
# We can also add arguments specific to Harmony such as theta, to give more diverse clusters
obj <- IntegrateLayers(object = obj, method = HarmonyIntegration, orig.reduction = "pca",
  new.reduction = 'harmony', verbose = FALSE, theta = 3)
# Integrating SCTransformed data
obj <- SCTransform(object = obj)</pre>
obj <- IntegrateLayers(object = obj, method = HarmonyIntegration,</pre>
  orig.reduction = "pca", new.reduction = 'harmony',
  assay = "SCT", verbose = FALSE)
## End(Not run)
```

HoverLocator

Description

Get quick information from a scatterplot by hovering over points

Usage

```
HoverLocator(plot, information = NULL, axes = TRUE, dark.theme = FALSE, ...)
```

Arguments

plot	A ggplot 2 plot
information	An optional dataframe or matrix of extra information to be displayed on hover
axes	Display or hide x- and y-axes
dark.theme	Plot using a dark theme?
	Extra parameters to be passed to layout

See Also

layout ggplot_build DimPlot FeaturePlot

Examples

```
## Not run:
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
HoverLocator(plot = plot, information = FetchData(object = pbmc_small, vars = 'percent.mito'))
```

End(Not run)

HTODemux

Demultiplex samples based on data from cell 'hashing'

Description

Assign sample-of-origin for each cell, annotate doublets.

Usage

```
HTODemux(
   object,
   assay = "HTO",
   positive.quantile = 0.99,
   init = NULL,
   nstarts = 100,
   kfunc = "clara",
   nsamples = 100,
   seed = 42,
   verbose = TRUE
)
```

Arguments

object	Seurat object. Assumes that the hash tag oligo (HTO) data has been added and normalized.
assay	Name of the Hashtag assay (HTO by default)
positive.quant	ile
	The quantile of inferred 'negative' distribution for each has htag - over which the cell is considered 'positive'. Default is 0.99
init	Initial number of clusters for hashtags. Default is the $\#$ of hashtag oligo names $+ 1$ (to account for negatives)
nstarts	nstarts value for k-means clustering (for kfunc = "kmeans"). 100 by default
kfunc	Clustering function for initial hashtag grouping. Default is "clara" for fast k-medoids clustering on large applications, also support "kmeans" for kmeans clustering
nsamples	Number of samples to be drawn from the dataset used for clustering, for kfunc = "clara"
seed	Sets the random seed. If NULL, seed is not set
verbose	Prints the output

Value

The Seurat object with the following demultiplexed information stored in the meta data:

hash.maxID Name of hashtag with the highest signal

hash.secondID Name of hashtag with the second highest signal

- hash.margin The difference between signals for hash.maxID and hash.secondID
- $\label{eq:classification} \begin{array}{c} \textbf{classification} & \textbf{classification} & \textbf{result}, with \ \textbf{doublets}/\textbf{multiplets} \ \textbf{named} \ \textbf{by} \ \textbf{the top} \ \textbf{two} \ \textbf{highest} \\ & \textbf{hashtags} \end{array}$

classification.global Global classification result (singlet, doublet or negative)

hash.ID Classification result where doublet IDs are collapsed

HTOHeatmap

See Also

HTOHeatmap

Examples

```
## Not run:
object <- HTODemux(object)</pre>
```

End(Not run)

HTOHeatmap

 $Hashtag \ oligo \ heatmap$

Description

Draws a heatmap of hashtag oligo signals across singlets/doublets/negative cells. Allows for the visualization of HTO demultiplexing results.

Usage

```
HTOHeatmap(
   object,
   assay = "HTO",
   classification = paste0(assay, "_classification"),
   global.classification = paste0(assay, "_classification.global"),
   ncells = 5000,
   singlet.names = NULL,
   raster = TRUE
)
```

Arguments

object	Seurat object. Assumes that the hash tag oligo (HTO) data has been added and normalized, and demultiplexing has been run with HTODe-mux().	
assay	Hashtag assay name.	
classification	The naming for metadata column with classification result from HTODe- mux().	
global.classification		
	$The slot for \ metadata \ column \ specifying \ a \ cell \ as \ singlet \ / \ doublet \ / \ negative.$	
ncells	Number of cells to plot. Default is to choose 5000 cells by random sub- sampling, to avoid having to draw exceptionally large heatmaps.	
singlet.names	Namings for the singlets. Default is to use the same names as HTOs.	
raster	If true, plot with geom_raster, else use geom_tile. geom_raster may look blurry on some viewing applications such as Preview due to how the raster is interpolated. Set this to FALSE if you are encountering that issue (note that plots may take longer to produce/render).	

Value

Returns a ggplot2 plot object.

See Also

HTODemux

Examples

```
## Not run:
object <- HTODemux(object)
HTOHeatmap(object)
```

End(Not run)

HVFInfo.SCTAssay Get Variable Feature Information

Description

Get variable feature information from SCTAssay objects

Usage

S3 method for class 'SCTAssay'
HVFInfo(object, method, status = FALSE, ...)

Arguments

object	An object
method	method to determine variable features
status	Add variable status to the resulting data frame
	Arguments passed to other methods

See Also

HVFInfo

Examples

```
## Not run:
# Get the HVF info directly from an SCTAssay object
pbmc_small <- SCTransform(pbmc_small)
HVFInfo(pbmc_small[["SCT"]], method = 'sct')[1:5, ]
```

End(Not run)

IFeaturePlot

Description

Visualize features in dimensional reduction space interactively

Usage

```
IFeaturePlot(object, feature, dims = c(1, 2), reduction = NULL, slot = "data")
```

Arguments

object	Seurat object
feature	Feature to plot
dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
slot	Which slot to pull expression data from?

Value

Returns the final plot as a ggplot object

ImageDimPlot	Spatial Cluster Plots	
--------------	-----------------------	--

Description

Visualize clusters or other categorical groupings in a spatial context

Usage

```
ImageDimPlot(
   object,
   fov = NULL,
   boundaries = NULL,
   group.by = NULL,
   split.by = NULL,
   cols = NULL,
   shuffle.cols = FALSE,
   size = 0.5,
   molecules = NULL,
   mols.size = 0.1,
```

```
mols.cols = NULL,
 mols.alpha = 1,
 nmols = 1000,
 alpha = 1,
 border.color = "white",
 border.size = NULL,
 na.value = "grey50",
 dark.background = TRUE,
 crop = FALSE,
 cells = NULL,
 overlap = FALSE,
 axes = FALSE,
 combine = TRUE,
 coord.fixed = TRUE,
 flip_xy = TRUE
)
```

Arguments

object	A Seurat object
fov	Name of FOV to plot
boundaries	A vector of segmentation boundaries per image to plot; can be a char- acter vector, a named character vector, or a named list. Names should be the names of FOVs and values should be the names of segmentation boundaries
group.by	Name of one or more metadata columns to group (color) cells by (for example, orig.ident); pass 'ident' to group by identity class
split.by	A factor in object metadata to split the plot by, pass 'ident' to split by cell identity
cols	Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by brewer.pal.info . By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.
shuffle.cols	Randomly shuffle colors when a palette or vector of colors is provided to $cols$
size	Point size for cells when plotting centroids
molecules	A vector of molecules to plot
mols.size	Point size for molecules
mols.cols	A vector of color for molecules. The "Set1" palette from RColorBrewer is used by default.
mols.alpha	Alpha value for molecules, should be between 0 and 1
nmols	Max number of each molecule specified in 'molecules' to plot
alpha	Alpha value for plotting (default is 1)

border.color	Color of cell segmentation border; pass NA to suppress borders for segmentation-based plots $\$
border.size	Thickness of cell segmentation borders; pass NA to suppress borders for centroid-based plots
na.value	Color value for NA points when using custom scale
dark.backgroun	d
	Set plot background to black
crop	Crop the plots to area with cells only
cells	Vector of cells to plot (default is all cells)
overlap	Overlay boundaries from a single image to create a single plot; if TRUE, then boundaries are stacked in the order they're given (first is lowest)
axes	Keep axes and panel background
combine	Combine plots into a single $\verb+patchwork+$ ggplot object. If <code>FALSE</code> , return a list of ggplot objects
coord.fixed	Plot cartesian coordinates with fixed aspect ratio
flip_xy	Flag to flip X and Y axes. Default is FALSE.

Value

If combine = TRUE, a patchwork ggplot object; otherwise, a list of ggplot objects

ImageFeaturePlot Spatial Feature Plots

Description

Visualize expression in a spatial context

Usage

```
ImageFeaturePlot(
   object,
   features,
   fov = NULL,
   boundaries = NULL,
   cols = if (isTRUE(x = blend)) {
      c("lightgrey", "#ff0000", "#00ff00")
} else {
      c("lightgrey", "firebrick1")
},
   size = 0.5,
   min.cutoff = NA,
   max.cutoff = NA,
```

```
split.by = NULL,
 molecules = NULL,
 mols.size = 0.1,
 mols.cols = NULL,
 nmols = 1000,
 alpha = 1,
 border.color = "white",
 border.size = NULL,
 dark.background = TRUE,
 blend = FALSE,
 blend.threshold = 0.5,
 crop = FALSE,
 cells = NULL,
 scale = c("feature", "all", "none"),
 overlap = FALSE,
 axes = FALSE,
 combine = TRUE,
 coord.fixed = TRUE
)
```

Arguments

object	Seurat object
features	Vector of features to plot. Features can come from:
	 An Assay feature (e.g. a gene name - "MS4A1") A column name from meta.data (e.g. mitochondrial percentage - "percent.mito")
	• A column name from a DimReduc object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC_1")
fov	Name of FOV to plot
boundaries	A vector of segmentation boundaries per image to plot; can be a char- acter vector, a named character vector, or a named list. Names should be the names of FOVs and values should be the names of segmentation boundaries
cols	The two colors to form the gradient over. Provide as string vector with the first color corresponding to low values, the second to high. Also accepts a Brewer color scale or vector of colors. Note: this will bin the data into number of colors provided. When blend is TRUE, takes anywhere from 1-3 colors:
	1 color: Treated as color for double-negatives, will use default colors 2 and 3 for per-feature expression
	2 colors: Treated as colors for per-feature expression, will use default color 1 for double-negatives
	$\mathbf{3+}$ colors: First color used for double-negatives, colors 2 and 3 used for per-feature expression, all others ignored
size	Point size for cells when plotting centroids

<pre>min.cutoff, max.cutoff</pre>	
	Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of ' $q##$ ' where ' $##$ ' is the quantile (eg, 'q1', 'q10')
split.by	A factor in object metadata to split the plot by, pass 'ident' to split by cell identity
molecules	A vector of molecules to plot
mols.size	Point size for molecules
mols.cols	A vector of color for molecules. The "Set1" palette from RColorBrewer is used by default.
nmols	Max number of each molecule specified in 'molecules' to plot
alpha	Alpha value for plotting (default is 1)
border.color	Color of cell segmentation border; pass NA to suppress borders for segmentation-based plots
border.size	Thickness of cell segmentation borders; pass NA to suppress borders for centroid-based plots
dark.backgroun	
	Set plot background to black
blend	Scale and blend expression values to visualize coexpression of two features
blend.threshol	d The color cutoff from weak signal to strong signal; ranges from 0 to 1.
crop	Crop the plots to area with cells only
cells	Vector of cells to plot (default is all cells)
scale	Set color scaling across multiple plots; choose from:
Scale	
	 "feature": Plots per-feature are scaled across splits "all": Plots per-feature are scaled across all features
	 "none": Plots are not scaled; note: setting scale to "none" will result in color scales that are <i>not</i> comparable between plots
	Ignored if blend = TRUE
overlap	Overlay boundaries from a single image to create a single plot; if TRUE, then boundaries are stacked in the order they're given (first is lowest)
axes	Keep axes and panel background
combine	Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot objects
coord.fixed	Plot cartesian coordinates with fixed aspect ratio

Value

If $\mathsf{combine} = \mathsf{TRUE}$, a patchwork ggplot object; otherwise, a list of ggplot objects

IntegrateData Integrate data

Description

Perform dataset integration using a pre-computed AnchorSet.

Usage

```
IntegrateData(
    anchorset,
    new.assay.name = "integrated",
    normalization.method = c("LogNormalize", "SCT"),
    features = NULL,
    features.to.integrate = NULL,
    dims = 1:30,
    k.weight = 100,
    weight.reduction = NULL,
    sd.weight = 1,
    sample.tree = NULL,
    preserve.order = FALSE,
    eps = 0,
    verbose = TRUE
)
```

Arguments

anchorset	An AnchorSet object generated by FindIntegrationAnchors	
new.assay.name	Name for the new assay containing the integrated data	
normalization.m	nethod	
	Name of normalization method used: LogNormalize or SCT	
features	Vector of features to use when computing the PCA to determine the weights. Only set if you want a different set from those used in the anchor finding process	
features.to.int	egrate	
	Vector of features to integrate. By default, will use the features used in anchor finding.	
dims	Number of dimensions to use in the anchor weighting procedure	
k.weight	Number of neighbors to consider when weighting anchors	
weight.reduction		
	Dimension reduction to use when calculating anchor weights. This can be one of:	
	• A string, specifying the name of a dimension reduction present in all objects to be integrated	

	 A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated A vector of DimReduc objects, specifying the object to use for each object in the integration NULL, in which case a new PCA will be calculated and used to calculate anchor weights
	Note that, if specified, the requested dimension reduction will only be used for calculating anchor weights in the first merge between reference and query, as the merged object will subsequently contain more cells than was in query, and weights will need to be calculated for all cells in the object.
sd.weight	Controls the bandwidth of the Gaussian kernel for weighting
sample.tree	Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: $matrix(c(-2, 1, -3, -1), ncol = 2)$ gives:
	[,1] [,2] [1,] -2 -3 [2,] 1 -1

Which would cause dataset 2 and 3 to be integrated first, then the resulting object integrated with dataset 1.

If NULL, the sample tree will be computed automatically.

preserve.order	Do not reorder objects based on size for each pairwise integration.
eps	Error bound on the neighbor finding algorithm (from $RANN$)

verbose Print progress bars and output

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/460147

For pairwise integration:

- Construct a weights matrix that defines the association between each query cell and each anchor. These weights are computed as 1 the distance between the query cell and the anchor divided by the distance of the query cell to the k.weightth anchor multiplied by the anchor score computed in FindIntegrationAnchors. We then apply a Gaussian kernel width a bandwidth defined by sd.weight and normalize across all k.weight anchors.
- Compute the anchor integration matrix as the difference between the two expression matrices for every pair of anchor cells
- Compute the transformation matrix as the product of the integration matrix and the weights matrix.

• Subtract the transformation matrix from the original expression matrix.

For multiple dataset integration, we perform iterative pairwise integration. To determine the order of integration (if not specified via sample.tree), we

- Define a distance between datasets as the total number of cells in the smaller dataset divided by the total number of anchors between the two datasets.
- Compute all pairwise distances between datasets
- Cluster this distance matrix to determine a guide tree

Value

Returns a Seurat object with a new integrated Assay. If normalization.method = "LogNormalize", the integrated data is returned to the data slot and can be treated as log-normalized, corrected data. If normalization.method = "SCT", the integrated data is returned to the scale.data slot and can be treated as centered, corrected Pearson residuals.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")
# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset
pancreas.list <- SplitObject(panc8, split.by = "tech")</pre>
# perform standard preprocessing on each object
for (i in 1:length(pancreas.list)) {
 pancreas.list[[i]] <- NormalizeData(pancreas.list[[i]], verbose = FALSE)</pre>
 pancreas.list[[i]] <- FindVariableFeatures(</pre>
   pancreas.list[[i]], selection.method = "vst",
    nfeatures = 2000, verbose = FALSE
 )
}
# find anchors
anchors <- FindIntegrationAnchors(object.list = pancreas.list)</pre>
# integrate data
integrated <- IntegrateData(anchorset = anchors)</pre>
## End(Not run)
```

IntegrateEmbeddings Integrate low dimensional embeddings

Description

Perform dataset integration using a pre-computed Anchorset of specified low dimensional representations.

Usage

```
IntegrateEmbeddings(anchorset, ...)
## S3 method for class 'IntegrationAnchorSet'
IntegrateEmbeddings(
 anchorset,
  new.reduction.name = "integrated_dr",
  reductions = NULL,
 dims.to.integrate = NULL,
  k.weight = 100,
 weight.reduction = NULL,
  sd.weight = 1,
  sample.tree = NULL,
 preserve.order = FALSE,
  verbose = TRUE,
  . . .
)
## S3 method for class 'TransferAnchorSet'
IntegrateEmbeddings(
 anchorset,
  reference,
  query,
  query.assay = NULL,
  new.reduction.name = "integrated_dr",
  reductions = "pcaproject",
  dims.to.integrate = NULL,
  k.weight = 100,
 weight.reduction = NULL,
  reuse.weights.matrix = TRUE,
  sd.weight = 1,
 preserve.order = FALSE,
 verbose = TRUE,
  . . .
)
```

Arguments

anchorset An AnchorSet object

	Reserved for internal use	
new.reduction.name		
reductions	Name for new integrated dimensional reduction. Name of reductions to be integrated. For a TransferAnchorSet, this should be the name of a reduction present in the anchorset object (for example, "pcaproject"). For an IntegrationAnchorSet, this should be a DimReduc object containing all cells present in the anchorset object.	
dims.to.integra		
	Number of dimensions to return integrated values for	
k.weight weight.reductio	Number of neighbors to consider when weighting anchors	
	Dimension reduction to use when calculating anchor weights. This can be one of:	
	• A string, specifying the name of a dimension reduction present in all objects to be integrated	
	• A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated	
	 A vector of DimReduc objects, specifying the object to use for each object in the integration NULL, in which case the full corrected space is used for computing 	
	anchor weights.	
sd.weight	Controls the bandwidth of the Gaussian kernel for weighting	
sample.tree	Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: $matrix(c(-2, 1, -3, -1), ncol = 2)$ gives:	
	[,1] [,2]	
	[1,] -2 -3 [2,] 1 -1	
	Which would cause dataset 2 and 3 to be integrated first, then the result- ing object integrated with dataset 1. If NULL, the sample tree will be computed automatically.	
preserve.order	Do not reorder objects based on size for each pairwise integration.	
verbose	Print progress bars and output	
reference	Reference object used in anchorset construction	
query	Query object used in anchorset construction	
query.assay	Name of the Assay to use from query	
reuse.weights.r	matrix Can be used in conjunction with the store weights parameter in Transfer- Data to reuse a precomputed weights matrix.	

IntegrateLayers

Details

The main steps of this procedure are identical to IntegrateData with one key distinction. When computing the weights matrix, the distance calculations are performed in the full space of integrated embeddings when integrating more than two datasets, as opposed to a reduced PCA space which is the default behavior in IntegrateData.

Value

When called on a TransferAnchorSet (from FindTransferAnchors), this will return the query object with the integrated embeddings stored in a new reduction. When called on an IntegrationAnchorSet (from IntegrateData), this will return a merged object with the integrated reduction stored.

IntegrateLayers Integrate Layers

Description

Integrate Layers

Usage

```
IntegrateLayers(
   object,
   method,
   orig.reduction = "pca",
   assay = NULL,
   features = NULL,
   layers = NULL,
   scale.layer = "scale.data",
   ...
)
```

Arguments

object	A Seurat object
method	Integration method function
orig.reduction	Name of dimensional reduction for correction
assay	Name of assay for integration
features	A vector of features to use for integration
layers	Names of normalized layers in assay
scale.layer	Name(s) of scaled layer(s) in assay
	Arguments passed on to method

Value

object with integration data added to it

Integration Method Functions

The following integration method functions are available:

See Also

Writing integration method functions

IntegrationAnchorSet-class The IntegrationAnchorSet Class

Description

Inherits from the Anchorset class. Implemented mainly for method dispatch purposes. See AnchorSet for slot details.

IntegrationData-class The IntegrationData Class

Description

The IntegrationData object is an intermediate storage container used internally throughout the integration procedure to hold bits of data that are useful downstream.

Slots

neighbors List of neighborhood information for cells (outputs of RANN::nn2)

weights Anchor weight matrix

integration.matrix Integration matrix

anchors $\operatorname{Anchor}\nolimits$ matrix

offsets The offsets used to enable cell look up in downstream functions

objects.ncell Number of cells in each object in the object.list

sample.tree Sample tree used for ordering multi-dataset integration

ISpatialDimPlot Visualize clusters spatially and interactively

Description

Visualize clusters spatially and interactively

Usage

```
ISpatialDimPlot(
   object,
   image = NULL,
   image.scale = "lowres",
   group.by = NULL,
   alpha = c(0.3, 1)
)
```

Arguments

object	A Seurat object
image	Name of the image to use in the plot
image.scale	Choose the scale factor ("lowres"/"hires") to apply in order to match the plot with the specified 'image' - defaults to "lowres"
group.by	Name of meta.data column to group the data by
alpha	Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.

Value

Returns final plot as a ggplot object

ISpatialFeaturePlot Visualize features spatially and interactively

Description

Visualize features spatially and interactively

Usage

```
ISpatialFeaturePlot(
   object,
   feature,
   image = NULL,
   image.scale = "lowres",
   slot = "data",
   alpha = c(0.1, 1)
)
```

Arguments

object	A Seurat object
feature	Feature to visualize
image	Name of the image to use in the plot
image.scale	Choose the scale factor ("lowres"/"hires") to apply in order to match the plot with the specified 'image' - defaults to "lowres"
slot	If plotting a feature, which data slot to pull from (counts, data, or scale.data)
alpha	Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.

Value

Returns final plot as a ggplot object

JackStraw

Determine statistical significance of PCA scores.

Description

Randomly permutes a subset of data, and calculates projected PCA scores for these 'random' genes. Then compares the PCA scores for the 'random' genes with the observed PCA scores to determine statistical significance. End result is a p-value for each gene's association with each principal component.

Usage

```
JackStraw(
   object,
   reduction = "pca",
   assay = NULL,
   dims = 20,
   num.replicate = 100,
   prop.freq = 0.01,
```

```
verbose = TRUE,
maxit = 1000
)
```

Arguments

object	Seurat object
reduction	DimReduc to use. ONLY PCA CURRENTLY SUPPORTED.
assay	Assay used to calculate reduction.
dims	Number of PCs to compute significance for
num.replicate	Number of replicate samplings to perform
prop.freq	Proportion of the data to randomly permute for each replicate
verbose	Print progress bar showing the number of replicates that have been processed.
maxit	maximum number of iterations to be performed by the irlba function of RunPCA

Value

Returns a Seurat object where JS(object = object[['pca']], slot = 'empirical') represents p-values for each gene in the PCA analysis. If ProjectPCA is subsequently run, JS(object = object[['pca']], slot = 'full') then represents p-values for all genes.

References

Inspired by Chung et al, Bioinformatics (2014)

Examples

```
## Not run:
data("pbmc_small")
pbmc_small = suppressWarnings(JackStraw(pbmc_small))
head(JS(object = pbmc_small[['pca']], slot = 'empirical'))
```

End(Not run)

JackStrawData-class The JackStrawData Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::JackStrawData-class

JackStrawPlot

Description

Plots the results of the JackStraw analysis for PCA significance. For each PC, plots a QQplot comparing the distribution of p-values for all genes across each PC, compared with a uniform distribution. Also determines a p-value for the overall significance of each PC (see Details).

Usage

```
JackStrawPlot(
   object,
   dims = 1:5,
   cols = NULL,
   reduction = "pca",
   xmax = 0.1,
   ymax = 0.3
)
```

Arguments

object	Seurat object
dims	Dims to plot
cols	Vector of colors, each color corresponds to an individual PC. This may also be a single character or numeric value corresponding to a palette as specified by brewer.pal.info . By default, ggplot2 assigns colors. We also include a number of palettes from the pals package. See DiscretePalette for details.
reduction	reduction to pull jackstraw info from
xmax	X-axis maximum on each QQ plot.
ymax	Y-axis maximum on each QQ plot.

Details

Significant PCs should show a p-value distribution (black curve) that is strongly skewed to the left compared to the null distribution (dashed line) The p-value for each PC is based on a proportion test comparing the number of genes with a p-value below a particular threshold (score.thresh), compared with the proportion of genes expected under a uniform distribution of p-values.

Value

A ggplot object

Joint PCA Integration

Author(s)

Omri Wurtzel

See Also

ScoreJackStraw

Examples

```
data("pbmc_small")
JackStrawPlot(object = pbmc_small)
```

JointPCAIntegration Seurat-Joint PCA Integration

Description

Seurat-Joint PCA Integration

Usage

```
JointPCAIntegration(
 object = NULL,
 assay = NULL,
 layers = NULL,
 orig = NULL,
 new.reduction = "integrated.dr",
 reference = NULL,
  features = NULL,
 normalization.method = c("LogNormalize", "SCT"),
 dims = 1:30,
  k.anchor = 20,
  scale.layer = "scale.data",
  dims.to.integrate = NULL,
 k.weight = 100,
 weight.reduction = NULL,
  sd.weight = 1,
  sample.tree = NULL,
 preserve.order = FALSE,
 verbose = TRUE,
  . . .
)
```

Arguments

object	A Seurat object
assay	Name of Assay in the Seurat object
layers	Names of layers in assay
orig	A DimReduc to correct
new.reduction	Name of new integrated dimensional reduction
reference	A reference Seurat object
features	A vector of features to use for integration
normalization.m	
1.	Name of normalization method used: LogNormalize or SCT
dims	Dimensions of dimensional reduction to use for integration
k.anchor	How many neighbors (k) to use when picking anchors
<pre>scale.layer dims.to.integra</pre>	Name of scaled layer in Assay
dims. to. integra	Number of dimensions to return integrated values for
k.weight	Number of neighbors to consider when weighting anchors
weight.reductio	
	Dimension reduction to use when calculating anchor weights. This can
	be one of:
	• A string, specifying the name of a dimension reduction present in all objects to be integrated
	• A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
	• A vector of DimReduc objects, specifying the object to use for each object in the integration
	• NULL, in which case the full corrected space is used for computing anchor weights.
sd.weight	Controls the bandwidth of the Gaussian kernel for weighting
sample.tree	Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: $matrix(c(-2, 1, -3, -1), ncol = 2)$ gives:
	[,1] [,2] [1,] -2 -3 [2,] 1 -1
	Which would cause dataset 2 and 3 to be integrated first, then the result- ing object integrated with dataset 1. If NULL, the sample tree will be computed automatically.
preserve.order	Do not reorder objects based on size for each pairwise integration.
verbose	Print progress
	Arguments passed on to FindIntegrationAnchors
	<u> </u>

L2CCA

Description

Perform l2 normalization on CCs

Usage

L2CCA(object, ...)

Arguments

object	Seurat object
	Additional parameters to L2Dim.

L2Dim	L2-normalization	

Description

Perform l2 normalization on given dimensional reduction

Usage

L2Dim(object, reduction, new.dr = NULL, new.key = NULL)

Arguments

object	Seurat object
reduction	Dimensional reduction to normalize
new.dr	name of new dimensional reduction to store (default is old dr.l2)
new.key	name of key for new dimensional reduction

Value

Returns a Seurat object

LabelClusters

Description

Label clusters on a ggplot2-based scatter plot

Usage

```
LabelClusters(
   plot,
   id,
   clusters = NULL,
   labels = NULL,
   split.by = NULL,
   repel = TRUE,
   box = FALSE,
   geom = "GeomPoint",
   position = "median",
   ...
)
```

Arguments

plot	A ggplot2-based scatter plot
id	Name of variable used for coloring scatter plot
clusters	Vector of cluster ids to label
labels	Custom labels for the clusters
split.by	Split labels by some grouping label, useful when using facet_wrap or facet_grid
repel	Use geom_text_repel to create nicely-repelled labels
box	Use geom_label/geom_label_repel (includes a box around the text labels)
geom	Name of geom to get X/Y aesthetic names for
position	How to place the label if repel = FALSE. If "median", place the label at the median position. If "nearest" place the label at the position of the nearest data point to the median.
	Extra parameters to geom_text_repel, such as size

Value

A ggplot2-based scatter plot with cluster labels

See Also

geom_text_repel geom_text

LabelPoints

Examples

```
data("pbmc_small")
plot <- DimPlot(object = pbmc_small)
LabelClusters(plot = plot, id = 'ident')</pre>
```

LabelPoints

Add text labels to a ggplot2 plot

Description

Add text labels to a ggplot2 plot

Usage

```
LabelPoints(
  plot,
  points,
  labels = NULL,
  repel = FALSE,
  xnudge = 0.3,
  ynudge = 0.05,
  ...
)
```

Arguments

plot	A ggplot2 plot with a GeomPoint layer
points	A vector of points to label; if NULL, will use all points in the plot
labels	A vector of labels for the points; if $NULL,$ will use rownames of the data provided to the plot at the points selected
repel	Use geom_text_repel to create a nicely-repelled labels; this is slow when a lot of points are being plotted. If using repel, set xnudge and ynudge to 0
xnudge, ynudge	Amount to nudge X and Y coordinates of labels by
	Extra parameters passed to geom_text

Value

A ggplot object

See Also

geom_text

Examples

```
data("pbmc_small")
ff <- TopFeatures(object = pbmc_small[['pca']])
cc <- TopCells(object = pbmc_small[['pca']])
plot <- FeatureScatter(object = pbmc_small, feature1 = ff[1], feature2 = ff[2])
LabelPoints(plot = plot, points = cc)</pre>
```

LeverageScore Leverage Score Calculation

Description

This function computes the leverage scores for a given object It uses the concept of sketching and random projections. The function provides an approximation to the leverage scores using a scalable method suitable for large matrices.

Usage

```
LeverageScore(object, ...)
## Default S3 method:
LeverageScore(
  object,
  nsketch = 5000L,
  ndims = NULL,
  method = CountSketch,
  eps = 0.5,
  seed = 123L,
  verbose = TRUE,
  . . .
)
## S3 method for class 'StdAssay'
LeverageScore(
  object,
  nsketch = 5000L,
  ndims = NULL,
  method = CountSketch,
  vf.method = NULL,
  layer = "data",
  eps = 0.5,
  seed = 123L,
  verbose = TRUE,
  features = NULL,
  . . .
)
```

```
## S3 method for class 'Assay'
LeverageScore(
  object,
  nsketch = 5000L,
 ndims = NULL,
 method = CountSketch,
 vf.method = NULL,
 layer = "data",
 eps = 0.5,
  seed = 123L,
  verbose = TRUE,
  features = NULL,
  . . .
)
## S3 method for class 'Seurat'
LeverageScore(
 object,
  assay = NULL,
 nsketch = 5000L,
 ndims = NULL,
 var.name = "leverage.score",
  over.write = FALSE,
 method = CountSketch,
 vf.method = NULL,
 layer = "data",
 eps = 0.5,
  seed = 123L,
  verbose = TRUE,
  features = NULL,
  . . .
)
```

Arguments

object	A matrix-like object
	Arguments passed to other methods
nsketch	A positive integer. The number of sketches to be used in the approxima- tion. Default is 5000.
ndims	A positive integer or NULL. The number of dimensions to use. If NULL, the number of dimensions will default to the number of columns in the object.
method	The sketching method to use, defaults to CountSketch.
eps	A numeric. The error tolerance for the approximation in Johnson–Lindenstrauss embeddings, defaults to 0.5.
seed	A positive integer. The seed for the random number generator, defaults to 123 .

verbose	Print progress and diagnostic messages
vf.method	VariableFeatures method
layer	layer to use
features	A vector of feature names to use for calculating leverage score.
assay	assay to use
var.name	name of slot to store leverage scores
over.write	whether to overwrite slot that currently stores leverage scores. Defaults to FALSE, in which case the 'var.name' is modified if it already exists in the object

References

Clarkson, K. L. & Woodruff, D. P. Low-rank approximation and regression in input sparsity time. JACM 63, 1–45 (2017). https://dl.acm.org/doi/10.1145/3019134;

LinkedPlots	Visualize spatial and clustering (dimensional reduction) data in
	a linked, interactive framework

Description

Visualize spatial and clustering (dimensional reduction) data in a linked, interactive framework

Usage

```
LinkedDimPlot(
  object,
  dims = 1:2,
  reduction = NULL,
  image = NULL,
  image.scale = "lowres",
  group.by = NULL,
  alpha = c(0.1, 1),
  combine = TRUE
)
LinkedFeaturePlot(
  object,
  feature,
  dims = 1:2,
  reduction = NULL,
  image = NULL,
  image.scale = "lowres",
  slot = "data",
  alpha = c(0.1, 1),
  combine = TRUE
)
```

Arguments

object	A Seurat object
dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca
image	Name of the image to use in the plot
image.scale	Choose the scale factor ("lowres"/"hires") to apply in order to match the plot with the specified 'image' - defaults to "lowres"
group.by	Name of meta.data column to group the data by
alpha	Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.
combine	Combine plots into a single gg object; note that if TRUE; the meing will not work when plotting multiple features/groupings
feature	Feature to visualize
slot	If plotting a feature, which data slot to pull from (counts, data, or scale.data)

Value

Returns final plots. If combine, plots are stiched together using CombinePlots; otherwise, returns a list of ggplot objects

Examples

```
## Not run:
LinkedDimPlot(seurat.object)
LinkedFeaturePlot(seurat.object, feature = 'Hpca')
```

End(Not run)

Load10X_Spatial	Load a 10x Genomics Visium Spatial Experiment into a Seurat
	object

Description

Load a 10x Genomics Visium Spatial Experiment into a Seurat object

Usage

```
Load10X_Spatial(
   data.dir,
   filename = "filtered_feature_bc_matrix.h5",
   assay = "Spatial",
   slice = "slice1",
   bin.size = NULL,
   filter.matrix = TRUE,
   to.upper = FALSE,
   image = NULL,
   ...
)
```

Arguments

data.dir	Directory containing the H5 file specified by $\verb+filename$ and the image data in a subdirectory called <code>spatial</code>
filename	Name of H5 file containing the feature barcode matrix
assay	Name of the initial assay
slice	Name for the stored image of the tissue slice
bin.size	Specifies the bin sizes to read in - defaults to $c(16, 8)$
filter.matrix	Only keep spots that have been determined to be over tissue
to.upper	Converts all feature names to upper case. Can be useful when analyses require comparisons between human and mouse gene names for example.
image	VisiumV1/VisiumV2 instance(s) - if a vector is passed in it should be co-indexed with <code>`bin.size`</code>
	Arguments passed to $Read10X_h5$

Value

A Seurat object

Examples

```
## Not run:
data_dir <- 'path/to/data/directory'
list.files(data_dir) # Should show filtered_feature_bc_matrix.h5
Load10X_Spatial(data.dir = data_dir)
```

End(Not run)

LoadAnnoyIndex Load the Annoy index file

Description

Load the Annoy index file

Usage

LoadAnnoyIndex(object, file)

Arguments

object	Neighbor object
file	Path to file with annoy index

Value

Returns the Neighbor object with the index stored

LoadCurioSeeker Load Curio Seeker data

Description

Load Curio Seeker data

Usage

```
LoadCurioSeeker(data.dir, assay = "Spatial")
```

Arguments

data.dir	location of data directory that contains the counts matrix, gene names,
	barcodes/beads, and $barcodes/bead$ location files.
assay	Name of assay to associate spatial data to

Value

A Seurat object

LoadSTARmap

Description

Load STARmap data

Usage

```
LoadSTARmap(
   data.dir,
   counts.file = "cell_barcode_count.csv",
   gene.file = "genes.csv",
   qhull.file = "qhulls.tsv",
   centroid.file = "centroids.tsv",
   assay = "Spatial",
   image = "image"
)
```

Arguments

data.dir	location of data directory that contains the counts matrix, gene name, qhull, and centroid files.
counts.file	name of file containing the counts matrix (csv)
gene.file	name of file containing the gene names (csv)
qhull.file	name of file containing the hull coordinates (tsv)
centroid.file	name of file containing the centroid positions (tsv)
assay	Name of assay to associate spatial data to
image	Name of "image" object storing spatial coordinates

Value

A Seurat object

See Also

STARmap

LoadXenium

Description

Read and Load 10x Genomics Xenium in-situ data

Usage

```
LoadXenium(
  data.dir,
  fov = "fov",
  assay = "Xenium",
  mols.qv.threshold = 20,
  cell.centroids = TRUE,
  molecule.coordinates = TRUE,
  segmentations = NULL,
  flip.xy = FALSE
)
ReadXenium(
  data.dir,
  outs = c("segmentation_method", "matrix", "microns"),
  type = "centroids",
  mols.qv.threshold = 20,
  flip.xy = F
)
```

Arguments

data.dir	Directory containing all Xenium output files with default filenames
fov	FOV name
assay	Assay name
mols.qv.thresho	ld
	Remove transcript molecules with a QV less than this threshold. QV $>=20$ is the standard threshold used to construct the cell x gene count matrix.
cell.centroids molecule.coordi	
	Whether or not to load molecule pixel coordinates
segmentations	One of "cell", "nucleus" or NULL (to load either cell segmentations, nucleus segmentations or neither)
flip.xy	Whether or not to flip the x/y coordinates of the Xenium outputs to match what is displayed in Xenium Explorer, or fit on your screen better.
outs	Types of molecular outputs to read; choose one or more of:

	 "matrix": the counts matrix "microns": molecule coordinates
	• "segmentation_method": cell segmentation method (for runs which use multi-modal segmentation)
type	Type of cell spatial coordinate matrices to read; choose one or more of:
	• "centroids": cell centroids in pixel coordinate space
	\bullet "segmentations": cell segmentations in pixel coordinate space
	• "nucleus_segmentations": nucleus segmentations in pixel coordinate space
Value	
LoadXenium:	A Seurat object

ReadXenium: A list with some combination of the following values:

- "matrix": a sparse matrix with expression data; cells are columns and features are rows
- "centroids": a data frame with cell centroid coordinates in three columns: "x", "y", and "cell"
- "pixels": a data frame with molecule pixel coordinates in three columns: "x", "y", and "gene"

LocalStruct

Calculate the local structure preservation metric

Description

Calculates a metric that describes how well the local structure of each group prior to integration is preserved after integration. This procedure works as follows: For each group, compute a PCA, compute the top num.neighbors in pca space, compute the top num.neighbors in corrected pca space, compute the size of the intersection of those two sets of neighbors. Return the average over all groups.

```
LocalStruct(
   object,
   grouping.var,
   idents = NULL,
   neighbors = 100,
   reduction = "pca",
   reduced.dims = 1:10,
   orig.dims = 1:10,
   verbose = TRUE
)
```

LogNormalize

Arguments

object	Seurat object
grouping.var	Grouping variable
idents	Optionally specify a set of idents to compute metric for
neighbors	Number of neighbors to compute in pca/corrected pca space
reduction	Dimensional reduction to use for corrected space
reduced.dims	Number of reduced dimensions to use
orig.dims	Number of PCs to use in original space
verbose	Display progress bar

Value

Returns the average preservation metric

LogNormalize Normalize Raw Data

Description

Normalize Raw Data

Usage

```
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
## S3 method for class 'data.frame'
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
## S3 method for class 'V3Matrix'
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
## Default S3 method:
LogNormalize(data, scale.factor = 10000, margin = 2L, verbose = TRUE, ...)
```

Arguments

data	Matrix with the raw count data
scale.factor	Scale the data; default is $1e4$
margin	Margin to normalize over
verbose	Print progress
	Arguments passed to other methods

Value

A matrix with the normalized and log-transformed data

Examples

mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
mat
mat_norm <- LogNormalize(data = mat)
mat_norm</pre>

Calculate the variance to mean ratio of logged values

Description

Calculate the variance to mean ratio (VMR) in non-logspace (return answer in log-space)

Usage

LogVMR(x, ...)

Arguments

х	A vector of values
	Other arguments (not used)

Value

Returns the VMR in log-space

Examples

LogVMR(x = c(1, 2, 3))

MappingScore

Metric for evaluating mapping success

Description

This metric was designed to help identify query cells that aren't well represented in the reference dataset. The intuition for the score is that we are going to project the query cells into a reference-defined space and then project them back onto the query. By comparing the neighborhoods before and after projection, we identify cells who's local neighborhoods are the most affected by this transformation. This could be because there is a population of query cells that aren't present in the reference or the state of the cells in the query is significantly different from the equivalent cell type in the reference.

150

MappingScore

Usage

```
MappingScore(anchors, ...)
## Default S3 method:
MappingScore(
  anchors,
  combined.object,
  query.neighbors,
  ref.embeddings,
  query.embeddings,
  kanchors = 50,
  ndim = 50,
  ksmooth = 100,
  ksnn = 20,
  snn.prune = 0,
  subtract.first.nn = TRUE,
 nn.method = "annoy",
 n.trees = 50,
  query.weights = NULL,
  verbose = TRUE,
  . . .
)
## S3 method for class 'AnchorSet'
MappingScore(
  anchors,
  kanchors = 50,
  ndim = 50,
  ksmooth = 100,
  ksnn = 20,
  snn.prune = 0,
  subtract.first.nn = TRUE,
  nn.method = "annoy",
  n.trees = 50,
 query.weights = NULL,
 verbose = TRUE,
  . . .
)
```

Arguments

anchors	AnchorSet object or just anchor matrix from the Anchorset object re- turned from FindTransferAnchors
	Reserved for internal use
combined.object	
	Combined object (ref $+$ query) from the Anchorset object returned
query.neighbors	
	Neighbors object computed on query cells

ref.embeddings	Reference embeddings matrix	
query.embedding	gs	
	Query embeddings matrix	
kanchors	Number of anchors to use in projection steps when computing weights	
ndim	Number of dimensions to use when working with low dimensional projections of the data	
ksmooth	Number of cells to average over when computing transition probabilities	
ksnn	Number of cells to average over when determining the kernel bandwidth from the SNN graph	
snn.prune	Amount of pruning to apply to edges in SNN graph	
subtract.first.nn		
	Option to the scoring function when computing distances to subtract the distance to the first nearest neighbor	
nn.method	Nearest neighbor method to use (annoy or RANN)	
n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search	
query.weights	Query weights matrix for reuse	
verbose	${\rm Display\ messages/progress}$	

Value

Returns a vector of cell scores

MapQuery

Map query cells to a reference

Description

This is a convenience wrapper function around the following three functions that are often run together when mapping query data to a reference: TransferData, IntegrateEmbeddings, ProjectUMAP. Note that by default, the weight.reduction parameter for all functions will be set to the dimension reduction method used in the FindTransferAnchors function call used to construct the anchor object, and the dims parameter will be the same dimensions used to find anchors.

```
MapQuery(
    anchorset,
    query,
    reference,
    refdata = NULL,
    new.reduction.name = NULL,
    reference.reduction = NULL,
```

MapQuery

```
reference.dims = NULL,
query.dims = NULL,
store.weights = FALSE,
reduction.model = NULL,
transferdata.args = list(),
integrateembeddings.args = list(),
projectumap.args = list(),
verbose = TRUE
)
```

Arguments

anchorset	An AnchorSet object
query	Query object used in anchorset construction
reference	Reference object used in anchorset construction
refdata	Data to transfer. This can be specified in one of two ways:
	• The reference data itself as either a vector where the names correspond to the reference cells, or a matrix, where the column names correspond to the reference cells.
	• The name of the metadata field or assay from the reference object provided. This requires the reference parameter to be specified. If pulling assay data in this manner, it will pull the data from the data slot. To transfer data from other slots, please pull the data explicitly with GetAssayData and provide that matrix here.
new.reduction.name	
Name for new integrated dimensional reduction.	
reference.reduction	
	Name of reduction to use from the reference for neighbor finding
reference.dims	Dimensions (columns) to use from reference
query.dims	Dimensions (columns) to use from query
store.weights	Determine if the weight and anchor matrices are stored.
reduction.mode]	l
	DimReduc object that contains the umap model
transferdata.args	
	A named list of additional arguments to TransferData
integrateembeddings.args	
	A named list of additional arguments to IntegrateEmbeddings
projectumap.args	
	A named list of additional arguments to ProjectUMAP
verbose	Print progress bars and output

Value

Returns a modified query Seurat object containing: #

- New Assays corresponding to the features transferred and/or their corresponding prediction scores from TransferData
- An integrated reduction from IntegrateEmbeddings
- A projected UMAP reduction of the query cells projected into the reference UMAP using ProjectUMAP

merge.SCTAssay Merge SCTAssay objects

Description

 ${\it Merge \ SCTAssay \ objects}$

Usage

```
## S3 method for class 'SCTAssay'
merge(
    x = NULL,
    y = NULL,
    add.cell.ids = NULL,
    merge.data = TRUE,
    na.rm = TRUE,
    ...
)
```

Arguments

х	A Seurat object
У	A single Seurat object or a list of Seurat objects
add.cell.ids	A character vector of length(x = c(x, y)); appends the corresponding values to the start of each objects' cell names
merge.data	Merge the data slots instead of just merging the counts (which requires renormalization); this is recommended if the same normalization approach was applied to all objects
na.rm	If na.rm = TRUE, this will only preserve residuals that are present in all SCTAssays being merged. Otherwise, missing residuals will be populated with NAs.
	Arguments passed to other methods

MetaFeature

Description

Calculates relative contribution of each feature to each cell for given set of features.

Usage

```
MetaFeature(
   object,
   features,
   meta.name = "metafeature",
   cells = NULL,
   assay = NULL,
   slot = "data"
)
```

Arguments

object	A Seurat object
features	List of features to aggregate
meta.name	Name of column in metadata to store metafeature
cells	List of cells to use (default all cells)
assay	Which assay to use
slot	Which slot to take data from (default data)

Value

Returns a Seurat object with metafeature stored in object metadata

Examples

```
data("pbmc_small")
pbmc_small <- MetaFeature(
   object = pbmc_small,
   features = c("LTB", "EAF2"),
   meta.name = 'var.aggregate'
)
head(pbmc_small[[]])</pre>
```

MinMax

Description

Apply a ceiling and floor to all values in a matrix

Usage

```
MinMax(data, min, max)
```

Arguments

data	Matrix or data frame
min	all values below this min value will be replaced with min
max	all values above this max value will be replaced with max

Value

Returns matrix after performing these floor and ceil operations

Examples

mat <- matrix(data = rbinom(n = 25, size = 20, prob = 0.2), nrow = 5)
mat
MinMax(data = mat, min = 4, max = 5)</pre>

MixingMetric Calculates a mixing metric

Description

Here we compute a measure of how well mixed a composite dataset is. To compute, we first examine the local neighborhood for each cell (looking at max.k neighbors) and determine for each group (could be the dataset after integration) the k nearest neighbor and what rank that neighbor was in the overall neighborhood. We then take the median across all groups as the mixing metric per cell.

MixscapeHeatmap

Usage

```
MixingMetric(
   object,
   grouping.var,
   reduction = "pca",
   dims = 1:2,
   k = 5,
   max.k = 300,
   eps = 0,
   verbose = TRUE
)
```

Arguments

object	Seurat object
grouping.var	Grouping variable for dataset
reduction	Which dimensionally reduced space to use
dims	Dimensions to use
k	Neighbor number to examine per group
max.k	Maximum size of local neighborhood to compute
eps	Error bound on the neighbor finding algorithm (from RANN)
verbose	Displays progress bar

Value

Returns a vector of values of the mixing metric for each cell

MixscapeHeatmap Differential expression heatmap for mixscape

Description

Draws a heatmap of single cell feature expression with cells ordered by their mixscape ko probabilities.

```
MixscapeHeatmap(
   object,
   ident.1 = NULL,
   ident.2 = NULL,
   balanced = TRUE,
   logfc.threshold = 0.25,
   assay = "RNA",
   max.genes = 100,
```

```
test.use = "wilcox",
max.cells.group = NULL,
order.by.prob = TRUE,
group.by = NULL,
mixscape.class = "mixscape_class",
prtb.type = "KO",
fc.name = "avg_log2FC",
pval.cutoff = 0.05,
...
```

An object
Identity class to define markers for; pass an object of class phylo or 'clus- tertree' to find markers for a node in a cluster tree; passing 'clustertree' requires BuildClusterTree to have been run
A second identity class for comparison; if NULL, use all other cells for comparison; if an object of class phylo or 'clustertree' is passed to ident.1, must pass a node to find markers for
Plot an equal number of genes with both groups of cells.
1
Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.25. Increasing logfc.threshold speeds up the function, but can miss weaker signals.
Assay to use in differential expression testing
Total number of DE genes to plot.
Denotes which test to use. Available options are:
 "wilcox": Identifies differentially expressed genes between two groups of cells using a Wilcoxon Rank Sum test (default); will use a fast implementation by Presto if installed
• "wilcox_limma" : Identifies differentially expressed genes between two groups of cells using the limma implementation of the Wilcoxon Rank Sum test; set this option to reproduce results from Seurat v4
• "bimod" : Likelihood-ratio test for single cell gene expression, (Mc- David et al., Bioinformatics, 2013)
• "roc" : Identifies 'markers' of gene expression using ROC analysis. For each gene, evaluates (using AUC) a classifier built on that gene alone, to classify between two groups of cells. An AUC value of 1 means that expression values for this gene alone can perfectly classify the two groupings (i.e. Each of the cells in cells.1 exhibit a higher level than each of the cells in cells.2). An AUC value of 0 also means there is perfect classification, but in the other direction. A value of 0.5 implies that the gene has no predictive power to classify the two groups. Returns a 'predictive power' (abs(AUC-0.5) * 2) ranked matrix of putative differentially expressed genes.

158

- "t" : Identify differentially expressed genes between two groups of cells using the Student's t-test.
- "negbinom" : Identifies differentially expressed genes between two groups of cells using a negative binomial generalized linear model. Use only for UMI-based datasets
- "poisson" : Identifies differentially expressed genes between two groups of cells using a poisson generalized linear model. Use only for UMIbased datasets
- "LR" : Uses a logistic regression framework to determine differentially expressed genes. Constructs a logistic regression model predicting group membership based on each feature individually and compares this to a null model with a likelihood ratio test.
- "MAST": Identifies differentially expressed genes between two groups of cells using a hurdle model tailored to scRNA-seq data. Utilizes the MAST package to run the DE testing.
- "DESeq2": Identifies differentially expressed genes between two groups
 of cells based on a model using DESeq2 which uses a negative binomial distribution (Love et al, Genome Biology, 2014). This test does
 not support pre-filtering of genes based on average difference (or percent detection rate) between cell groups. However, genes may be prefiltered based on their minimum detection rate (min.pct) across both
 cell groups. To use this method, please install DESeq2, using the instructions at https://bioconductor.org/packages/release/bioc/html/DESeq2.html

max.cells.group Num

Number of cells per identity to plot.

- order.by.prob Order cells on heatmap based on their mixscape knockout probability from highest to lowest score. (Deprecated) Option to split densities based on mixscape classification. Please use mixscape.class instead
- mixscape.class metadata column with mixscape classifications.
- prtb.type specify type of CRISPR perturbation expected for labeling mixscape classifications. Default is KO.
- fc.name Name of the fold change, average difference, or custom function column in the output data.frame. Default is avg_log2FC
- pval.cutoff P-value cut-off for selection of significantly DE genes.
- .. Arguments passed to other methods and to specific DE methods

Value

A ggplot object.

MixscapeLDA

Description

This function performs unsupervised PCA on each mixscape class separately and projects each subspace onto all cells in the data. Finally, it uses the first 10 principle components from each projection as input to lda in MASS package together with mixscape class labels.

Usage

```
MixscapeLDA(
   object,
   assay = NULL,
   ndims.print = 1:5,
   nfeatures.print = 30,
   reduction.key = "LDA_",
   seed = 42,
   pc.assay = "PRTB",
   labels = "gene",
   nt.label = "NT",
   npcs = 10,
   verbose = TRUE,
   logfc.threshold = 0.25
)
```

Arguments

object	An object of class Seurat.			
assay	Assay to use for performing Linear Discriminant Analysis (LDA).			
ndims.print	Number of LDA dimensions to print.			
nfeatures.print	t			
	Number of features to print for each LDA component.			
reduction.key	Reduction key name.			
seed	Value for random seed			
pc.assay	Assay to use for running Principle components analysis.			
labels	Meta data column with target gene class labels.			
nt.label	Name of non-targeting cell class.			
npcs	Number of principle components to use.			
verbose	Print progress bar.			
logfc.threshold	ł			
	Limit testing to genes which show, on average, at least X-fold different			

Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.25. Increasing logfc.threshold speeds up the function, but can miss weaker signals.

Value

Returns a Seurat object with LDA added in the reduction slot.

ModalityWeights-class The ModalityWeights Class

Description

The ModalityWeights class is an intermediate data storage class that stores the modality weight and other related information needed for performing downstream analyses - namely data integration (FindModalityWeights) and data transfer (FindMultiModalNeighbors).

\mathbf{Slots}

modality.weight.list A list of modality weights value from all modalities

modality.assay Names of assays for the list of dimensional reductions

params A list of parameters used in the FindModalityWeights

command Store log of parameters that were used

MULTIseqDemux	Demultiplex	samples	based	on	classification	method	from
	MULTI-seq (${\it McGinnis}$	et al.,	bioR	2018) xiv 2018)		

Description

Identify singlets, doublets and negative cells from multiplexing experiments. Annotate singlets by tags.

```
MULTIseqDemux(
   object,
   assay = "HTO",
   quantile = 0.7,
   autoThresh = FALSE,
   maxiter = 5,
   qrange = seq(from = 0.1, to = 0.9, by = 0.05),
   verbose = TRUE
)
```

object	Seurat object. Assumes that the specified assay data has been added
assay	Name of the multiplexing assay (HTO by default)
quantile	The quantile to use for classification
autoThresh	Whether to perform automated threshold finding to define the best quantile. Default is FALSE
maxiter	Maximum number of iterations if autoThresh = TRUE. Default is 5 $$
qrange	A range of possible quantile values to try if autoThresh = $TRUE$
verbose	Prints the output

Value

A Seurat object with demultiplexing results stored at <code>object\$MULTI_ID</code>

References

 $doi{:}10.1038/s4159201904338$

Examples

Not run:
object <- MULTIseqDemux(object)</pre>

End(Not run)

Neighbor-class The Neighbor Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::Neighbor-class

162

NNPlot

Description

It will color the query cells and the neighbors of the query cells in the DimPlot

Usage

```
NNPlot(
 object,
 reduction,
 nn.idx,
  query.cells,
  dims = 1:2,
  label = FALSE,
  label.size = 4,
  repel = FALSE,
  sizes.highlight = 2,
 pt.size = 1,
  cols.highlight = c("#377eb8", "#e41a1c"),
 na.value = "#bdbdbd",
 order = c("self", "neighbors", "other"),
  show.all.cells = TRUE,
  . . .
)
```

Arguments

object	Seurat object		
reduction	Which dimensionality reduction to use. If not specified, first searches for umap, then tsne, then pca		
nn.idx	the neighbor index of all cells		
query.cells	cells used to find their neighbors		
dims	Dimensions to plot, must be a two-length numeric vector specifying x- and y-dimensions		
label	Whether to label the clusters		
label.size	Sets size of labels		
repel	Repel labels		
sizes.highlight			
	Size of highlighted cells; will repeat to the length groups in cells.highlight. If sizes.highlight = TRUE size of all points will be this value.		
pt.size	Adjust point size for plotting		
cols.highlight	A vector of colors to highlight the cells as; will repeat to the length groups in cells.highlight		

na.value	Color value for NA points when using custom scale
order	Specify the order of plotting for the idents. This can be useful for crowded plots if points of interest are being buried. Provide either a full list of valid idents or a subset to be plotted last (on top)
show.all.cells	Show all cells or only query and neighbor cells
	Extra parameters passed to DimPlot

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

NNtoGraph	Convert Neighbor	class to an asy	ymmetrical Graph class	
-----------	------------------	-----------------	------------------------	--

Description

Convert Neighbor class to an asymmetrical Graph class

Usage

```
NNtoGraph(nn.object, col.cells = NULL, weighted = FALSE)
```

Arguments

nn.object	A neighbor class object
col.cells	Cells names of the neighbors, cell names in nn.object is used by default
weighted	Determine if use distance in the Graph

Value

Returns a Graph object

NormalizeData

Normalize Data

Description

Normalize the count data present in a given assay.

NormalizeData

Usage

```
NormalizeData(object, ...)
## S3 method for class 'V3Matrix'
NormalizeData(
  object,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
 margin = 1,
 block.size = NULL,
  verbose = TRUE,
  . . .
)
## S3 method for class 'Assay'
NormalizeData(
 object,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
 margin = 1,
  verbose = TRUE,
  . . .
)
## S3 method for class 'Seurat'
NormalizeData(
 object,
  assay = NULL,
  normalization.method = "LogNormalize",
  scale.factor = 10000,
 margin = 1,
  verbose = TRUE,
  . . .
)
```

Arguments

object	${\rm An} {\rm object}$
	Arguments passed to other methods
normalization.	method
	Method for normalization.
	• "LogNormalize": Feature counts for each

- "LogNormalize": Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor. This is then natural-log transformed using log1p
- \bullet "CLR": Applies a centered log ratio transformation
- "RC": Relative counts. Feature counts for each cell are divided by the total counts for that cell and multiplied by the scale.factor.

	No log-transformation is applied. For counts per million (CPM) set scale.factor = 1e6 $$
scale.factor	Sets the scale factor for cell-level normalization
margin	If performing CLR normalization, normalize across features (1) or cells (2)
block.size	How many cells should be run in each chunk, will try to split evenly across threads
verbose	display progress bar for normalization procedure
assay	Name of assay to use

Value

Returns object after normalization

Examples

```
## Not run:
data("pbmc_small")
pbmc_small
pmbc_small <- NormalizeData(object = pbmc_small)
## End(Not run)
```

PCASigGenes

Significant genes from a PCA

Description

Returns a set of genes, based on the JackStraw analysis, that have statistically significant associations with a set of PCs.

```
PCASigGenes(
   object,
   pcs.use,
   pval.cut = 0.1,
   use.full = FALSE,
   max.per.pc = NULL
)
```

PercentAbove

Arguments

object	Seurat object
pcs.use	PCS to use.
pval.cut	P-value cutoff
use.full	Use the full list of genes (from the projected PCA). Assumes that ProjectDim has been run. Currently, must be set to FALSE.
max.per.pc	Maximum number of genes to return per PC. Used to avoid genes from one PC dominating the entire analysis.

Value

A vector of genes whose p-values are statistically significant for at least one of the given PCs.

See Also

ProjectDim JackStraw

Examples

data("pbmc_small")
PCASigGenes(pbmc_small, pcs.use = 1:2)

PercentAbove Calculate the percentage of a vector above some threshold

Description

Calculate the percentage of a vector above some threshold

Usage

```
PercentAbove(x, threshold)
```

Arguments

х	Vector of values
threshold	Threshold to use when calculating percentage

Value

Returns the percentage of x values above the given threshold

Examples

set.seed(42)
PercentAbove(sample(1:100, 10), 75)

PercentageFeatureSet Calculate the percentage of all counts that belong to a given set of features

Description

This function enables you to easily calculate the percentage of all the counts belonging to a subset of the possible features for each cell. This is useful when trying to compute the percentage of transcripts that map to mitochondrial genes for example. The calculation here is simply the column sum of the matrix present in the counts slot for features belonging to the set divided by the column sum for all features times 100.

Usage

```
PercentageFeatureSet(
   object,
   pattern = NULL,
   features = NULL,
   col.name = NULL,
   assay = NULL
)
```

Arguments

object	A Seurat object
pattern	A regex pattern to match features against
features	A defined feature set. If features provided, will ignore the pattern matching
col.name	Name in meta.data column to assign. If this is not null, returns a Seurat object with the proportion of the feature set stored in metadata.
assay	Assay to use

Value

Returns a vector with the proportion of the feature set or if md.name is set, returns a Seurat object with the proportion of the feature set stored in metadata.

Examples

```
data("pbmc_small")
# Calculate the proportion of transcripts mapping to mitochondrial genes
# NOTE: The pattern provided works for human gene names. You may need to adjust depending on your
# system of interest
pbmc_small[["percent.mt"]] <- PercentageFeatureSet(object = pbmc_small, pattern = "^MT-")</pre>
```

Description

Plots previously computed tree (from BuildClusterTree)

Usage

```
PlotClusterTree(object, direction = "downwards", ...)
```

Arguments

object	Seurat object
direction	A character string specifying the direction of the tree (default is down-wards) Possible options: "rightwards", "leftwards", "upwards", and "down-wards".
	Additional arguments to ape::plot.phylo

Value

Plots dendogram (must be precomputed using BuildClusterTree), returns no value

Examples

```
## Not run:
if (requireNamespace("ape", quietly = TRUE)) {
    data("pbmc_small")
    pbmc_small <- BuildClusterTree(object = pbmc_small)
    PlotClusterTree(object = pbmc_small)
}
## End(Not run)
```

PlotPerturbScore Function to plot perturbation score distributions.

Description

Density plots to visualize perturbation scores calculated from RunMixscape function.

Usage

```
PlotPerturbScore(
   object,
   target.gene.class = "gene",
   target.gene.ident = NULL,
   mixscape.class = "mixscape_class",
   col = "orange2",
   split.by = NULL,
   before.mixscape = FALSE,
   prtb.type = "KO"
)
```

Arguments

object	An object of class Seurat.	
target.gene.cla	ass	
	meta data column specifying all target gene names in the experiment.	
target.gene.ide	ent	
	Target gene name to visualize perturbation scores for.	
mixscape.class	meta data column specifying mixscape classifications.	
col	Specify color of target gene class or knockout cell class. For control non- targeting and non-perturbed cells, colors are set to different shades of grey.	
split.by	For datasets with more than one cell type. Set equal TRUE to visualize perturbation scores for each cell type separately.	
before.mixscape		
	Option to split densities based on mixscape classification (default) or orig- inal target gene classification. Default is set to NULL and plots cells by original class ID.	
prtb.type	specify type of CRISPR perturbation expected for labeling mixscape clas- sifications. Default is KO.	

Value

A ggplot object.

PolyDimPlot

Polygon DimPlot

Description

Plot cells as polygons, rather than single points. Color cells by identity, or a categorical variable in metadata

170

PolyFeaturePlot

Usage

```
PolyDimPlot(
   object,
   group.by = NULL,
   cells = NULL,
   poly.data = "spatial",
   flip.coords = FALSE
)
```

Arguments

object	Seurat object
group.by	A grouping variable present in the metadata. Default is to use the group- ings present in the current cell identities (Idents(object = object))
cells	Vector of cells to plot (default is all cells)
poly.data	Name of the polygon dataframe in the misc slot
flip.coords	Flip x and y coordinates

Value

Returns a ggplot object

Description

Plot cells as polygons, rather than single points. Color cells by any value accessible by FetchData.

```
PolyFeaturePlot(
   object,
   features,
   cells = NULL,
   poly.data = "spatial",
   ncol = ceiling(x = length(x = features)/2),
   min.cutoff = 0,
   max.cutoff = NA,
   common.scale = TRUE,
   flip.coords = FALSE
)
```

object	Seurat object		
features	Vector of features to plot. Features can come from:		
	• An Assay feature (e.g. a gene name - "MS4A1")		
	• A column name from meta.data (e.g. mitochondrial percentage - "percent.mito")		
	• A column name from a ${\tt DimReduc}$ object corresponding to the cell embedding values (e.g. the PC 1 scores - "PC_1")		
cells	Vector of cells to plot (default is all cells)		
poly.data	Name of the polygon dataframe in the misc slot		
ncol	Number of columns to split the plot into		
<pre>min.cutoff, max</pre>	c.cutoff		
	Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of ' $q##$ ' where ' $##$ ' is the quantile (eg, 'q1', 'q10')		
common.scale			
flip.coords	Flip x and y coordinates		

Value

Returns a ggplot object

i i care chesay i i care carae from meaneer mergineere	PredictAssay	Predict value f	from nearest neighbors
--	--------------	-----------------	------------------------

Description

This function will predict expression or cell embeddings from its k nearest neighbors index. For each cell, it will average its k neighbors value to get its new imputed value. It can average expression value in assays and cell embeddings from dimensional reductions.

```
PredictAssay(
   object,
   nn.idx,
   assay,
   reduction = NULL,
   dims = NULL,
   return.assay = TRUE,
   slot = "scale.data",
   features = NULL,
   mean.function = rowMeans,
   seed = 4273,
   verbose = TRUE
)
```

object	The object used to calculate knn
nn.idx	k near neighbor indices. A cells x k matrix.
assay	Assay used for prediction
reduction	Cell embedding of the reduction used for prediction
dims	Number of dimensions of cell embedding
return.assay	Return an assay or a predicted matrix
slot	slot used for prediction
features	features used for prediction
mean.function	the function used to calculate row mean
seed	Sets the random seed to check if the nearest neighbor is query cell
verbose	Print progress

Value

return an assay containing predicted expression value in the data slot

PrepareBridgeReference

```
Prepare the bridge and reference datasets
```

Description

Preprocess the multi-omic bridge and unimodal reference datasets into an extended reference. This function performs the following three steps: 1. Performs within-modality harmonization between bridge and reference 2. Performs dimensional reduction on the SNN graph of bridge datasets via Laplacian Eigendecomposition 3. Constructs a bridge dictionary representation for unimodal reference cells

```
PrepareBridgeReference(
  reference,
  bridge,
  reference.reduction = "pca",
  reference.dims = 1:50,
  normalization.method = c("SCT", "LogNormalize"),
  reference.assay = NULL,
  bridge.ref.assay = "RNA",
  bridge.query.assay = "ATAC",
  supervised.reduction = c("slsi", "spca", NULL),
  bridge.query.features = NULL,
  laplacian.reduction.name = "lap",
```

```
laplacian.reduction.key = "lap_",
laplacian.reduction.dims = 1:50,
verbose = TRUE
)
```

reference	A reference Seurat object	
bridge	A multi-omic bridge Seurat object	
reference.reduc	ction	
	Name of dimensional reduction of the reference object (default is 'pca')	
reference.dims	Number of dimensions used for the reference reduction (default is 50)	
normalization.m	nethod	
	Name of normalization method used: LogNormalize or SCT	
reference.assay	/	
	Assay name for reference (default is DefaultAssay)	
bridge.ref.assa	ау	
	Assay name for bridge used for reference mapping. RNA by default	
bridge.query.as		
	Assay name for bridge used for query mapping. ATAC by default	
supervised.red	uction	
	Type of supervised dimensional reduction to be performed for integrating the bridge and query. Options are:	
	• slsi: Perform supervised LSI as the dimensional reduction for the bridge-query integration	
	• spca: Perform supervised PCA as the dimensional reduction for the bridge-query integration	
	• NULL: no supervised dimensional reduction will be calculated. bridge.query.reduction is used for the bridge-query integration	
bridge.query.re		
	Name of dimensions used for the bridge-query harmonization. 'bridge.query.reduction' and 'supervised.reduction' cannot be NULL together.	
bridge.query.fe	eatures	
	Features used for bridge query dimensional reduction (default is NULL which uses VariableFeatures from the bridge object)	
laplacian.reduc	ction.name	
	Name of dimensional reduction name of graph laplacian eigenspace (de- fault is 'lap')	
laplacian.reduc	ction.key	
	Dimensional reduction key (default is 'lap_')	
laplacian.reduction.dims		
	Number of dimensions used for graph laplacian eigenspace (default is 50)	
verbose	Print progress and message (default is TRUE)	

PrepLDA

Value

Returns a BridgeReferenceSet that can be used as input to FindBridgeTransferAnchors. The parameters used are stored in the BridgeReferenceSet as well

Prepl	_DA
-------	-----

Function to prepare data for Linear Discriminant Analysis.

Description

This function performs unsupervised PCA on each mixscape class separately and projects each subspace onto all cells in the data.

Usage

```
PrepLDA(
   object,
   de.assay = "RNA",
   pc.assay = "PRTB",
   labels = "gene",
   nt.label = "NT",
   npcs = 10,
   verbose = TRUE,
   logfc.threshold = 0.25
)
```

Arguments

object	An object of class Seurat.
de.assay	Assay to use for selection of DE genes.
pc.assay	Assay to use for running Principle components analysis.
labels	Meta data column with target gene class labels.
nt.label	Name of non-targeting cell class.
npcs	Number of principle components to use.
verbose	Print progress bar.
logfc.threshold	1
	Limit testing to genes which show on average at least X-fold dif

Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.25. Increasing logfc.threshold speeds up the function, but can miss weaker signals.

Value

Returns a list of the first 10 PCs from each projection.

PrepSCTFindMarkers

Description

Given a merged object with multiple SCT models, this function uses minimum of the median UMI (calculated using the raw UMI counts) of individual objects to reverse the individual SCT regression model using minimum of median UMI as the sequencing depth covariate. The counts slot of the SCT assay is replaced with recorrected counts and the data slot is replaced with log1p of recorrected counts.

Usage

```
PrepSCTFindMarkers(object, assay = "SCT", verbose = TRUE)
```

Arguments

object	Seurat object with SCT assays
assay	Assay name where for SCT objects are stored; Default is 'SCT'
verbose	Print messages and progress

Value

Returns a Seurat object with recorrected counts and data in the SCT assay.

Progress Updates with progressr

This function uses **progressr** to render status updates and progress bars. To enable progress updates, wrap the function call in **with_progress** or run **handlers(global = TRUE)** before running this function. For more details about **progressr**, please read **vignette("progressr-intro")**

Parallelization with future

This function uses **future** to enable parallelization. Parallelization strategies can be set using **plan**. Common plans include "**sequential**" for non-parallelized processing or "**multisession**" for parallel evaluation using multiple R sessions; for other plans, see the "Implemented evaluation strategies" section of **?future::plan**. For a more thorough introduction to **future**, see **vignette("future-1-overview")**

Examples

```
data("pbmc_small")
pbmc_small1 <- SCTransform(object = pbmc_small, variable.features.n = 20, vst.flavor="v1")
pbmc_small2 <- SCTransform(object = pbmc_small, variable.features.n = 20, vst.flavor="v1")
pbmc_merged <- merge(x = pbmc_small1, y = pbmc_small2)
pbmc_merged <- PrepSCTFindMarkers(object = pbmc_merged)
markers <- FindMarkers(</pre>
```

PrepSCTIntegration

```
object = pbmc_merged,
ident.1 = "0",
ident.2 = "1",
assay = "SCT"
)
pbmc_subset <- subset(pbmc_merged, idents = c("0", "1"))
markers_subset <- FindMarkers(
object = pbmc_subset,
ident.1 = "0",
ident.2 = "1",
assay = "SCT",
recorrect_umi = FALSE
)
```

PrepSCTIntegration Prepare an object list normalized with sctransform for integration.

Description

This function takes in a list of objects that have been normalized with the SCTransform method and performs the following steps:

- If anchor.features is a numeric value, calls SelectIntegrationFeatures to determine the features to use in the downstream integration procedure.
- Ensures that the sctransform residuals for the features specified to anchor.features are present in each object in the list. This is necessary because the default behavior of SCTransform is to only store the residuals for the features determined to be variable. Residuals are recomputed for missing features using the stored model parameters via the GetResidual function.
- Subsets the scale.data slot to only contain the residuals for anchor.features for efficiency in downstream processing.

Usage

```
PrepSCTIntegration(
   object.list,
   assay = NULL,
   anchor.features = 2000,
   sct.clip.range = NULL,
   verbose = TRUE
}
```

)

Arguments

object.list A list of Seurat objects to prepare for integration

The name of the Assay to use for integration. This can be a single name if all the assays to be integrated have the same name, or a character vector containing the name of each Assay in each object to be integrated. The specified assays must have been normalized using SCTransform. If NULL (default), the current default assay for each object is used.
(default), the current default assay for each object is used.
Can be either:
 A numeric value. This will call SelectIntegrationFeatures to select the provided number of features to be used in anchor finding A vector of features to be used as input to the anchor finding process
Numeric of length two specifying the min and max values the Pearson residual will be clipped to
Display output/messages

Value

A list of **Seurat** objects with the appropriate **scale.data** slots containing only the required **anchor.features**.

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")
# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset and take the first 2 to integrate
pancreas.list <- SplitObject(panc8, split.by = "tech")[1:2]</pre>
# perform SCTransform normalization
pancreas.list <- lapply(X = pancreas.list, FUN = SCTransform)</pre>
# select integration features and prep step
features <- SelectIntegrationFeatures(pancreas.list)</pre>
pancreas.list <- PrepSCTIntegration(</pre>
  pancreas.list,
  anchor.features = features
)
# downstream integration steps
anchors <- FindIntegrationAnchors(</pre>
  pancreas.list,
  normalization.method = "SCT",
  anchor.features = features
)
pancreas.integrated <- IntegrateData(anchors, normalization.method = "SCT")</pre>
## End(Not run)
```

Description

This function allows projection of high-dimensional single-cell RNA expression data from a full dataset onto the lower-dimensional embedding of the sketch of the dataset.

Usage

```
ProjectData(
    object,
    assay = "RNA",
    sketched.assay = "sketch",
    sketched.reduction,
    full.reduction,
    dims,
    normalization.method = c("LogNormalize", "SCT"),
    refdata = NULL,
    k.weight = 50,
    umap.model = NULL,
    recompute.neighbors = FALSE,
    recompute.weights = FALSE,
    verbose = TRUE
)
```

Arguments

object	A Seurat object.	
assay	Assay name for the full data. Default is 'RNA'.	
sketched.assay	Sketched assay name to project onto. Default is 'sketch'.	
sketched.reduction		
	Dimensional reduction results of the sketched assay to project onto.	
full.reduction	Dimensional reduction name for the projected full dataset.	
dims	Dimensions to include in the projection.	
normalization.method		
	Normalization method to use. Can be 'LogNormalize' or 'SCT'. Default is 'LogNormalize'.	
refdata	An optional list for label transfer from sketch to full data. Default is NULL. Similar to refdata in 'MapQuery'	
k.weight	Number of neighbors to consider when weighting labels for transfer. Default is 50.	
umap.model	An optional pre-computed UMAP model. Default is NULL.	
recompute.neighbors		
	Whether to recompute the neighbors for label transfer. Default is FALSE.	

recompute.weights	
	Whether to recompute the weights for label transfer. Default is FALSE
verbose	Print progress and diagnostic messages.

Value

A Seurat object with the full data projected onto the sketched dimensional reduction results. The projected data are stored in the specified full reduction.

ProjectDim

Project Dimensional reduction onto full dataset

Description

Takes a pre-computed dimensional reduction (typically calculated on a subset of genes) and projects this onto the entire dataset (all genes). Note that the cell loadings will remain unchanged, but now there are gene loadings for all genes.

Usage

```
ProjectDim(
   object,
   reduction = "pca",
   assay = NULL,
   dims.print = 1:5,
   nfeatures.print = 20,
   overwrite = FALSE,
   do.center = FALSE,
   verbose = TRUE
)
```

Arguments

object	Seurat object
reduction	Reduction to use
assay	Assay to use
dims.print	Number of dims to print features for
nfeatures.print	
	Number of features with highest/lowest loadings to print for each dimension
overwrite	Replace the existing data in feature.loadings
do.center	Center the dataset prior to projection (should be set to TRUE)
verbose	Print top genes associated with the projected dimensions

Value

Returns Seurat object with the projected values

ProjectDimReduc

Examples

```
data("pbmc_small")
pbmc_small
pbmc_small <- ProjectDim(object = pbmc_small, reduction = "pca")
# Visualize top projected genes in heatmap
DimHeatmap(object = pbmc_small, reduction = "pca", dims = 1, balanced = TRUE)</pre>
```

ProjectDimReduc	Project	aueru	data te	reference	dimensional	reduction
TTOJECtDimteduc	110,000	query	uutu tt	rejerence	umensionui	reauction

Description

Project query data to reference dimensional reduction

Usage

```
ProjectDimReduc(
  query,
  reference,
  mode = c("pcaproject", "lsiproject"),
  reference.reduction,
  combine = FALSE,
  query.assay = NULL,
  reference.assay = NULL,
  reference.assay = NULL,
  features = NULL,
  do.scale = TRUE,
  reduction.name = NULL,
  reduction.key = NULL,
  verbose = TRUE
)
```

Arguments

query	Query object	
reference	Reference object	
mode	Projection mode name for projection	
	• pcaproject: PCA projection	
	• lsiproject: LSI projection	
reference.reduction		
	Name of dimensional reduction in the reference object	
combine	Determine if query and reference objects are combined	
query.assay	Assay used for query object	
reference.assa	У	
	Assay used for reference object	

Assay used for reference object

features	Features used for projection
do.scale	Determine if scale expression matrix in the pcaproject mode
reduction.name	dimensional reduction name, reference.reduction is used by default
reduction.key	dimensional reduction key, the key in reference.reduction is used by default
verbose	Print progress and message

Value

Returns a query-only or query-reference combined seurat object

ProjectIntegration Integrate embeddings from the integrated sketched.assay

Description

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Hao, et al Biorxiv 2022: doi:10.1101/2022.02.24.481684

Usage

```
ProjectIntegration(
    object,
    sketched.assay = "sketch",
    assay = "RNA",
    reduction = "integrated_dr",
    features = NULL,
    layers = "data",
    reduction.name = NULL,
    reduction.key = NULL,
    method = c("sketch", "data"),
    ratio = 0.8,
    sketched.layers = NULL,
    seed = 123,
    verbose = TRUE
)
```

object	A Seurat object with all cells for one dataset
sketched.assay	Assay name for sketched-cell expression (default is 'sketch')
assay	Assay name for original expression (default is 'RNA')
reduction	Dimensional reduction name for batch-corrected embeddings in the sketched object (default is 'integrated_dr')
features	Features used for atomic sketch integration

ProjectUMAP

layers	Names of layers for correction.		
reduction.name	Name to save new reduction as; defaults to paste0(reduction, '.orig')		
reduction.key	$Key for new dimensional reduction; defaults to creating one from \verb"reduction.name" \\$		
method	Methods to construct sketch-cell representation for all cells (default is 'sketch'). Can be one of:		
	 "sketch": Use random sketched data slot "data": Use data slot 		
ratio	Sketch ratio of data slot when dictionary.method is set to "sketch"; defaults to 0.8		
sketched.layers			
	Names of sketched layers, defaults to all layers of "object[[assay]]"		
seed	A positive integer. The seed for the random number generator, defaults to 123 .		
verbose	Print progress and message		

Details

First learn a atom dictionary representation to reconstruct each cell. Then, using this dictionary representation, reconstruct the embeddings of each cell from the integrated atoms.

Value

Returns a Seurat object with an integrated dimensional reduction

Description

This function will take a query dataset and project it into the coordinates of a provided reference UMAP. This is essentially a wrapper around two steps:

- FindNeighbors Find the nearest reference cell neighbors and their distances for each query cell.
- RunUMAP Perform umap projection by providing the neighbor set calculated above and the umap model previously computed in the reference.

```
ProjectUMAP(query, ...)
```

```
## Default S3 method:
ProjectUMAP(
   query,
   query.dims = NULL,
```

```
reference,
  reference.dims = NULL,
  k.param = 30,
  nn.method = "annoy",
  n.trees = 50,
  annoy.metric = "cosine",
  12.norm = FALSE,
  cache.index = TRUE,
  index = NULL,
  neighbor.name = "query_ref.nn",
  reduction.model,
  . . .
)
## S3 method for class 'DimReduc'
ProjectUMAP(
  query,
  query.dims = NULL,
  reference,
  reference.dims = NULL,
  k.param = 30,
  nn.method = "annoy",
  n.trees = 50,
  annoy.metric = "cosine",
  12.norm = FALSE,
  cache.index = TRUE,
  index = NULL,
  neighbor.name = "query_ref.nn",
  reduction.model,
  . . .
)
## S3 method for class 'Seurat'
ProjectUMAP(
  query,
  query.reduction,
  query.dims = NULL,
  reference,
  reference.reduction,
  reference.dims = NULL,
  k.param = 30,
  nn.method = "annoy",
  n.trees = 50,
  annoy.metric = "cosine",
  12.norm = FALSE,
  cache.index = TRUE,
  index = NULL,
  neighbor.name = "query_ref.nn",
```

```
reduction.model,
reduction.name = "ref.umap",
reduction.key = "refUMAP_",
...
```

query	Query dataset	
	Additional parameters to RunUMAP	
query.dims	Dimensions (columns) to use from query	
reference	Reference dataset	
reference.dims	Dimensions (columns) to use from reference	
k.param	Defines k for the k-nearest neighbor algorithm	
nn.method	Method for nearest neighbor finding. Options include: rann, annoy	
n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search	
annoy.metric	Distance metric for annoy. Options include: euclidean, cosine, manhat- tan, and hamming	
12.norm	Take L2Norm of the data	
cache.index	Include cached index in returned Neighbor object (only relevant if return.neighbor = $TRUE$)	
index	Precomputed index. Useful if querying new data against existing index to avoid recomputing.	
neighbor.name	Name to store neighbor information in the query	
reduction.model		
	DimReduc object that contains the umap model	
query.reduction		
с I	Name of reduction to use from the query for neighbor finding	
reference.reduc	Name of reduction to use from the reference for neighbor finding	
	Name of projected UMAP to store in the query	
reduction.key	Value for the projected UMAP key	

PseudobulkExpression Pseudobulk Expression

Description

Normalize the count data present in a given assay.

Returns a representative expression value for each identity class

Usage

```
PseudobulkExpression(object, ...)
## S3 method for class 'Assay'
PseudobulkExpression(
  object,
  assay,
  category.matrix,
  features = NULL,
  layer = "data",
  slot = deprecated(),
  verbose = TRUE,
  . . .
)
## S3 method for class 'StdAssay'
PseudobulkExpression(
  object,
  assay,
  category.matrix,
  features = NULL,
  layer = "data",
  slot = deprecated(),
  verbose = TRUE,
  . . .
)
## S3 method for class 'Seurat'
PseudobulkExpression(
  object,
  assays = NULL,
  features = NULL,
  return.seurat = FALSE,
  group.by = "ident",
  add.ident = NULL,
  layer = "data",
  slot = deprecated(),
 method = "average",
  normalization.method = "LogNormalize",
  scale.factor = 10000,
 margin = 1,
  verbose = TRUE,
  . . .
```

)

Arguments

object Seurat object

	Arguments to be passed to methods such as CreateSeuratObject	
assay	The name of the passed as say - used primarily for warning/error messages $% \left[{{\left[{{{\rm{T}}_{\rm{T}}} \right]}_{\rm{T}}}} \right]$	
category.matrix	x	
	A matrix defining groupings for pseudobulk expression calculations; each column represents an identity class, and each row a sample	
features	Features to analyze. Default is all features in the assay	
layer	Layer(s) to user; if multiple are given, assumed to follow the order of 'assays' (if specified) or object's assays	
slot	(Deprecated) See layer	
verbose	Print messages and show progress bar	
assays	Which assays to use. Default is all assays	
return.seurat	Whether to return the data as a Seurat object. Default is FALSE	
group.by	Categories for grouping (e.g, "ident", "replicate", "celltype"); "ident" by default	
add.ident	(Deprecated) See group.by	
method	The method used for calculating pseudobulk expression; one of: "average" or "aggregate"	
normalization.method		
	Method for normalization, see NormalizeData	
scale.factor	Scale factor for normalization, see NormalizeData	
margin	Margin to perform CLR normalization, see NormalizeData	

Value

Returns object after normalization

Returns a matrix with genes as rows, identity classes as columns. If return.seurat is TRUE, returns an object of class Seurat.

Radius.SlideSeq Get Spot Radius

Description

Get Spot Radius

```
## S3 method for class 'SlideSeq'
Radius(object, ...)
## S3 method for class 'STARmap'
Radius(object, ...)
```

```
## S3 method for class 'VisiumV1'
Radius(object, scale = "lowres", ...)
## S3 method for class 'VisiumV1'
Radius(object, scale = "lowres", ...)
```

object	An image object
	Arguments passed to other methods
scale	A factor to scale the radius by; one of: "hires", "lowres", or NULL for the unscaled value.

See Also

SeuratObject::Radius

```
Read10X
```

Load in data from 10X

Description

Enables easy loading of sparse data matrices provided by 10X genomics.

Usage

```
Read10X(
   data.dir,
   gene.column = 2,
   cell.column = 1,
   unique.features = TRUE,
   strip.suffix = FALSE
)
```

data.dir	Directory containing the matrix.mtx, genes.tsv (or features.tsv), and bar- codes.tsv files provided by 10X. A vector or named vector can be given in order to load several data directories. If a named vector is given, the cell barcode names will be prefixed with the name.		
gene.column	Specify which column of genes.tsv or features.tsv to use for gene names; default is 2		
cell.column	Specify which column of barcodes.tsv to use for cell names; default is 1		
unique.features			
	Make feature names unique (default TRUE)		
strip.suffix	Remove trailing "-1" if present in all cell barcodes.		

Value

If features.csv indicates the data has multiple data types, a list containing a sparse matrix of the data from each type will be returned. Otherwise a sparse matrix containing the expression data will be returned.

Examples

```
## Not run:
# For output from CellRanger < 3.0
data_dir <- 'path/to/data/directory'
list.files(data_dir) # Should show barcodes.tsv, genes.tsv, and matrix.mtx
expression_matrix <- Read10X(data.dir = data_dir)
seurat_object = CreateSeuratObject(counts = expression_matrix)
# For output from CellRanger >= 3.0 with multiple data types
data_dir <- 'path/to/data/directory'
list.files(data_dir) # Should show barcodes.tsv.gz, features.tsv.gz, and matrix.mtx.gz
data <- Read10X(data.dir = data_dir)
seurat_object = CreateSeuratObject(counts = data$`Gene Expression`)
seurat_object[['Protein']] = CreateAssayObject(counts = data$`Antibody Capture`)
```

End(Not run)

Read10X_Coordinates Load 10X Genomics Visium Tissue Positions

Description

Load 10X Genomics Visium Tissue Positions

Usage

```
Read10X_Coordinates(filename, filter.matrix)
```

Arguments

filename	Path to a tissue_positions_list.csv file
filter.matrix	Filter spot/feature matrix to only include spots that have been deter-
	mined to be over tissue

Value

A data.frame

Read10X_h5

Description

Read count matrix from 10X CellRanger hdf5 file. This can be used to read both scATAC-seq and scRNA-seq matrices.

Usage

```
Read10X_h5(filename, use.names = TRUE, unique.features = TRUE)
```

Arguments

filename Path to h5 file

use.names Label row names with feature names rather than ID numbers. unique.features

Make feature names unique (default TRUE)

Value

Returns a sparse matrix with rows and columns labeled. If multiple genomes are present, returns a list of sparse matrices (one per genome).

Read10X_Image

Load a 10X Genomics Visium Image

Description

Load a 10X Genomics Visium Image

```
Read10X_Image(
    image.dir,
    image.name = "tissue_lowres_image.png",
    assay = "Spatial",
    slice = "slice1",
    filter.matrix = TRUE,
    image.type = "VisiumV2"
)
```

image.dir	Path to directory with 10X Genomics visium image data; should include files tissue_lowres_image.png, scalefactors_json.json and tissue_positions_list.csv
image.name	PNG file to read in
assay	Name of associated assay
slice	Name for the image, used to populate the instance's key
filter.matrix	Filter spot/feature matrix to only include spots that have been determined to be over tissue
image.type	Image type to return, one of: "VisiumV1" or "VisiumV2"

Value

A VisiumV2 object

See Also

VisiumV2 Load10X_Spatial

Read10X_probe_metadata

Read10x Probe Metadata

Description

This function reads the probe metadata from a $10 \mathrm{x}$ Genomics probe barcode matrix file in HDF5 format.

Usage

```
Read10X_probe_metadata(data.dir, filename = "raw_probe_bc_matrix.h5")
```

Arguments

data.dir	The directory where the file is located.
filename	The name of the file containing the raw probe barcode matrix in HDF5 format. The default filename is 'raw_probe_bc_matrix.h5'.

Value

Returns a data.frame containing the probe metadata.

Read10X_ScaleFactors Load 10X Genomics Visium Scale Factors

Description

Load 10X Genomics Visium Scale Factors

Usage

Read10X_ScaleFactors(filename)

Arguments

filename Path to a scalefactors_json.json file

Value

A scale factors object

ReadAkoya

Read and Load Akoya CODEX data

Description

Read and Load Akoya CODEX data

```
ReadAkoya(
   filename,
   type = c("inform", "processor", "qupath"),
   filter = "DAPI|Blank|Empty",
   inform.quant = c("mean", "total", "min", "max", "std")
)
LoadAkoya(
   filename,
   type = c("inform", "processor", "qupath"),
   fov,
   assay = "Akoya",
   ...
)
```

ReadAkoya

Arguments

filename	Path to matrix generated by upstream processing.
type	Specify which type matrix is being provided.
	• "processor": matrix generated by CODEX Processor
	• "inform": matrix generated by inForm
	• "qupath": matrix generated by QuPath
filter	A pattern to filter features by; pass NA to skip feature filtering
inform.quant	When type is "inform", the quantification level to read in
fov	Name to store FOV as
assay	Name to store expression matrix as
	Ignored

Value

ReadAkoya: A list with some combination of the following values

- "matrix": a sparse matrix with expression data; cells are columns and features are rows
- "centroids": a data frame with cell centroid coordinates in three columns: "x", "y", and "cell"
- "metadata": a data frame with cell-level meta data; includes all columns in filename that aren't in "matrix" or "centroids"

When type is "inform", additional expression matrices are returned and named using their segmentation type (eg. "nucleus", "membrane"). The "Entire Cell" segmentation type is returned in the "matrix" entry of the list

LoadAkoya: A Seurat object

Progress Updates with progressr

This function uses **progressr** to render status updates and progress bars. To enable progress updates, wrap the function call in **with_progress** or run **handlers(global = TRUE)** before running this function. For more details about **progressr**, please read **vignette("progressr-intro")**

Note

This function requires the **data.table** package to be installed

ReadMtx

Description

Enables easy loading of sparse data matrices

Usage

```
ReadMtx(
   mtx,
   cells,
   features,
   cell.column = 1,
   feature.column = 2,
   cell.sep = "\t",
   feature.sep = "\t",
   skip.cell = 0,
   skip.feature = 0,
   mtx.transpose = FALSE,
   unique.features = TRUE,
   strip.suffix = FALSE
)
```

Arguments

mtx	Name or remote URL of the mtx file	
cells	Name or remote URL of the cells/barcodes file	
features	Name or remote URL of the features/genes file $ $	
cell.column	Specify which column of cells file to use for cell names; default is 1	
feature.column	Specify which column of features files to use for feature/gene names; default is 2	
cell.sep	Specify the delimiter in the cell name file	
feature.sep	Specify the delimiter in the feature name file	
skip.cell	Number of lines to skip in the cells file before beginning to read cell names	
skip.feature	Number of lines to skip in the features file before beginning to gene names	
mtx.transpose	Transpose the matrix after reading in	
unique.features	5	
	Make feature names unique (default TRUE)	
strip.suffix	Remove trailing "-1" if present in all cell barcodes.	

Value

A sparse matrix containing the expression data.

ReadNanostring

Examples

```
## Not run:
# For local files:
expression_matrix <- ReadMtx(
    mtx = "count_matrix.mtx.gz", features = "features.tsv.gz",
    cells = "barcodes.tsv.gz"
)
seurat_object <- CreateSeuratObject(counts = expression_matrix)
# For remote files:
expression_matrix <- ReadMtx(mtx = "http://localhost/matrix.mtx",
cells = "http://localhost/barcodes.tsv",
features = "http://localhost/genes.tsv")
seurat_object <- CreateSeuratObject(counts = data)
## End(Not run)
```

ReadNanostring Read and Load Nanostring SMI data

Description

Read and Load Nanostring SMI data

Usage

```
ReadNanostring(
    data.dir,
    mtx.file = NULL,
    metadata.file = NULL,
    molecules.file = NULL,
    segmentations.file = NULL,
    type = "centroids",
    mol.type = "pixels",
    metadata = NULL,
    mols.filter = NA_character_,
    genes.filter = NA_character_,
    fov.filter = NULL,
    subset.counts.matrix = NULL,
    cell.mols.only = TRUE
)
```

LoadNanostring(data.dir, fov, assay = "Nanostring")

data.dir	Path to folder containing Nanostring SMI outputs	
mtx.file	Path to Nanostring cell x gene matrix CSV	
metadata.file	Contains metadata including cell center, area, and stain intensities	
<pre>molecules.file segmentations.f</pre>	Path to molecules file file Path to segmentations CSV	
type	Type of cell spatial coordinate matrices to read; choose one or more of:	
type	 "centroids": cell centroids in pixel coordinate space "segmentations": cell segmentations in pixel coordinate space 	
mol.type	Type of molecule spatial coordinate matrices to read; choose one or more of:	
	• "pixels": molecule coordinates in pixel space	
metadata	Type of available metadata to read; choose zero or more of:	
	 "Area": number of pixels in cell segmentation "fov": cell's fov "More Membra Stain" mean resultance stain intensity 	
	 "Mean.MembraneStain": mean membrane stain intensity "Mean.DAPI": mean DAPI stain intensity	
	Mean.G": mean green channel stain intensity	
	• "Mean.Y": mean yellow channel stain intensity	
	• "Mean.R": mean red channel stain intensity	
	• "Max.MembraneStain": max membrane stain intensity	
	• "Max.DAPI": max DAPI stain intensity	
	• "Max.G": max green channel stain intensity	
	• "Max.Y": max yellow stain intensity	
	• "Max.R": max red stain intensity	
mols.filter	Filter molecules that match provided string	
genes.filter	Filter genes from cell x gene matrix that match provided string	
fov.filter	Only load in select FOVs. Nanostring SMI data contains 30 total FOVs.	
subset.counts.matrix		
	If the counts matrix should be built from molecule coordinates for a spe- cific segmentation; One of:	
	• "Nuclear": nuclear segmentations	
	• "Cytoplasm": cell cytoplasm segmentations	
	• "Membrane": cell membrane segmentations	
cell.mols.only	If TRUE, only load molecules within a cell	
fov	Name to store FOV as	
assay	Name to store expression matrix as	

ReadParseBio

Value

ReadNanostring: A list with some combination of the following values:

- "matrix": a sparse matrix with expression data; cells are columns and features are rows
- "centroids": a data frame with cell centroid coordinates in three columns: "x", "y", and "cell"
- "pixels": a data frame with molecule pixel coordinates in three columns: "x", "y", and "gene"

LoadNanostring: A Seurat object

Progress Updates with progressr

This function uses **progressr** to render status updates and progress bars. To enable progress updates, wrap the function call in **with_progress** or run **handlers(global = TRUE)** before running this function. For more details about **progressr**, please read **vignette("progressr-intro")**

Parallelization with future

This function uses **future** to enable parallelization. Parallelization strategies can be set using **plan**. Common plans include "**sequential**" for non-parallelized processing or "**multisession**" for parallel evaluation using multiple R sessions; for other plans, see the "Implemented evaluation strategies" section of **?future::plan**. For a more thorough introduction to **future**, see **vignette("future-1-overview")**

Note

This function requires the **data.table** package to be installed

ReadParseBio Read output from Parse Biosciences

Description

Read output from Parse Biosciences

Usage

ReadParseBio(data.dir, ...)

data.dir	Directory containing the data files
	Extra parameters passed to ${\tt ReadMtx}$

ReadSlideSeq

Description

Load Slide-seq spatial data

Usage

ReadSlideSeq(coord.file, assay = "Spatial")

Arguments

coord.file	Path to csv file containing bead coordinate positions
assay	Name of assay to associate image to

Value

A SlideSeq object

See Also

SlideSeq

ReadSTARsolo Read output from STARsolo

Description

Read output from STARsolo

Usage

```
ReadSTARsolo(data.dir, ...)
```

data.dir	Directory containing the data files
	Extra parameters passed to ReadMtx

ReadVitessce

Description

Read in data from Vitessce-formatted JSON files

Usage

```
ReadVitessce(
   counts = NULL,
   coords = NULL,
   molecules = NULL,
   type = c("segmentations", "centroids"),
   filter = NA_character_
)
```

LoadHuBMAPCODEX(data.dir, fov, assay = "CODEX")

Arguments

counts	Path or URL to a Vitessce-formatted JSON file with expression data; should end in ".genes.json" or ".clusters.json"; pass NULL to skip
coords	Path or URL to a Vitessce-formatted JSON file with cell/spot spatial coordinates; should end in ".cells.json"; pass NULL to skip
molecules	Path or URL to a Vitessce-formatted JSON file with molecule spatial coordinates; should end in ".molecules.json"; pass NULL to skip
type	Type of cell/spot spatial coordinates to return, choose one or more from:
	• "segmentations" cell/spot segmentations
	• "centroids" cell/spot centroids
filter	A character to filter molecules by, pass NA to skip molecule filtering
data.dir	Path to a directory containing Vitessce cells and clusters JSONs
fov	Name to store FOV as
assay	Name to store expression matrix as

Value

ReadVitessce: A list with some combination of the following values:

- "counts": if counts is not NULL, an expression matrix with cells as columns and features as rows
- "centroids": if coords is not NULL and type is contains"centroids", a data frame with cell centroids in three columns: "x", "y", and "cell"
- "segmentations": if coords is not NULL and type contains "centroids", a data frame with cell segmentations in three columns: "x", "y" and "cell"

• "molecules": if molecules is not NULL, a data frame with molecule spatial coordinates in three columns: "x", "y", and "gene"

LoadHuBMAPCODEX: A Seurat object

Progress Updates with progressr

This function uses **progressr** to render status updates and progress bars. To enable progress updates, wrap the function call in **with_progress** or run **handlers(global = TRUE)** before running this function. For more details about **progressr**, please read **vignette("progressr-intro")**

Note

This function requires the **jsonlite** package to be installed

Examples

```
## Not run:
coords <- ReadVitessce(
    counts =
         "https://s3.amazonaws.com/vitessce-data/0.0.31/master_release/wang/wang.genes.json",
    coords =
         "https://s3.amazonaws.com/vitessce-data/0.0.31/master_release/wang/wang.cells.json",
    molecules =
         "https://s3.amazonaws.com/vitessce-data/0.0.31/master_release/wang/wang.molecules.json"
)
    names(coords)
    coords$counts[1:10, 1:10]
    head(coords$centroids)
    head(coords$segmentations)
    head(coords$molecules)
## End(Not run)
```

ReadVizgen

Read and Load MERFISH Input from Vizgen

Description

Read and load in MERFISH data from Vizgen-formatted files

Usage

```
ReadVizgen(
   data.dir,
   transcripts = NULL,
   spatial = NULL,
   molecules = NULL,
   type = "segmentations",
```

```
mol.type = "microns",
metadata = NULL,
filter = NA_character_,
z = 3L
)
```

LoadVizgen(data.dir, fov, assay = "Vizgen", z = 3L)

0	
data.dir	Path to the directory with Vizgen MERFISH files; requires at least one of the following files present:
	• "cell_by_gene.csv": used for reading count matrix
	• "cell_metadata.csv": used for reading cell spatial coordinate matrices
	• "detected_transcripts.csv": used for reading molecule spatial co- ordinate matrices
transcripts	Optional file path for counts matrix; pass NA to suppress reading counts matrix
spatial	Optional file path for spatial metadata; pass NA to suppress reading spatial coordinates. If spatial is provided and type is "segmentations", uses dirname(spatial) instead of data.dir to find HDF5 files
molecules	Optional file path for molecule coordinates file; pass NA to suppress reading spatial molecule information
type	Type of cell spatial coordinate matrices to read; choose one or more of:
	• "segmentations": cell segmentation vertices; requires hdf5r to be in- stalled and requires a directory "cell_boundaries" within data.dir. Within "cell_boundaries", there must be one or more HDF5 file named "feature_data_##.hdf5"
	• "centroids": cell centroids in micron coordinate space
	\bullet "boxes": cell box outlines in micron coordinate space
mol.type	Type of molecule spatial coordinate matrices to read; choose one or more of:
	• "pixels": molecule coordinates in pixel space
	• "microns": molecule coordinates in micron space
metadata	Type of available metadata to read; choose zero or more of:
	• "volume": estimated cell volume
	• "fov": cell's fov
filter	A character to filter molecules by, pass NA to skip molecule filtering
Z	Z-index to load; must be between 0 and 6 , inclusive
fov	Name to store FOV as
assay	Name to store expression matrix as

Value

ReadVizgen: A list with some combination of the following values:

- "transcripts": a sparse matrix with expression data; cells are columns and features are rows
- "segmentations": a data frame with cell polygon outlines in three columns: "x", "y", and "cell"
- "centroids": a data frame with cell centroid coordinates in three columns: "x", "y", and "cell"
- "boxes": a data frame with cell box outlines in three columns: "x", "y", and "cell"
- "microns": a data frame with molecule micron coordinates in three columns: "x", "y", and "gene"
- "pixels": a data frame with molecule pixel coordinates in three columns: "x", "y", and "gene"
- "metadata": a data frame with the cell-level metadata requested by metadata

LoadVizgen: A Seurat object

Progress Updates with progressr

This function uses **progressr** to render status updates and progress bars. To enable progress updates, wrap the function call in **with_progress** or run **handlers(global = TRUE)** before running this function. For more details about **progressr**, please read **vignette("progressr-intro")**

Parallelization with future

This function uses **future** to enable parallelization. Parallelization strategies can be set using **plan**. Common plans include "**sequential**" for non-parallelized processing or "**multisession**" for parallel evaluation using multiple R sessions; for other plans, see the "Implemented evaluation strategies" section of **?future::plan**. For a more thorough introduction to **future**, see **vignette("future-1-overview")**

Note

This function requires the **data.table** package to be installed

info	
------	--

Description

For cells in each ident, set a new identity based on the most common value of a specified metadata column.

Usage

RegroupIdents(object, metadata)

RelativeCounts

Arguments

object	Seurat object
metadata	Name of metadata column

Value

A Seurat object with the active idents regrouped

Examples

```
data("pbmc_small")
pbmc_small <- RegroupIdents(pbmc_small, metadata = "groups")</pre>
```

RelativeCounts Normalize raw data to fractions

Description

Normalize count data to relative counts per cell by dividing by the total per cell. Optionally use a scale factor, e.g. for counts per million (CPM) use scale.factor = 1e6.

Usage

```
RelativeCounts(data, scale.factor = 1, verbose = TRUE)
```

Arguments

data	Matrix with the raw count data
scale.factor	Scale the result. Default is 1
verbose	Print progress

Value

Returns a matrix with the relative counts

Examples

```
mat <- matrix(data = rbinom(n = 25, size = 5, prob = 0.2), nrow = 5)
mat
mat_norm <- RelativeCounts(data = mat)
mat_norm</pre>
```

RenameCells.SCTAssay Rename Cells in an Object

Description

Rename Cells in an Object

Usage

```
## S3 method for class 'SCTAssay'
RenameCells(object, new.names = NULL, ...)
## S3 method for class 'SlideSeq'
RenameCells(object, new.names = NULL, ...)
## S3 method for class 'STARmap'
RenameCells(object, new.names = NULL, ...)
```

S3 method for class 'VisiumV1'
RenameCells(object, new.names = NULL, ...)

Arguments

object	An object
new.names	vector of new cell names
	Arguments passed to other methods

See Also

SeuratObject::RenameCells

RidgePlot Single cell ridge plot

Description

Draws a ridge plot of single cell data (gene expression, metrics, PC scores, etc.)

```
RidgePlot(
   object,
   features,
   cols = NULL,
   idents = NULL,
```

RidgePlot

```
sort = FALSE,
assay = NULL,
group.by = NULL,
y.max = NULL,
same.y.lims = FALSE,
log = FALSE,
ncol = NULL,
slot = deprecated(),
layer = "data",
stack = FALSE,
combine = TRUE,
fill.by = "feature"
```

Arguments

object	Seurat object
features	Features to plot (gene expression, metrics, PC scores, anything that can be retreived by FetchData)
cols	Colors to use for plotting
idents	Which classes to include in the plot (default is all)
sort	Sort identity classes (on the x-axis) by the average expression of the at- tribute being potted, can also pass 'increasing' or 'decreasing' to change sort direction
assay	Name of assay to use, defaults to the active assay
group.by	Group (color) cells in different ways (for example, orig.ident)
y.max	Maximum y axis value
same.y.lims	Set all the y-axis limits to the same values
log	plot the feature axis on log scale
ncol	Number of columns if multiple plots are displayed
slot	Slot to pull expression data from (e.g. "counts" or "data")
layer	Layer to pull expression data from (e.g. "counts" or "data")
stack	Horizontally stack plots for each feature
combine	Combine plots into a single patchworked ggplot object. If FALSE, return a list of ggplot
fill.by	Color violins/ridges based on either 'feature' or 'ident'

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Examples

```
data("pbmc_small")
RidgePlot(object = pbmc_small, features = 'PC_1')
```

RPCAIntegration

Description

Seurat-RPCA Integration

Usage

```
RPCAIntegration(
 object = NULL,
  assay = NULL,
 layers = NULL,
  orig = NULL,
  new.reduction = "integrated.dr",
  reference = NULL,
  features = NULL,
  normalization.method = c("LogNormalize", "SCT"),
  dims = 1:30,
  k.filter = NA,
  scale.layer = "scale.data",
  dims.to.integrate = NULL,
 k.weight = 100,
 weight.reduction = NULL,
  sd.weight = 1,
  sample.tree = NULL,
  preserve.order = FALSE,
  verbose = TRUE,
  . . .
)
```

object	A Seurat object
assay	Name of Assay in the Seurat $object$
layers	Names of layers in assay
orig	A DimReduc to correct
new.reduction	Name of new integrated dimensional reduction
reference	A reference Seurat object
features	A vector of features to use for integration
normalization.	method
	Name of normalization method used: LogNormalize or SCT
dims	Dimensions of dimensional reduction to use for integration
k.filter	Number of anchors to filter

scale.layer	Name of scaled layer in Assay
dims.to.integrate	
	Number of dimensions to return integrated values for
k.weight	Number of neighbors to consider when weighting anchors
weight.reduction	
	Dimension reduction to use when calculating anchor weights. This can be one of:
	• A string, specifying the name of a dimension reduction present in all objects to be integrated
	• A vector of strings, specifying the name of a dimension reduction to use for each object to be integrated
	• A vector of DimReduc objects, specifying the object to use for each object in the integration
	• NULL, in which case the full corrected space is used for computing anchor weights.
sd.weight	Controls the bandwidth of the Gaussian kernel for weighting
sample.tree	Specify the order of integration. Order of integration should be encoded in a matrix, where each row represents one of the pairwise integration steps. Negative numbers specify a dataset, positive numbers specify the integration results from a given row (the format of the merge matrix included in the hclust function output). For example: $matrix(c(-2, 1, -3, -1), ncol = 2)$ gives:
	[,1] [,2] [1,] -2 -3 [2,] 1 -1
	Which would cause dataset 2 and 3 to be integrated first, then the result- ing object integrated with dataset 1. If NULL, the sample tree will be computed automatically.
preserve.order	Do not reorder objects based on size for each pairwise integration.
verbose	Print progress
	Arguments passed on to FindIntegrationAnchors
Examples	
- ## Not run:	

```
## Not Full.
# Preprocessing
obj <- SeuratData::LoadData("pbmcsca")
obj[["RNA"]] <- split(obj[["RNA"]], f = obj$Method)
obj <- NormalizeData(obj)
obj <- FindVariableFeatures(obj)
obj <- ScaleData(obj)
obj <- RunPCA(obj)</pre>
```

```
# After preprocessing, we run integration
obj <- IntegrateLayers(object = obj, method = RPCAIntegration,</pre>
```

```
orig.reduction = "pca", new.reduction = 'integrated.rpca',
 verbose = FALSE)
# Reference-based Integration
# Here, we use the first layer as a reference for integraion
# Thus, we only identify anchors between the reference and the rest of the datasets,
# saving computational resources
obj <- IntegrateLayers(object = obj, method = RPCAIntegration,</pre>
 orig.reduction = "pca", new.reduction = 'integrated.rpca',
 reference = 1, verbose = FALSE)
# Modifying parameters
# We can also specify parameters such as `k.anchor` to increase the strength of
# integration
obj <- IntegrateLayers(object = obj, method = RPCAIntegration,</pre>
 orig.reduction = "pca", new.reduction = 'integrated.rpca',
 k.anchor = 20, verbose = FALSE)
# Integrating SCTransformed data
obj <- SCTransform(object = obj)</pre>
obj <- IntegrateLayers(object = obj, method = RPCAIntegration,</pre>
 orig.reduction = "pca", new.reduction = 'integrated.rpca',
 assay = "SCT", verbose = FALSE)
## End(Not run)
```

RunCCA

Perform Canonical Correlation Analysis

Description

Runs a canonical correlation analysis using a diagonal implementation of CCA. For details about stored CCA calculation parameters, see PrintCCAParams.

Usage

```
RunCCA(object1, object2, ...)
## Default S3 method:
RunCCA(
   object1,
   object2,
   standardize = TRUE,
   num.cc = 20,
   seed.use = 42,
   verbose = FALSE,
   ...
)
```

```
## S3 method for class 'Seurat'
RunCCA(
 object1,
 object2,
 assay1 = NULL,
 assay2 = NULL,
 num.cc = 20,
  features = NULL,
 renormalize = FALSE,
  rescale = FALSE,
  compute.gene.loadings = TRUE,
  add.cell.id1 = NULL,
 add.cell.id2 = NULL,
 verbose = TRUE,
  • • •
)
```

object1	First Seurat object	
object2	Second Seurat object.	
	Extra parameters (passed onto MergeSeurat in case with two objects passed, passed onto ScaleData in case with single object and rescale.groups set to TRUE)	
standardize	Standardize matrices - scales columns to have unit variance and mean $\boldsymbol{0}$	
num.cc	Number of canonical vectors to calculate	
seed.use	Random seed to set. If NULL, does not set a seed	
verbose	Show progress messages	
assay1, assay2	Assays to pull from in the first and second objects, respectively	
features	Set of genes to use in CCA. Default is the union of both the variable features sets present in both objects.	
renormalize	Renormalize raw data after merging the objects. If FALSE, merge the data matrices also.	
rescale	Rescale the datasets prior to CCA. If FALSE, uses existing data in the scale data slots.	
compute.gene.loadings		
	Also compute the gene loadings. NOTE - this will scale every gene in the dataset which may impose a high memory cost.	
add.cell.id1, add.cell.id2		
	Add	

Value

Returns a combined Seurat object with the CCA results stored.

See Also

merge.Seurat

Examples

```
## Not run:
data("pbmc_small")
pbmc_small
# As CCA requires two datasets, we will split our test object into two just for this example
pbmc1 <- subset(pbmc_small, cells = colnames(pbmc_small)[1:40])
pbmc2 <- subset(pbmc_small, cells = colnames(x = pbmc_small)[41:80])
pbmc1[["group"]] <- "group1"
pbmc2[["group"]] <- "group2"
pbmc_cca <- RunCCA(object1 = pbmc1, object2 = pbmc2)
# Print results
print(x = pbmc_cca[["cca"]])
## End(Not run)
```

RunGraphLaplacian Run Graph Laplacian Eigendecomposition

Description

Run a graph laplacian dimensionality reduction. It is used as a low dimensional representation for a cell-cell graph. The input graph should be symmetric

Usage

```
RunGraphLaplacian(object, ...)
## S3 method for class 'Seurat'
RunGraphLaplacian(
    object,
    graph,
    reduction.name = "lap",
    reduction.key = "LAP_",
    n = 50,
    verbose = TRUE,
    ...
)
## Default S3 method:
RunGraphLaplacian(object, n = 50, reduction.key = "LAP_", verbose = TRUE, ...)
```

RunICA

Arguments

object	A Seurat object
	Arguments passed to eigs_sym
graph	The name of graph
reduction.name	dimensional reduction name, lap by default
reduction.key	dimensional reduction key, specifies the string before the number for the dimension names. LAP by default
n	Total Number of Eigenvectors to compute and store (50 by default)
verbose	Print message and process

Value

Returns Seurat object with the Graph laplacian eigenvector calculation stored in the reductions slot

RunICA

Run Independent Component Analysis on gene expression

Description

Run fastica algorithm from the ica package for ICA dimensionality reduction. For details about stored ICA calculation parameters, see PrintICAParams.

```
RunICA(object, ...)
## Default S3 method:
RunICA(
 object,
  assay = NULL,
 nics = 50,
  rev.ica = FALSE,
  ica.function = "icafast",
  verbose = TRUE,
  ndims.print = 1:5,
  nfeatures.print = 30,
  reduction.name = "ica",
  reduction.key = "ica_",
  seed.use = 42,
  . . .
)
## S3 method for class 'Assay'
RunICA(
```

```
object,
  assay = NULL,
  features = NULL,
  nics = 50,
  rev.ica = FALSE,
  ica.function = "icafast",
  verbose = TRUE,
  ndims.print = 1:5,
  nfeatures.print = 30,
  reduction.name = "ica",
  reduction.key = "ica_",
  seed.use = 42,
  • • •
)
## S3 method for class 'Seurat'
RunICA(
 object,
  assay = NULL,
  features = NULL,
 nics = 50,
  rev.ica = FALSE,
  ica.function = "icafast",
  verbose = TRUE,
 ndims.print = 1:5,
 nfeatures.print = 30,
  reduction.name = "ica",
  reduction.key = "IC_",
  seed.use = 42,
  . . .
```

```
)
```

object	Seurat object
	Additional arguments to be passed to fastica
assay	Name of Assay ICA is being run on
nics	Number of ICs to compute
rev.ica	By default, computes the dimensional reduction on the cell x feature matrix. Setting to true will compute it on the transpose (feature x cell matrix).
ica.function	ICA function from ica package to run (options: icafast, icaimax, icajade)
verbose	Print the top genes associated with high/low loadings for the ICs $$
ndims.print	ICs to print genes for
nfeatures.print	
	Number of genes to print for each IC

RunLDA

reduction.name	dimensional reduction name
5	dimensional reduction key, specifies the string before the number for the dimension names.
seed.use	Set a random seed. Setting NULL will not set a seed.
features	Features to compute ICA on

RunLDA

Run Linear Discriminant Analysis

Description

Run Linear Discriminant Analysis Function to perform Linear Discriminant Analysis.

```
RunLDA(object, ...)
## Default S3 method:
RunLDA(
 object,
  labels,
 assay = NULL,
  verbose = TRUE,
  ndims.print = 1:5,
  nfeatures.print = 30,
  reduction.key = "LDA_",
  seed = 42,
  . . .
)
## S3 method for class 'Assay'
RunLDA(
 object,
  assay = NULL,
 labels,
  features = NULL,
  verbose = TRUE,
  ndims.print = 1:5,
  nfeatures.print = 30,
  reduction.key = "LDA_",
  seed = 42,
  . . .
)
## S3 method for class 'Seurat'
```

```
RunLDA(
   object,
   assay = NULL,
   labels,
   features = NULL,
   reduction.name = "lda",
   reduction.key = "LDA_",
   seed = 42,
   verbose = TRUE,
   ndims.print = 1:5,
   nfeatures.print = 30,
   ...
)
```

	object	An object of class Seurat.
		Arguments passed to other methods
	labels	Meta data column with target gene class labels.
	assay	Assay to use for performing Linear Discriminant Analysis (LDA).
	verbose	Print the top genes associated with high/low loadings for the PCs
	ndims.print	Number of LDA dimensions to print.
nfeatures.print		
		Number of features to print for each LDA component.
	reduction.key	Reduction key name.
	seed	Value for random seed
	features	Features to compute LDA on
	reduction.name	dimensional reduction name, lda by default

RunLeiden

Run Leiden clustering algorithm

Description

Returns a vector of partition indices.

Usage

```
RunLeiden(
   object,
   method = deprecated(),
   partition.type = c("RBConfigurationVertexPartition", "ModularityVertexPartition",
        "RBERVertexPartition", "CPMVertexPartition", "MutableVertexPartition",
        "SignificanceVertexPartition", "SurpriseVertexPartition"),
```

RunMarkVario

```
initial.membership = NULL,
node.sizes = NULL,
resolution.parameter = 1,
random.seed = 1,
n.iter = 10
```

Arguments

)

object An adjacency matrix or adjacency list.	
method DEPRECATED.	
<pre>partition.type Type of partition to use for Leiden algorithm. Defaults to "RBConfigura- tionVertexPartition", see https://cran.rstudio.com/web/packages/leidenbase/leidenbase for more options.</pre>	e.pdf
initial.membership	
$Passed \ to \ the \ `initial_membership' \ parameter \ of \ `leidenbase::leiden_find_partition'.$	
node.sizes Passed to the 'node_sizes' parameter of 'leidenbase::leiden_find_partition'.	
resolution.parameter	
A parameter controlling the coarseness of the clusters for Leiden algo- rithm. Higher values lead to more clusters. (defaults to 1.0 for partition types that accept a resolution parameter)	
random.seed Seed of the random number generator, must be greater than 0.	
n.iter Maximal number of iterations per random start	

RunMarkVario	Run the mark variogram computation on a given position matrix
	and expression matrix.

Description

Wraps the functionality of markvario from the spatstat package.

Usage

```
RunMarkVario(spatial.location, data, ...)
```

spatial.location		
	A 2 column matrix giving the spatial locations of each of the data points also in data	
data	Matrix containing the data used as "marks" (e.g. gene expression)	
	Arguments passed to markvario	

RunMixscape

Description

Function to identify perturbed and non-perturbed gRNA expressing cells that accounts for multiple treatments/conditions/chemical perturbations.

Usage

```
RunMixscape(
 object,
  assay = "PRTB",
  slot = "scale.data",
 labels = "gene",
 nt.class.name = "NT",
  new.class.name = "mixscape_class",
 min.de.genes = 5,
 min.cells = 5,
  de.assay = "RNA",
  logfc.threshold = 0.25,
  iter.num = 10,
  verbose = FALSE,
  split.by = NULL,
  fine.mode = FALSE,
  fine.mode.labels = "guide_ID",
 prtb.type = "KO"
)
```

object	An object of class Seurat.
assay	Assay to use for mixscape classification.
slot	Assay data slot to use.
labels	metadata column with target gene labels.
nt.class.name	Classification name of non-targeting gRNA cells.
new.class.name	Name of mixscape classification to be stored in metadata.
min.de.genes	Required number of genes that are differentially expressed for method to separate perturbed and non-perturbed cells.
min.cells	Minimum number of cells in target gene class. If fewer than this many cells are assigned to a target gene class during classification, all are assigned NP.
de.assay	Assay to use when performing differential expression analysis. Usually RNA.

logfc.threshold		
	Limit testing to genes which show, on average, at least X-fold difference (log-scale) between the two groups of cells. Default is 0.25 Increasing logfc.threshold speeds up the function, but can miss weaker signals.	
iter.num	Number of normalmixEM iterations to run if convergence does not occur.	
verbose	Display messages	
split.by	metadata column with experimental condition/cell type classification in- formation. This is meant to be used to account for cases a perturbation is condition/cell type -specific.	
fine.mode	When this is equal to TRUE, DE genes for each target gene class will be calculated for each gRNA separately and pooled into one DE list for calculating the perturbation score of every cell and their subsequent clas- sification.	
fine.mode.labels		
prtb.type	metadata column with gRNA ID labels. specify type of CRISPR perturbation expected for labeling mixscape clas- sifications. Default is KO.	

Value

Returns Seurat object with with the following information in the meta data and tools slots:

mixscape class Classification result with cells being either classified as perturbed (KO, by default) or non-perturbed (NP) based on their target gene class.

mixscape class.global Global classification result (perturbed, NP or NT)

- p_ko Posterior probabilities used to determine if a cell is KO (default). Name of this item will change to match prtb.type parameter setting. (>0.5) or NP
- **perturbation score** Perturbation scores for every cell calculated in the first iteration of the function.

RunMoransI

Compute Moran's I value.

Description

Wraps the functionality of the Moran. I function from the ape package. Weights are computed as $1/{\rm distance.}$

Usage

RunMoransI(data, pos, verbose = TRUE)

Arguments

data	Expression matrix
pos	Position matrix
verbose	Display messages/progress

RunPCA

Description

Run a PCA dimensionality reduction. For details about stored PCA calculation parameters, see ${\tt PrintPCAParams}.$

```
RunPCA(object, ...)
## Default S3 method:
RunPCA(
  object,
  assay = NULL,
 npcs = 50,
  rev.pca = FALSE,
 weight.by.var = TRUE,
  verbose = TRUE,
  ndims.print = 1:5,
  nfeatures.print = 30,
  reduction.key = "PC_",
  seed.use = 42,
  approx = TRUE,
  . .
)
## S3 method for class 'Assay'
RunPCA(
 object,
  assay = NULL,
  features = NULL,
  npcs = 50,
  rev.pca = FALSE,
 weight.by.var = TRUE,
  verbose = TRUE,
  ndims.print = 1:5,
  nfeatures.print = 30,
  reduction.key = "PC_",
  seed.use = 42,
  . . .
)
## S3 method for class 'Seurat'
RunPCA(
 object,
```

RunPCA

```
assay = NULL,
features = NULL,
npcs = 50,
rev.pca = FALSE,
weight.by.var = TRUE,
verbose = TRUE,
ndims.print = 1:5,
nfeatures.print = 30,
reduction.name = "pca",
reduction.key = "PC_",
seed.use = 42,
....)
```

Arguments

object	An object
	Arguments passed to other methods and IRLBA
assay	Name of Assay PCA is being run on
npcs	Total Number of PCs to compute and store (50 by default)
rev.pca	By default computes the PCA on the cell x gene matrix. Setting to true will compute it on gene x cell matrix.
weight.by.var	Weight the cell embeddings by the variance of each PC (weights the gene loadings if rev.pca is TRUE) $$
verbose	Print the top genes associated with high/low loadings for the PCs $$
ndims.print	PCs to print genes for
nfeatures.print	
	Number of genes to print for each PC
reduction.key	dimensional reduction key, specifies the string before the number for the dimension names. PC by default
seed.use	Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed.
approx	Use truncated singular value decomposition to approximate PCA
features	Features to compute PCA on. If features=NULL, PCA will be run using the variable features for the Assay. Note that the features must be present in the scaled data. Any requested features that are not scaled or have 0 variance will be dropped, and the PCA will be run using the remaining features.
reduction.name	dimensional reduction name, pca by default

Value

Returns Seurat object with the PCA calculation stored in the reductions slot

RunSLSI

Description

Run a supervised LSI (SLSI) dimensionality reduction supervised by a cell-cell kernel. SLSI is used to capture a linear transformation of peaks that maximizes its dependency to the given cell-cell kernel.

```
RunSLSI(object, ...)
## Default S3 method:
RunSLSI(
 object,
  assay = NULL,
 n = 50,
  reduction.key = "SLSI_",
  graph = NULL,
  verbose = TRUE,
  seed.use = 42,
  . . .
)
## S3 method for class 'Assay'
RunSLSI(
 object,
  assay = NULL,
  features = NULL,
  n = 50,
  reduction.key = "SLSI_",
  graph = NULL,
  verbose = TRUE,
  seed.use = 42,
  . . .
)
## S3 method for class 'StdAssay'
RunSLSI(
  object,
  assay = NULL,
  features = NULL,
  n = 50,
  reduction.key = "SLSI_",
  graph = NULL,
  layer = "data",
```

RunSLSI

```
verbose = TRUE,
 seed.use = 42,
  . . .
)
## S3 method for class 'Seurat'
RunSLSI(
 object,
 assay = NULL,
 features = NULL,
 n = 50,
  reduction.name = "slsi",
 reduction.key = "SLSI_",
  graph = NULL,
 verbose = TRUE,
  seed.use = 42,
  . . .
)
```

Arguments

object	An object
	Arguments passed to IRLBA irlba
assay	Name of Assay SLSI is being run on
n	Total Number of SLSI components to compute and store
reduction.key	dimensional reduction key, specifies the string before the number for the dimension names
graph	Graph used supervised by SLSI
verbose	Display messages
seed.use	Set a random seed. Setting NULL will not set a seed.
features	Features to compute SLSI on. If features=NULL, SLSI will be run using the variable features for the Assay5.
layer	Layer to run SLSI on
reduction.name	dimensional reduction name

Value

Returns Seurat object with the SLSI calculation stored in the reductions slot

RunSPCA

Description

Run a supervised PCA (SPCA) dimensionality reduction supervised by a cell-cell kernel. SPCA is used to capture a linear transformation which maximizes its dependency to the given cell-cell kernel. We use SNN graph as the kernel to supervise the linear matrix factorization.

```
RunSPCA(object, ...)
## Default S3 method:
RunSPCA(
 object,
  assay = NULL,
  npcs = 50,
  reduction.key = "SPC_",
  graph = NULL,
  verbose = FALSE,
  seed.use = 42,
)
## S3 method for class 'Assay'
RunSPCA(
  object,
  assay = NULL,
  features = NULL,
  npcs = 50,
  reduction.key = "SPC_",
  graph = NULL,
  verbose = TRUE,
  seed.use = 42,
  . . .
)
## S3 method for class 'Assay5'
RunSPCA(
  object,
  assay = NULL,
  features = NULL,
  npcs = 50,
  reduction.key = "SPC_",
  graph = NULL,
```

RunSPCA

```
verbose = TRUE,
  seed.use = 42,
  layer = "scale.data",
  • • •
)
## S3 method for class 'Seurat'
RunSPCA(
 object,
  assay = NULL,
  features = NULL,
  npcs = 50,
  reduction.name = "spca",
  reduction.key = "SPC_",
  graph = NULL,
  verbose = TRUE,
  seed.use = 42,
  . . .
)
```

Arguments

object	An object
	Arguments passed to other methods and IRLBA
assay	Name of Assay SPCA is being run on
npcs	Total Number of SPCs to compute and store (50 by default)
reduction.key	dimensional reduction key, specifies the string before the number for the dimension names. SPC by default
graph	Graph used supervised by SPCA
verbose	Print the top genes associated with high/low loadings for the SPCs
seed.use	Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed.
features	Features to compute SPCA on. If features=NULL, SPCA will be run using the variable features for the Assay.
layer	Layer to run SPCA on
reduction.name	dimensional reduction name, spca by default

Value

Returns Seurat object with the SPCA calculation stored in the reductions slot

References

Barshan E, Ghodsi A, Azimifar Z, Jahromi MZ. Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds. Pattern Recognition. 2011 Jul 1;44(7):1357-71. doi:10.1016/j.patcog.2010.12.015;

RunTSNE

Description

Run t-SNE dimensionality reduction on selected features. Has the option of running in a reduced dimensional space (i.e. spectral tSNE, recommended), or running based on a set of genes. For details about stored TSNE calculation parameters, see PrintTSNEParams.

```
RunTSNE(object, ...)
## S3 method for class 'matrix'
RunTSNE(
 object,
  assay = NULL,
  seed.use = 1,
  tsne.method = "Rtsne",
  dim.embed = 2,
  reduction.key = "tSNE_",
  . . .
)
## S3 method for class 'DimReduc'
RunTSNE(
  object,
  cells = NULL,
  dims = 1:5,
  seed.use = 1,
  tsne.method = "Rtsne",
  dim.embed = 2,
  reduction.key = "tSNE_",
  . . .
)
## S3 method for class 'dist'
RunTSNE(
  object,
  assay = NULL,
  seed.use = 1,
  tsne.method = "Rtsne",
  dim.embed = 2,
  reduction.key = "tSNE_",
)
```

RunTSNE

```
## S3 method for class 'Seurat'
RunTSNE(
    object,
    reduction = "pca",
    cells = NULL,
    dims = 1:5,
    features = NULL,
    seed.use = 1,
    tsne.method = "Rtsne",
    dim.embed = 2,
    distance.matrix = NULL,
    reduction.name = "tsne",
    reduction.key = "tSNE_",
    ...
```

)

Arguments

gumente	
object	Seurat object
	Arguments passed to other methods and to t-SNE call (most commonly used is perplexity)
assay	Name of assay that that t-SNE is being run on
seed.use	Random seed for the t-SNE. If NULL, does not set the seed
tsne.method	Select the method to use to compute the tSNE. Available methods are:
	• "Rtsne": Use the Rtsne package Barnes-Hut implementation of tSNE (default)
	 "FIt-SNE": Use the FFT-accelerated Interpolation-based t-SNE. Based on Kluger Lab code found here: https://github.com/KlugerLab/ FIt-SNE
dim.embed	The dimensional space of the resulting tSNE embedding (default is 2). For example, set to 3 for a 3d tSNE $$
reduction.key	dimensional reduction key, specifies the string before the number for the dimension names. "tSNE_" by default
cells	Which cells to analyze (default, all cells)
dims	Which dimensions to use as input features
reduction	Which dimensional reduction (e.g. PCA, ICA) to use for the tSNE. Default is PCA
features	If set, run the tSNE on this subset of features (instead of running on a set of reduced dimensions). Not set (NULL) by default; dims must be NULL to run on features
distance.matrix	
	If set, runs tSNE on the given distance matrix instead of data matrix (experimental)
reduction.name	dimensional reduction name, specifies the position in the object\$dr list. tsne by default

RunUMAP

Description

Runs the Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique. To run using umap.method="umap-learn", you must first install the umap-learn python package (e.g. via pip install umap-learn). Details on this package can be found here: https://github.com/lmcinnes/umap. For a more in depth discussion of the mathematics underlying UMAP, see the ArXiv paper here: https://arxiv.org/abs/1802.03426.

```
RunUMAP(object, ...)
## Default S3 method:
RunUMAP(
  object,
  reduction.key = "UMAP_",
  assay = NULL,
  reduction.model = NULL,
  return.model = FALSE,
  umap.method = "uwot",
  n.neighbors = 30L,
  n.components = 2L,
 metric = "cosine",
  n.epochs = NULL,
  learning.rate = 1,
 min.dist = 0.3,
  spread = 1,
  set.op.mix.ratio = 1,
  local.connectivity = 1L,
  repulsion.strength = 1,
  negative.sample.rate = 5,
  a = NULL,
  b = NULL,
  uwot.sgd = FALSE,
  seed.use = 42,
 metric.kwds = NULL,
  angular.rp.forest = FALSE,
  densmap = FALSE,
  dens.lambda = 2,
  dens.frac = 0.3,
  dens.var.shift = 0.1,
  verbose = TRUE,
  . . .
)
```

```
## S3 method for class 'Graph'
RunUMAP(
  object,
  assay = NULL,
  umap.method = "umap-learn",
  n.components = 2L,
 metric = "correlation",
  n.epochs = 0L,
  learning.rate = 1,
  min.dist = 0.3,
  spread = 1,
  repulsion.strength = 1,
  negative.sample.rate = 5L,
  a = NULL,
  b = NULL,
  uwot.sgd = FALSE,
  seed.use = 42L,
  metric.kwds = NULL,
  densmap = FALSE,
  densmap.kwds = NULL,
  verbose = TRUE,
  reduction.key = "UMAP_",
  . . .
)
## S3 method for class 'Neighbor'
RunUMAP(object, reduction.model, ...)
## S3 method for class 'Seurat'
RunUMAP(
  object,
  dims = NULL,
  reduction = "pca",
  features = NULL,
  graph = NULL,
  assay = DefaultAssay(object = object),
  nn.name = NULL,
  slot = "data",
  umap.method = "uwot",
  reduction.model = NULL,
  return.model = FALSE,
  n.neighbors = 30L,
  n.components = 2L,
 metric = "cosine",
  n.epochs = NULL,
  learning.rate = 1,
  min.dist = 0.3,
```

```
spread = 1,
set.op.mix.ratio = 1,
local.connectivity = 1L,
repulsion.strength = 1,
negative.sample.rate = 5L,
a = NULL,
b = NULL,
uwot.sgd = FALSE,
seed.use = 42L,
metric.kwds = NULL,
angular.rp.forest = FALSE,
densmap = FALSE,
dens.lambda = 2,
dens.frac = 0.3,
dens.var.shift = 0.1,
verbose = TRUE,
reduction.name = "umap",
reduction.key = NULL,
. . .
```

```
)
```

Arguments

object	An object
	Arguments passed to other methods and UMAP
reduction.key	dimensional reduction key, specifies the string before the number for the dimension names. UMAP by default
assay	Assay to pull data for when using features, or assay used to construct Graph if running UMAP on a Graph
reduction.mode	1
	DimReduc object that contains the umap model
return.model	whether UMAP will return the uwot model
umap.method	UMAP implementation to run. Can be
	uwot: Runs umap via the uwot R package
	uwot-learn: Runs umap via the uwot R package and return the learned umap model
	umap-learn: Run the Seurat wrapper of the python umap-learn package
n.neighbors	This determines the number of neighboring points used in local approx- imations of manifold structure. Larger values will result in more global structure being preserved at the loss of detailed local structure. In general this parameter should often be in the range 5 to 50.
n.components	The dimension of the space to embed into.
metric	metric: This determines the choice of metric used to measure distance in the input space. A wide variety of metrics are already coded, and a user defined function can be passed as long as it has been JITd by numba.

228

 n.epochs he number of training epochs to be used in optimizing the low dimensional embedding. Larger values result in more accurate embeddings. If NULL is specified, a value will be selected based on the size of the input dataset (200 for large datasets, 500 for small). learning.rate The initial learning rate for the embedding is allowed compress points together. Larger values ensure embedded points are more evenly distributed, while smaller values allow the algorithm to optimize more accurately with regard to local structure. Sensible values are in the range 0.001 to 0.5. spread The effective scale of embedded points. In combination with min.dist this determines how clustered/clumped the embedded points are. set.op.mix.ratio Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples. Increasing this value will result in greater regulsive force being applied, greater optimization cost, but slightly more accuracy, a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined		
is specified, a value will be selected based on the size of the input dataset (200 for large datasets, 500 for small). learning.rate The initial learning rate for the embedding optimization. min.dist This controls how tightly the embedding is allowed compress points together. Larger values ensure embedded points are more evenly distributed, while smaller values allow the algorithm to optimize more accurately with regard to local structure. Sensible values are in the range 0.001 to 0.5. spread The effective scale of embedded points. In combination with min.dist this determines how clustered/clumped the embedded points are. set.op.mix.ratio Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. repulsion.strength Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of ri	n.epochs	
 (200 for large datasets, 500 for small). learning.rate The initial learning rate for the embedding optimization. min.dist This controls how tightly the embedding is allowed compress points to gether. Larger values ensure embedded points are more evenly distributed, while smaller values allow the algorithm to optimize more accurately with regard to local structure. Sensible values are in the range 0.001 to 0.5. spread The effective scale of embedded points. In combination with min.dist this determines how clustered/clumped the embedded points are. set.op.mix.ratio Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be not more than the local intrinsic dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples in low dimensional embedding optimization values higher than one will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set auromatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set auromatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding.		
 learning.rate The initial learning rate for the embedding optimization. min.dist This controls how tightly the embedding is allowed compress points together. Larger values ensure embedded points are more evenly distributed, while smaller values allow the algorithm to optimize more accurately with regard to local structure. Sensible values are in the range 0.001 to 0.5. spread The effective scale of embedded points. In combination with min.dist this determines how clustered/clumped the embedded points are. set.op.mix.ratio Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples in low dimensional embedding optimization. Values higher than one will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NU		
 min.dist This controls how tightly the embedding is allowed compress points together. Larger values ensure embedded points are more evenly distributed, while smaller values allow the algorithm to optimize more accurately with regard to local structure. Sensible values are in the range 0.001 to 0.5. spread The effective scale of embedded points. In combination with min.dist this determines how clustered/clumped the embedded points are. set.op.mix.ratio Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of the bara meter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be not more than the local intrinsic dimensional embedding optimization. strength Weighting applied to negative samples in low dimensional embedding optimization. strength Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples. Succeed the greater optimization cost, but slightly more accuracy. More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. More specific parameters controlling the embedding. If NULL, these values are set action seed. By default, sets the seed to 42. Setting NULL will not set a seed me	learning.rate	
 gether. Larger values ensure embedded points are more evenly distributed, while smaller values allow the algorithm to optimize more accurately with regard to local structure. Sensible values are in the range 0.001 to 0.5. spread The effective scale of embedded points. In combination with min.dist this determines how clustered/clumped the embedded points are. set.op.mix.ratio Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the mebedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the mebedding. If NULL, these values are set automatically as determined by	-	
determines how clustered/clumped the embedded points are. set.op.mix.ratio Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy sim- plicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this walue the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. repulsion.strength Weighting applied to negative samples in low dimensional embedding op- timization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the op- timization proces. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these val- ues are set automatically as determined by min. dist and spread. Param- eter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these val- ues are set automatically as determined by min. dist and spread. Param- eter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot ::umap(fast_sgd = TRUE); see umap for more details seed.use A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relat	min.uist	gether. Larger values ensure embedded points are more evenly distributed, while smaller values allow the algorithm to optimize more accurately with
Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy sim- plicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. repulsion.strength Weighting applied to negative samples in low dimensional embedding op- timization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the op- timization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these val- ues are set automatically as determined by min. dist and spread. Param- eter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these val- ues are set automatically as determined by min. dist and spread. Param- eter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot:::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance suc	spread	-
 used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. repulsion.strength Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the approximate nearest neighbor search.	set.op.mix.rat	io
 plicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. repulsion.strength Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the set of 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style		Interpolate between (fuzzy) union and intersection as the set operation
 local.connectivity The local connectivity required - i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. repulsion.strength Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate 		plicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0 ; a value of 1.0 will use a
 that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. repulsion.strength Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the modeling. If NULL these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the modeling. If NULL these values are set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the approximate nearest nei	local.connecti	
 value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. repulsion.strength Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen 		The local connectivity required - i.e. the number of nearest neighbors
should be not more than the local intrinsic dimension of the manifold. repulsion.strength Weighting applied to negative samples in low dimensional embedding op- timization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the op- timization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these val- ues are set automatically as determined by min. dist and spread. Param- eter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these val- ues are set automatically as determined by min. dist and spread. Param- eter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen		
<pre>repulsion.strength Weighting applied to negative samples in low dimensional embedding op- timization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the op- timization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. More specific parameters controlling the embedding. If NULL, these val- ues are set automatically as determined by min. dist and spread. Param- eter of differentiable approximation of right adjoint functor. More specific parameters controlling the embedding. If NULL, these val- ues are set automatically as determined by min. dist and spread. Param- eter of differentiable approximation of right adjoint functor. Wot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen </pre>		
 Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen 	ropulsion stro	
 timization. Values higher than one will result in greater weight being given to negative samples. negative.sample.rate The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen 	repuision.stre	
 negative.sample.rate The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen 		timization. Values higher than one will result in greater weight being
The number of negative samples to select per positive sample in the op- timization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy.aMore specific parameters controlling the embedding. If NULL, these val- ues are set automatically as determined by min. dist and spread. Param- eter of differentiable approximation of right adjoint functor.bMore specific parameters controlling the embedding. If NULL, these val- ues are set automatically as determined by min. dist and spread. Param- eter of differentiable approximation of right adjoint functor.uwot.sgdSet uwot::umap(fast_sgd = TRUE); see umap for more detailsseed.useSet a random seed. By default, sets the seed to 42. Setting NULL will not set a seedmetric.kwdsA dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on.angular.rp.forestWhether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen	negative sampl	
 timization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen 	negative. Sampi	
 a More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. b More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen 		timization process. Increasing this value will result in greater repulsive
 ues are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. More specific parameters controlling the embedding. If NULL, these values are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor. uwot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen 	а	
ues are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor.uwot.sgdSet uwot::umap(fast_sgd = TRUE); see umap for more detailsseed.useSet a random seed. By default, sets the seed to 42. Setting NULL will not set a seedmetric.kwdsA dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on.angular.rp.forestWhether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen		ues are set automatically as determined by min. dist and spread. Param-
ues are set automatically as determined by min. dist and spread. Parameter of differentiable approximation of right adjoint functor.uwot.sgdSet uwot::umap(fast_sgd = TRUE); see umap for more detailsseed.useSet a random seed. By default, sets the seed to 42. Setting NULL will not set a seedmetric.kwdsA dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on.angular.rp.forestWhether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen	b	More specific parameters controlling the embedding. If NULL, these val-
<pre>uwot.sgd Set uwot::umap(fast_sgd = TRUE); see umap for more details seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen</pre>		
<pre>seed.use Set a random seed. By default, sets the seed to 42. Setting NULL will not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen</pre>		eter of differentiable approximation of right adjoint functor.
not set a seed metric.kwds A dictionary of arguments to pass on to the metric, such as the p value for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen	uwot.sgd	Set uwot::umap(fast_sgd = TRUE); see umap for more details
for Minkowski distance. If NULL then no arguments are passed on. angular.rp.forest Whether to use an angular random projection forest to initialize the ap- proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen	seed.use	
Whether to use an angular random projection forest to initialize the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen	metric.kwds	
proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen	-	
automatically.		proximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, cor- relation etc. In the case of those metrics angular forests will be chosen
		automatically.

densmap	Whether to use the density-augmented objective of densMAP. Turning on this option generates an embedding where the local densities are encour- aged to be correlated with those in the original space. Parameters below with the prefix 'dens' further control the behavior of this extension. De- fault is FALSE. Only compatible with 'umap-learn' method and version of umap-learn $>= 0.5.0$
dens.lambda	Specific parameter which controls the regularization weight of the density correlation term in densMAP. Higher values prioritize density preservation over the UMAP objective, and vice versa for values closer to zero. Setting this parameter to zero is equivalent to running the original UMAP algorithm. Default value is 2.
dens.frac	Specific parameter which controls the fraction of epochs (between 0 and 1) where the density-augmented objective is used in densMAP. The first (1 - dens_frac) fraction of epochs optimize the original UMAP objective before introducing the density correlation term. Default is 0.3.
dens.var.shift	Specific parameter which specifies a small constant added to the variance of local radii in the embedding when calculating the density correlation objective to prevent numerical instability from dividing by a small num- ber. Default is 0.1.
verbose	Controls verbosity
densmap.kwds	A dictionary of arguments to pass on to the densMAP optimization.
dims	Which dimensions to use as input features, used only if features is NULL
reduction	Which dimensional reduction (PCA or ICA) to use for the UMAP input. Default is PCA
features	If set, run UMAP on this subset of features (instead of running on a set of reduced dimensions). Not set (NULL) by default; dims must be NULL to run on features
graph	Name of graph on which to run UMAP
nn.name	Name of knn output on which to run UMAP
slot	The slot used to pull data for when using $\ensuremath{features.}$ data slot is by default.
reduction.name	Name to store dimensional reduction under in the Seurat object

Value

Returns a Seurat object containing a UMAP representation

References

McInnes, L, Healy, J, UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv e-prints 1802.03426, 2018

Examples

Not run: data("pbmc_small") pbmc_small

SampleUMI

```
# Run UMAP map on first 5 PCs
pbmc_small <- RunUMAP(object = pbmc_small, dims = 1:5)
# Plot results
DimPlot(object = pbmc_small, reduction = 'umap')
## End(Not run)</pre>
```

SampleUMI

Sample UMI

Description

Downsample each cell to a specified number of UMIs. Includes an option to upsample cells below specified UMI as well.

Usage

SampleUMI(data, max.umi = 1000, upsample = FALSE, verbose = FALSE)

Arguments

data	Matrix with the raw count data
max.umi	Number of UMIs to sample to
upsample	Upsamples all cells with fewer than max.umi
verbose	Display the progress bar

Value

Matrix with downsampled data

Examples

```
data("pbmc_small")
counts = as.matrix(x = GetAssayData(object = pbmc_small, assay = "RNA", slot = "counts"))
downsampled = SampleUMI(data = counts)
head(x = downsampled)
```

SaveAnnoyIndex Save the Annoy index

Description

Save the Annoy index

Usage

SaveAnnoyIndex(object, file)

Arguments

object	A Neighbor object with the annoy index stored
file	Path to file to write index to

```
ScaleData
```

Scale and center the data.

Description

Scales and centers features in the dataset. If variables are provided in vars.to.regress, they are individually regressed against each feature, and the resulting residuals are then scaled and centered.

```
ScaleData(object, ...)
## Default S3 method:
ScaleData(
  object,
  features = NULL,
  vars.to.regress = NULL,
  latent.data = NULL,
  split.by = NULL,
 model.use = "linear",
  use.umi = FALSE,
  do.scale = TRUE,
  do.center = TRUE,
  scale.max = 10,
  block.size = 1000,
 min.cells.to.block = 3000,
  verbose = TRUE,
  . . .
)
```

```
## S3 method for class 'IterableMatrix'
ScaleData(
  object,
  features = NULL,
 do.scale = TRUE,
  do.center = TRUE,
  scale.max = 10,
  . . .
)
## S3 method for class 'Assay'
ScaleData(
 object,
  features = NULL,
  vars.to.regress = NULL,
  latent.data = NULL,
  split.by = NULL,
 model.use = "linear",
  use.umi = FALSE,
  do.scale = TRUE,
  do.center = TRUE,
  scale.max = 10,
  block.size = 1000,
 min.cells.to.block = 3000,
 verbose = TRUE,
  . . .
)
## S3 method for class 'Seurat'
ScaleData(
  object,
  features = NULL,
  assay = NULL,
  vars.to.regress = NULL,
  split.by = NULL,
 model.use = "linear",
  use.umi = FALSE,
  do.scale = TRUE,
  do.center = TRUE,
  scale.max = 10,
 block.size = 1000,
 min.cells.to.block = 3000,
 verbose = TRUE,
  . . .
)
```

Arguments

object	An object	
	Arguments passed to other methods	
features	Vector of features names to scale/center. Default is variable features.	
vars.to.regress		
	Variables to regress out (previously latent.vars in Regress Out). For example, $\rm nUMI,$ or percent.mito.	
latent.data	Extra data to regress out, should be cells x latent data	
split.by	Name of variable in object metadata or a vector or factor defining grouping of cells. See argument f in <code>split</code> for more details	
model.use	Use a linear model or generalized linear model (poisson, negative binomial) for the regression. Options are 'linear' (default), 'poisson', and 'negbinom'	
use.umi	Regress on UMI count data. Default is FALSE for linear modeling, but automatically set to TRUE if model.use is 'negbinom' or 'poisson'	
do.scale	Whether to scale the data.	
do.center	Whether to center the data.	
scale.max	Max value to return for scaled data. The default is 10. Setting this can help reduce the effects of features that are only expressed in a very small number of cells. If regressing out latent variables and using a non-linear model, the default is 50.	
block.size	Default size for number of features to scale at in a single computation. Increasing block.size may speed up calculations but at an additional mem- ory cost.	
min.cells.to.block		
	If object contains fewer than this number of cells, don't block for scaling calculations.	
verbose	Displays a progress bar for scaling procedure	
assay	Name of Assay to scale	

Details

ScaleData now incorporates the functionality of the function formerly known as RegressOut (which regressed out given the effects of provided variables and then scaled the residuals). To make use of the regression functionality, simply pass the variables you want to remove to the vars.to.regress parameter.

Setting center to TRUE will center the expression for each feature by subtracting the average expression for that feature. Setting scale to TRUE will scale the expression level for each feature by dividing the centered feature expression levels by their standard deviations if center is TRUE and by their root mean square otherwise.

ScaleFactors

Description

Get image scale factors

Usage

```
ScaleFactors(object, ...)
scalefactors(spot, fiducial, hires, lowres)
## S3 method for class 'VisiumV1'
ScaleFactors(object, ...)
## S3 method for class 'VisiumV2'
ScaleFactors(object, ...)
```

Arguments

object	An object to get scale factors from
	Arguments passed to other methods
spot	Spot full resolution scale factor
fiducial	Fiducial full resolution scale factor
hires	High resolutoin scale factor
lowres	Low resolution scale factor

Value

An object of class scalefactors

Note

scalefactors objects can be created with scalefactors()

ScoreJackStraw

Description

Significant PCs should show a p-value distribution that is strongly skewed to the left compared to the null distribution. The p-value for each PC is based on a proportion test comparing the number of features with a p-value below a particular threshold (score.thresh), compared with the proportion of features expected under a uniform distribution of p-values.

Usage

```
ScoreJackStraw(object, ...)
## S3 method for class 'JackStrawData'
ScoreJackStraw(object, dims = 1:5, score.thresh = 1e-05, ...)
## S3 method for class 'DimReduc'
ScoreJackStraw(object, dims = 1:5, score.thresh = 1e-05, ...)
## S3 method for class 'Seurat'
ScoreJackStraw(
    object,
    reduction = "pca",
    dims = 1:5,
    score.thresh = 1e-05,
    do.plot = FALSE,
    ...
)
```

Arguments

object	An object
	Arguments passed to other methods
dims	Which dimensions to examine
score.thresh	Threshold to use for the proportion test of PC significance (see Details)
reduction	Reduction associated with JackStraw to score
do.plot	Show plot. To return ggplot object, use JackStrawPlot after running ScoreJackStraw.

Value

Returns a Seurat object

Author(s)

Omri Wurtzel

SCTAssay-class

See Also

JackStrawPlot JackStrawPlot

SCTAssay-class The SCTModel Class

Description

The SCTModel object is a model and parameters storage from SCTransform. It can be used to calculate Pearson residuals for new genes.

The SCTAssay object contains all the information found in an Assay object, with extra information from the results of SCTransform

Usage

```
## S3 method for class 'SCTAssay'
levels(x)
```

S3 replacement method for class 'SCTAssay'
levels(x) <- value</pre>

Arguments

х	${ m An}$ SCTAssay ${ m object}$
value	New levels, must be in the same order as the levels present

Value

levels: SCT model names

levels<-: x with updated SCT model names

Slots

feature.attributes A data.frame with feature attributes in SCTransform

cell.attributes A data.frame with cell attributes in SCTransform

- clips A list of two numeric of length two specifying the min and max values the Pearson residual will be clipped to. One for vst and one for SCTransform
- umi.assay Name of the assay of the seurat object containing UMI matrix and the default is RNA

model A formula used in SCTransform

arguments other information used in SCTransform

median_umi Median UMI (or scale factor) used to calculate corrected counts

SCTModel.list A list containing SCT models

Get and set SCT model names

SCT results are named by initial run of SCTransform in order to keep SCT parameters straight between runs. When working with merged SCTAssay objects, these model names are important. levels allows querying the models present. levels<- allows the changing of the names of the models present, useful when merging SCTAssay objects. Note: unlike normal levels<-.sCTAssay allows complete changing of model names, not reordering.

Creating an SCTAssay from an Assay

Conversion from an Assay object to an SCTAssay object by is done by adding the additional slots to the object. If from has results generated by SCTransform from Seurat v3.0.0 to v3.1.1, the conversion will automagically fill the new slots with the data

See Also

Assay Assay

Examples

```
## Not run:
# SCTAssay objects are generated from SCTransform
pbmc_small <- SCTransform(pbmc_small)
## End(Not run)
## Not run:
# SCTAssay objects are generated from SCTransform
pbmc_small <- SCTransform(pbmc_small)
pbmc_small[["SCT"]]
## End(Not run)
## Not run:
# Query and change SCT model names
levels(pbmc_small[['SCT']])
levels(pbmc_small[['SCT']]) <- '3'
levels(pbmc_small[['SCT']])
## End(Not run)
```

SCTransform

238

SCT ransform

Description

This function calls sctransform::vst. The sctransform package is available at https://github.com/satijalab/sctransforuse this function as an alternative to the NormalizeData, FindVariableFeatures, ScaleData workflow. Results are saved in a new assay (named SCT by default) with counts being (corrected) counts, data being log1p(counts), scale.data being pearson residuals; sctransform::vst intermediate results are saved in misc slot of new assay.

```
SCTransform(object, ...)
## Default S3 method:
SCTransform(
  object,
  cell.attr,
  reference.SCT.model = NULL,
  do.correct.umi = TRUE,
 ncells = 5000,
  residual.features = NULL,
  variable.features.n = 3000,
  variable.features.rv.th = 1.3,
  vars.to.regress = NULL,
  latent.data = NULL,
  do.scale = FALSE,
  do.center = TRUE,
  clip.range = c(-sqrt(x = ncol(x = umi)/30), sqrt(x = ncol(x = umi)/30)),
  vst.flavor = "v2",
  conserve.memory = FALSE,
  return.only.var.genes = TRUE,
  seed.use = 1448145,
  verbose = TRUE,
  . . .
)
## S3 method for class 'Assay'
SCTransform(
 object,
  cell.attr,
  reference.SCT.model = NULL,
  do.correct.umi = TRUE,
  ncells = 5000,
  residual.features = NULL,
  variable.features.n = 3000,
  variable.features.rv.th = 1.3,
  vars.to.regress = NULL,
  latent.data = NULL,
  do.scale = FALSE,
  do.center = TRUE,
```

SCTransform

```
clip.range = c(-sqrt(x = ncol(x = object)/30), sqrt(x = ncol(x = object)/30)),
 vst.flavor = "v2",
  conserve.memory = FALSE,
  return.only.var.genes = TRUE,
  seed.use = 1448145,
 verbose = TRUE,
  . . .
)
## S3 method for class 'Seurat'
SCTransform(
  object,
  assay = "RNA",
  new.assay.name = "SCT",
  reference.SCT.model = NULL,
  do.correct.umi = TRUE,
  ncells = 5000,
  residual.features = NULL,
  variable.features.n = 3000,
  variable.features.rv.th = 1.3,
  vars.to.regress = NULL,
  do.scale = FALSE,
  do.center = TRUE,
  clip.range = c(-sqrt(x = ncol(x = object[[assay]])/30), sqrt(x = ncol(x =
   object[[assay]])/30)),
 vst.flavor = "v2",
  conserve.memory = FALSE,
  return.only.var.genes = TRUE,
  seed.use = 1448145,
 verbose = TRUE,
  . . .
)
## S3 method for class 'IterableMatrix'
SCTransform(
 object,
  cell.attr.
  reference.SCT.model = NULL,
  do.correct.umi = TRUE,
 ncells = 5000,
  residual.features = NULL,
  variable.features.n = 3000,
  variable.features.rv.th = 1.3,
  vars.to.regress = NULL,
  latent.data = NULL,
  do.scale = FALSE,
  do.center = TRUE,
 clip.range = c(-sqrt(x = ncol(x = object)/30), sqrt(x = ncol(x = object)/30)),
```

240

SCTransform

```
vst.flavor = "v2",
conserve.memory = FALSE,
return.only.var.genes = TRUE,
seed.use = 1448145,
verbose = TRUE,
...
```

Arguments

object	UMI counts matrix	
	Additional parameters passed to sctransform::vst	
cell.attr reference.SCT.m	A metadata with cell attributes	
	If not NULL, compute residuals for the object using the provided SCT model; supports only log_umi as the latent variable. If residual.features are not specified, compute for the top variable.features.n specified in the model which are also present in the object. If residual.features are specified, the variable features of the resulting SCT assay are set to the top variable.features.n in the model.	
do.correct.umi	Place corrected UMI matrix in assay counts slot; default is TRUE	
ncells	Number of subsampling cells used to build NB regression; default is 5000	
residual.features		
	Genes to calculate residual features for; default is NULL (all genes). If specified, will be set to VariableFeatures of the returned object.	
variable.featur	res.n	
	Use this many features as variable features after ranking by residual vari- ance; default is 3000. Only applied if residual.features is not set.	
variable.featur		
	Instead of setting a fixed number of variable features, use this residual variance cutoff; this is only used when variable.features.n is set to NULL; default is 1.3. Only applied if residual.features is not set.	
vars.to.regress	3	
	Variables to regress out in a second non-regularized linear	
latent.data	Extra data to regress out, should be cells x latent data regression. For example, percent.mito. Default is NULL	
do.scale	Whether to scale residuals to have unit variance; default is FALSE	
do.center	Whether to center residuals to have mean zero; default is TRUE	
clip.range	Range to clip the residuals to; default is $c(-sqrt(n/30), sqrt(n/30))$, where n is the number of cells	
vst.flavor	When set to 'v2' sets method = glmGamPoi_offset, n_cells=2000, and exclude_poisson = TRUE which causes the model to learn theta and intercept only besides excluding poisson genes from learning and regularization	

conserve.memory	
	If set to TRUE the residual matrix for all genes is never created in full;
	useful for large data sets, but will take longer to run; this will also set
	return.only.var.genes to TRUE; default is FALSE
return.only.var	genes
	If set to TRUE the scale.data matrices in output as say are subset to contain only the variable genes; default is TRUE
seed.use	Set a random seed. By default, sets the seed to 1448145. Setting NULL will not set a seed.
verbose	Whether to print messages and progress bars
assay	Name of assay to pull the count data from; default is 'RNA'
new.assay.name	Name for the new assay containing the normalized data; default is 'SCT'

Value

Returns a Seurat object with a new assay (named SCT by default) with counts being (corrected) counts, data being log1p(counts), scale.data being pearson residuals; sctransform::vst intermediate results are saved in misc slot of the new assay.

See Also

correct_counts get_residuals

SCTResults Get SCT results from an Assay

Description

Pull the SCTResults information from an SCTAssay object.

```
SCTResults(object, ...)
SCTResults(object, ...) <- value
## S3 method for class 'SCTModel'
SCTResults(object, slot, ...)
## S3 replacement method for class 'SCTModel'
SCTResults(object, slot, ...) <- value
## S3 method for class 'SCTAssay'
SCTResults(object, slot, model = NULL, ...)
## S3 replacement method for class 'SCTAssay'
SCTResults(object, slot, model = NULL, ...) <- value</pre>
```

```
## S3 method for class 'Seurat'
SCTResults(object, assay = "SCT", slot, model = NULL, ...)
```

Arguments

object	An object
	Arguments passed to other methods (not used)
value	new data to set
slot	Which slot to pull the SCT results from
model	Name of SCModel to pull result from. Available names can be retrieved with levels.
assay	Assay in the Seurat object to pull from

Value

Returns the value present in the requested slot for the requested group. If group is not specified, returns a list of slot results for each group unless there is only one group present (in which case it just returns the slot directly).

SelectIntegrationFeatures
Select integration features

Description

Choose the features to use when integrating multiple datasets. This function ranks features by the number of datasets they are deemed variable in, breaking ties by the median variable feature rank across datasets. It returns the top scoring features by this ranking.

```
SelectIntegrationFeatures(
   object.list,
   nfeatures = 2000,
   assay = NULL,
   verbose = TRUE,
   fvf.nfeatures = 2000,
   ...
)
```

Arguments

object.list	List of seurat objects
nfeatures	Number of features to return
assay	Name or vector of assay names (one for each object) from which to pull the variable features.
verbose	Print messages
fvf.nfeatures	nfeatures for FindVariableFeatures. Used if VariableFeatures have not been set for any object in object.list.
	Additional parameters to FindVariableFeatures

Details

If for any assay in the list, FindVariableFeatures hasn't been run, this method will try to run it using the fvf.nfeatures parameter and any additional ones specified through the

Value

A vector of selected features

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("panc8")
# panc8 is a merged Seurat object containing 8 separate pancreas datasets
# split the object by dataset and take the first 2
pancreas.list <- SplitObject(panc8, split.by = "tech")[1:2]
# perform SCTransform normalization
pancreas.list <- lapply(X = pancreas.list, FUN = SCTransform)
# select integration features
features <- SelectIntegrationFeatures(pancreas.list)</pre>
```

End(Not run)

SelectIntegrationFeatures5

Select integration features

Description

Select integration features

244

Usage

```
SelectIntegrationFeatures5(
   object,
   nfeatures = 2000,
   assay = NULL,
   method = NULL,
   layers = NULL,
   verbose = TRUE,
   ...
)
```

Arguments

object	Seurat object
nfeatures	Number of features to return for integration
assay	Name of assay to use for integration feature selection
method	Which method to pull. For HVFInfo and VariableFeatures, choose one from one of the following:
	• "vst"
	• "sctransform" or "sct"
	• "mean.var.plot", "dispersion", "mvp", or "disp"
layers	Name of layers to use for integration feature selection
verbose	Print messages
	Arguments passed on to method

SelectSCTIntegrationFeatures Select SCT integration features

Description

Select SCT integration features

```
SelectSCTIntegrationFeatures(
   object,
   nfeatures = 3000,
   assay = NULL,
   verbose = TRUE,
   ...
)
```

Arguments

object	Seurat object
nfeatures	Number of features to return for integration
assay	Name of assay to use for integration feature selection
verbose	Print messages
	Arguments passed on to method

SetIntegrationData Set integration data

Description

Set integration data

Usage

SetIntegrationData(object, integration.name, slot, new.data)

Arguments

object	Seurat object
integration.name	
	Name of integration object
slot	Which slot in integration object to set
new.data	New data to insert

Value

Returns a Seurat object

SetQuantile Find the Quantile of Data

Description

Converts a quantile in character form to a number regarding some data. String form for a quantile is represented as a number prefixed with "q"; for example, 10th quantile is "q10" while 2nd quantile is "q2". Will only take a quantile of non-zero data values

Usage

```
SetQuantile(cutoff, data)
```

246

Seurat-class

Arguments

cutoff	The cutoff to turn into a quantile
data	The data to turn find the quantile of

Value

The numerical representation of the quantile

Examples

```
set.seed(42)
SetQuantile('q10', sample(1:100, 10))
```

Seurat-class

The Seurat Class

Description

The Seurat object is a representation of single-cell expression data for R; for more details, please see the documentation in SeuratObject

See Also

SeuratObject::Seurat-class

 ${\tt SeuratCommand-class} \qquad The \ SeuratCommand \ Class$

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::SeuratCommand-class

SeuratTheme

Description

Various themes to be applied to ggplot2-based plots

SeuratTheme The curated Seurat theme, consists of ... DarkTheme A dark theme, axes and text turn to white, the background becomes black NoAxes Removes axis lines, text, and ticks NoLegend Removes the legend FontSize Sets axis and title font sizes NoGrid Removes grid lines SeuratAxes Set Seurat-style axes SpatialTheme A theme designed for spatial visualizations (eg PolyFeaturePlot, PolyDimPlot) RestoreLegend Restore a legend after removal RotatedAxis Rotate X axis text 45 degrees BoldTitle Enlarges and emphasizes the title

```
SeuratTheme()
CenterTitle(...)
DarkTheme(...)
FontSize(
    x.text = NULL,
    y.text = NULL,
    x.title = NULL,
    y.title = NULL,
    main = NULL,
    ...
)
NoAxes(..., keep.text = FALSE, keep.ticks = FALSE)
NoLegend(...)
NoGrid(...)
SeuratAxes(...)
```

SeuratTheme

SpatialTheme(...)
RestoreLegend(..., position = "right")
RotatedAxis(...)
BoldTitle(...)
WhiteBackground(...)

Arguments

	Extra parameters to be passed to $\operatorname{\texttt{theme}}$
x.text, y.text	X and Y axis text sizes
x.title, y.title	2
	X and Y axis title sizes
main	Plot title size
keep.text	Keep axis text
keep.ticks	Keep axis ticks
position	A position to restore the legend to

Value

A ggplot2 theme object

See Also

theme

Examples

```
# Generate a plot with a dark theme
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + DarkTheme(legend.position = 'none')
# Generate a plot with no axes
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoAxes()
# Generate a plot with no legend
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoLegend()
```

Generate a plot with no grid lines

```
library(ggplot2)
df <- data.frame(x = rnorm(n = 100, mean = 20, sd = 2), y = rbinom(n = 100, size = 100, prob = 0.2))
p <- ggplot(data = df, mapping = aes(x = x, y = y)) + geom_point(mapping = aes(color = 'red'))
p + NoGrid()
```

SketchData

Sketch Data

Description

This function uses sketching methods to downsample high-dimensional single-cell RNA expression data, which can help with scalability for large datasets.

Usage

```
SketchData(
    object,
    assay = NULL,
    ncells = 5000L,
    sketched.assay = "sketch",
    method = c("LeverageScore", "Uniform"),
    var.name = "leverage.score",
    over.write = FALSE,
    seed = 123L,
    cast = "dgCMatrix",
    verbose = TRUE,
    features = NULL,
    ...
)
```

Arguments

object	A Seurat object.
assay	Assay name. Default is NULL, in which case the default assay of the object is used.
ncells	A positive integer or a named vector/list specifying the number of cells to sample per layer. If a single integer is provided, the same number of cells will be sampled from each layer. Default is 5000.
sketched.assay	Sketched assay name. A sketch assay is created or overwrite with the sketch data. Default is 'sketch'.
method	Sketching method to use. Can be 'LeverageScore' or 'Uniform'. Default is 'LeverageScore'.
var.name	A metadata column name to store the leverage scores. Default is 'lever-age.score'.
over.write	whether to overwrite existing column in the metadata. Default is FALSE.

250

SlideSeq-class

seed	A positive integer for the seed of the random number generator. Default is 123.
cast	The type to cast the resulting assay to. Default is 'dgCMatrix'.
verbose	Print progress and diagnostic messages
features	A character vector of feature names to include in the sketched assay.
	Arguments passed to other methods

Value

A Seurat object with the sketched data added as a new assay.

SlideSeq-class The SlideSeq class

Description

The SlideSeq class represents spatial information from the Slide-seq platform

Slots

coordinates ...

Slots

- assay Name of assay to associate image data with; will give this image priority for visualization when the assay is set as the active/default assay in a Seurat object
- key A one-length character vector with the object's key; keys must be one or more alphanumeric characters followed by an underscore "_" (regex pattern "^[a-zA-Z][a-zA-Z0-9]*_\$")

SpatialImage-class The SpatialImage Class

Description

For more details, please see the documentation in SeuratObject

See Also

SeuratObject::SpatialImage-class

```
SpatialPlot
```

Description

SpatialPlot plots a feature or discrete grouping (e.g. cluster assignments) as spots over the image that was collected. We also provide SpatialFeaturePlot and SpatialDimPlot as wrapper functions around SpatialPlot for a consistent naming framework.

```
SpatialPlot(
  object,
  group.by = NULL,
  features = NULL,
  images = NULL,
  cols = NULL,
  image.alpha = 1,
  image.scale = "lowres",
  crop = TRUE,
  slot = "data",
  keep.scale = "feature",
 min.cutoff = NA,
 max.cutoff = NA,
  cells.highlight = NULL,
  cols.highlight = c("#DE2D26", "grey50"),
  facet.highlight = FALSE,
  label = FALSE,
  label.size = 5,
  label.color = "white",
  label.box = TRUE,
  repel = FALSE,
  ncol = NULL,
  combine = TRUE,
  pt.size.factor = 1.6,
  alpha = c(1, 1),
  shape = 21,
  stroke = NA,
  interactive = FALSE,
  do.identify = FALSE,
  identify.ident = NULL,
  do.hover = FALSE,
  information = NULL
)
SpatialDimPlot(
 object,
```

```
group.by = NULL,
  images = NULL,
  cols = NULL,
  crop = TRUE,
  cells.highlight = NULL,
  cols.highlight = c("#DE2D26", "grey50"),
  facet.highlight = FALSE,
  label = FALSE,
  label.size = 7,
  label.color = "white",
  repel = FALSE,
  ncol = NULL,
  combine = TRUE,
  pt.size.factor = 1.6,
  alpha = c(1, 1),
  image.alpha = 1,
  image.scale = "lowres",
  shape = 21,
  stroke = NA,
  label.box = TRUE,
  interactive = FALSE,
  information = NULL
)
SpatialFeaturePlot(
 object,
  features,
  images = NULL,
  crop = TRUE,
  slot = "data",
  keep.scale = "feature",
 min.cutoff = NA,
 max.cutoff = NA,
  ncol = NULL,
  combine = TRUE,
  pt.size.factor = 1.6,
  alpha = c(1, 1),
  image.alpha = 1,
  image.scale = "lowres",
  shape = 21,
  stroke = NA,
  interactive = FALSE,
  information = NULL
)
```

Arguments

object	A Seurat object
group.by	Name of meta.data column to group the data by

features	Name of the feature to visualize. Provide either group.by OR features, not both.	
images	Name of the images to use in the $plot(s)$	
cols	Vector of colors, each color corresponds to an identity class. This may also be a single character or numeric value corresponding to a palette as specified by brewer.pal.info. By default, ggplot2 assigns colors	
image.alpha	Adjust the opacity of the background images. Set to 0 to remove.	
image.scale	Choose the scale factor ("lowres"/"hires") to apply in order to match the plot with the specified 'image' - defaults to "lowres"	
crop	Crop the plot in to focus on points plotted. Set to $FALSE$ to show entire background image.	
slot	If plotting a feature, which data slot to pull from (counts, data, or scale.data)	
keep.scale	How to handle the color scale across multiple plots. Options are:	
	• "feature" (default; by row/feature scaling): The plots for each indi- vidual feature are scaled to the maximum expression of the feature across the conditions provided to split.by	
	• "all" (universal scaling): The plots for all features and conditions are scaled to the maximum expression value for the feature with the highest overall expression	
	• NULL (no scaling): Each individual plot is scaled to the maximum expression value of the feature in the condition provided to split.by; be aware setting NULL will result in color scales that are not comparable between plots	
<pre>min.cutoff, max.</pre>	cutoff	
	Vector of minimum and maximum cutoff values for each feature, may specify quantile in the form of ' $q##$ ' where ' $##$ ' is the quantile (eg, 'q1', 'q10')	
cells.highlight		
	A list of character or numeric vectors of cells to highlight. If only one group of cells desired, can simply pass a vector instead of a list. If set, colors selected cells to the color(s) in cols.highlight	
cols.highlight	A vector of colors to highlight the cells as; ordered the same as the groups in cells.highlight; last color corresponds to unselected cells.	
facet.highlight		
	When highlighting certain groups of cells, split each group into its own plot	
label	Whether to label the clusters	
label.size	Sets the size of the labels	
label.color	Sets the color of the label text	
label.box	Whether to put a box around the label text (geom_text vs geom_label)	
repel	Repels the labels to prevent overlap	
ncol	Number of columns if plotting multiple plots	

combine	Combine plots into a single gg object; note that if TRUE; the meing will not work when plotting multiple features/groupings	
pt.size.factor	Scale the size of the spots.	
alpha	Controls opacity of spots. Provide as a vector specifying the min and max for SpatialFeaturePlot. For SpatialDimPlot, provide a single alpha value for each plot.	
shape	Control the shape of the spots - same as the ggplot2 parameter. The default is 21, which plots circles - use 22 to plot squares.	
stroke	Control the width of the border around the spots	
interactive	Launch an interactive SpatialDimPlot or SpatialFeaturePlot session, see ISpatialDimPlot or ISpatialFeaturePlot for more details	
do.identify, do.hover		
	DEPRECATED in favor of interactive	
identify.ident	DEPRECATED	
information	An optional data frame or matrix of extra information to be displayed on hover	

Value

If do.identify, either a vector of cells selected or the object with selected cells set to the value of identify.ident (if set). Else, if do.hover, a plotly object with interactive graphics. Else, a ggplot object

Examples

```
## Not run:
# For functionality analagous to FeaturePlot
SpatialPlot(seurat.object, features = "MS4A1")
SpatialFeaturePlot(seurat.object, features = "MS4A1")
# For functionality analagous to DimPlot
SpatialPlot(seurat.object, group.by = "clusters")
SpatialDimPlot(seurat.object, group.by = "clusters")
```

End(Not run)

SplitObject

Splits object into a list of subsetted objects.

Description

Splits object based on a single attribute into a list of subsetted objects, one for each level of the attribute. For example, useful for taking an object that contains cells from many patients, and subdividing it into patient-specific objects.

Usage

SplitObject(object, split.by = "ident")

Arguments

object	Seurat object
split.by	Attribute for splitting. Default is "ident". Currently only supported for class-level (i.e. non-quantitative) attributes.

Value

A named list of Seurat objects, each containing a subset of cells from the original object.

Examples

```
data("pbmc_small")
# Assign the test object a three level attribute
groups <- sample(c("group1", "group2", "group3"), size = 80, replace = TRUE)
names(groups) <- colnames(pbmc_small)
pbmc_small <- AddMetaData(object = pbmc_small, metadata = groups, col.name = "group")
obj.list <- SplitObject(pbmc_small, split.by = "group")</pre>
```

STARmap-class The STARmap class

Description

The STARmap class

Slots

- assay Name of assay to associate image data with; will give this image priority for visualization when the assay is set as the active/default assay in a Seurat object
- key A one-length character vector with the object's key; keys must be one or more alphanumeric characters followed by an underscore "_" (regex pattern "^[a-zA-Z][a-zA-Z0-9]*_\$")

subset.AnchorSet Subset an AnchorSet object

Description

Subset an AnchorSet object

Usage

```
## S3 method for class 'AnchorSet'
subset(
    x,
    score.threshold = NULL,
    disallowed.dataset.pairs = NULL,
    dataset.matrix = NULL,
    group.by = NULL,
    disallowed.ident.pairs = NULL,
    ident.matrix = NULL,
    ...
)
```

Arguments

x	object to be subsetted.		
score.threshold	score.threshold		
	Only anchor pairs with scores greater than this value are retained.		
disallowed.data	aset.pairs		
	Remove any anchors formed between the provided pairs. E.g. list(c(1, 5), c(1, 2)) filters out any anchors between datasets 1 and 5 and datasets 1 and 2.		
dataset.matrix	Provide a binary matrix specifying whether a dataset pair is allowable (1) or not (0) . Should be a dataset x dataset matrix.		
group.by	Grouping variable to determine allowable ident pairs		
disallowed.ident.pairs			
	Remove any anchors formed between provided ident pairs. E.g. list(c("CD4", "CD8"), c("B-cell", "T-cell"))		
ident.matrix	Provide a binary matrix specifying whether an ident pair is allowable (1) or not (0) . Should be an ident x ident symmetric matrix		
	further arguments to be passed to or from other methods.		

Value

Returns an ${\tt AnchorSet}$ object with specified anchors filtered out

```
SubsetByBarcodeInflections
```

Subset a Seurat Object based on the Barcode Distribution Inflection Points

Description

This convenience function subsets a Seurat object based on calculated inflection points.

Usage

SubsetByBarcodeInflections(object)

Arguments

object Seurat object

Details

See [CalculateBarcodeInflections()] to calculate inflection points and [BarcodeInflection-sPlot()] to visualize and test inflection point calculations.

Value

Returns a subsetted Seurat object.

Author(s)

Robert A. Amezquita, <robert.amezquita@fredhutch.org>

See Also

CalculateBarcodeInflections BarcodeInflectionsPlot

Examples

```
data("pbmc_small")
pbmc_small <- CalculateBarcodeInflections(
    object = pbmc_small,
    group.column = 'groups',
    threshold.low = 20,
    threshold.high = 30
)
SubsetByBarcodeInflections(object = pbmc_small)</pre>
```

Find cells with highest scores for a given dimensional reduction technique

Description

Return a list of genes with the strongest contribution to a set of components

Usage

```
TopCells(object, dim = 1, ncells = 20, balanced = FALSE, ...)
```

Arguments

object	DimReduc object
dim	Dimension to use
ncells	Number of cells to return
balanced	Return an equal number of cells with both $+$ and - scores.
	Extra parameters passed to Embeddings

Value

Returns a vector of cells

Examples

```
data("pbmc_small")
pbmc_small
head(TopCells(object = pbmc_small[["pca"]]))
# Can specify which dimension and how many cells to return
TopCells(object = pbmc_small[["pca"]], dim = 2, ncells = 5)
```

TopFeatures	Find features with highest scores for a given dimensional reduc-
	tion technique

Description

Return a list of features with the strongest contribution to a set of components

TopCells

Usage

```
TopFeatures(
   object,
   dim = 1,
   nfeatures = 20,
   projected = FALSE,
   balanced = FALSE,
   ...
)
```

Arguments

object	$\operatorname{Dim}\operatorname{Reduc}$ object
dim	Dimension to use
nfeatures	Number of features to return
projected	Use the projected feature loadings
balanced	Return an equal number of features with both $+$ and $-$ scores.
	Extra parameters passed to Loadings

Value

Returns a vector of features

Examples

```
data("pbmc_small")
pbmc_small
TopFeatures(object = pbmc_small[["pca"]], dim = 1)
# After projection:
TopFeatures(object = pbmc_small[["pca"]], dim = 1, projected = TRUE)
```

TopNeighbors Get nearest neighbors for given cell

Description

Return a vector of cell names of the nearest n cells.

Usage

TopNeighbors(object, cell, n = 5)

Arguments

object	Neighbor object
cell	Cell of interest
n	Number of neighbors to return

Value

Returns a vector of cell names

TransferAnchorSet-class

The TransferAnchorSet Class

Description

Inherits from the Anchorset class. Implemented mainly for method dispatch purposes. See AnchorSet for slot details.

TransferData

Transfer data

Description

Transfer categorical or continuous data across single-cell datasets. For transferring categorical information, pass a vector from the reference dataset (e.g. refdata = reference\$celltype). For transferring continuous information, pass a matrix from the reference dataset (e.g. refdata = GetAssayData(reference[['RNA']])).

Usage

```
TransferData(
  anchorset,
  refdata.
  reference = NULL,
  query = NULL,
  query.assay = NULL,
  weight.reduction = "pcaproject",
  12.norm = FALSE,
  dims = NULL,
  k.weight = 50,
  sd.weight = 1,
  eps = 0,
  n.trees = 50,
  verbose = TRUE,
  slot = "data",
  prediction.assay = FALSE,
  only.weights = FALSE,
  store.weights = TRUE
)
```

Arguments

Suments	
anchorset	An AnchorSet $object$ generated by FindTransferAnchors
refdata	Data to transfer. This can be specified in one of two ways:
	• The reference data itself as either a vector where the names correspond to the reference cells, or a matrix, where the column names correspond to the reference cells.
	• The name of the metadata field or assay from the reference object provided. This requires the reference parameter to be specified. If pulling assay data in this manner, it will pull the data from the data slot. To transfer data from other slots, please pull the data explicitly with GetAssayData and provide that matrix here.
reference	Reference object from which to pull data to transfer
query	Query object into which the data will be transferred.
query.assay	Name of the Assay to use from query
weight.reducti	on
	Dimensional reduction to use for the weighting anchors. Options are:
	• pcaproject: Use the projected PCA used for anchor building
	\bullet lsiproject: Use the projected LSI used for anchor building
	\bullet pca: Use an internal PCA on the query only
	• cca: Use the CCA used for anchor building
	 custom DimReduc: User provided \[SeuratObject]{DimReduc} object computed on the query cells
12.norm	Perform L2 normalization on the cell embeddings after dimensional reduction \mathbf{L}_{L}
dims	Set of dimensions to use in the anchor weighting procedure. If NULL, the same dimensions that were used to find anchors will be used for weighting.
k.weight	Number of neighbors to consider when weighting anchors
sd.weight	Controls the bandwidth of the Gaussian kernel for weighting
eps	Error bound on the neighbor finding algorithm (from $RANN$)
n.trees	More trees gives higher precision when using annoy approximate nearest neighbor search
verbose	Print progress bars and output
slot	Slot to store the imputed data. Must be either "data" (default) or "counts"
prediction.ass	ау
	Return an \ensuremath{Assay} object with the prediction scores for each class stored in the \ensuremath{data} slot.
only.weights	Only return weights matrix
store.weights	Optionally store the weights matrix used for predictions in the returned query object.

Transfer Data

Details

The main steps of this procedure are outlined below. For a more detailed description of the methodology, please see Stuart, Butler, et al Cell 2019. doi:10.1016/j.cell.2019.05.031; doi:10.1101/460147

For both transferring discrete labels and also feature imputation, we first compute the weights matrix.

• Construct a weights matrix that defines the association between each query cell and each anchor. These weights are computed as 1 - the distance between the query cell and the anchor divided by the distance of the query cell to the k.weightth anchor multiplied by the anchor score computed in FindIntegrationAnchors. We then apply a Gaussian kernel width a bandwidth defined by sd.weight and normalize across all k.weight anchors.

The main difference between label transfer (classification) and feature imputation is what gets multiplied by the weights matrix. For label transfer, we perform the following steps:

- Create a binary classification matrix, the rows corresponding to each possible class and the columns corresponding to the anchors. If the reference cell in the anchor pair is a member of a certain class, that matrix entry is filled with a 1, otherwise 0.
- Multiply this classification matrix by the transpose of weights matrix to compute a prediction score for each class for each cell in the query dataset.

For feature imputation, we perform the following step:

• Multiply the expression matrix for the reference anchor cells by the weights matrix. This returns a predicted expression matrix for the specified features for each cell in the query dataset.

Value

If query is not provided, for the categorical data in refdata, returns a data.frame with label predictions. If refdata is a matrix, returns an Assay object where the imputed data has been stored in the provided slot.

If query is provided, a modified query object is returned. For the categorical data in refdata, prediction scores are stored as Assays (prediction.score.NAME) and two additional metadata fields: predicted.NAME and predicted.NAME.score which contain the class prediction and the score for that predicted class. For continuous data, an Assay called NAME is returned. NAME here corresponds to the name of the element in the refdata list.

References

Stuart T, Butler A, et al. Comprehensive Integration of Single-Cell Data. Cell. 2019;177:1888-1902 doi:10.1016/j.cell.2019.05.031

Examples

```
## Not run:
# to install the SeuratData package see https://github.com/satijalab/seurat-data
library(SeuratData)
data("pbmc3k")
# for demonstration, split the object into reference and query
pbmc.reference <- pbmc3k[, 1:1350]</pre>
pbmc.query <- pbmc3k[, 1351:2700]</pre>
# perform standard preprocessing on each object
pbmc.reference <- NormalizeData(pbmc.reference)</pre>
pbmc.reference <- FindVariableFeatures(pbmc.reference)</pre>
pbmc.reference <- ScaleData(pbmc.reference)</pre>
pbmc.query <- NormalizeData(pbmc.query)</pre>
pbmc.guery <- FindVariableFeatures(pbmc.guery)</pre>
pbmc.query <- ScaleData(pbmc.query)</pre>
# find anchors
anchors <- FindTransferAnchors(reference = pbmc.reference, query = pbmc.query)
# transfer labels
predictions <- TransferData(anchorset = anchors, refdata = pbmc.reference$seurat_annotations)</pre>
pbmc.query <- AddMetaData(object = pbmc.query, metadata = predictions)</pre>
## End(Not run)
```

TransferSketchLabels Transfer data from sketch data to full data

Description

This function transfers cell type labels from a sketched dataset to a full dataset based on the similarities in the lower dimensional space.

Usage

```
TransferSketchLabels(
   object,
   sketched.assay = "sketch",
   reduction,
   dims,
   refdata = NULL,
   k = 50,
   reduction.model = NULL,
   neighbors = NULL,
   recompute.neighbors = FALSE,
```

```
recompute.weights = FALSE,
verbose = TRUE
)
```

Arguments

object	A Seurat object.	
sketched.assay	Sketched assay name. Default is 'sketch'.	
reduction	Dimensional reduction name to use for label transfer.	
dims	An integer vector indicating which dimensions to use for label transfer.	
refdata	A list of character strings indicating the metadata columns containing labels to transfer. Default is NULL. Similar to refdata in 'MapQuery'	
k	Number of neighbors to use for label transfer. Default is 50.	
reduction.model		
	Dimensional reduction model to use for label transfer. Default is NULL.	
neighbors	An object storing the neighbors found during the sketching process. De- fault is NULL.	
recompute.neighbors		
	Whether to recompute the neighbors for label transfer. Default is FALSE.	
recompute.weights		
	Whether to recompute the weights for label transfer. Default is FALSE.	
verbose	Print progress and diagnostic messages	

Value

A Seurat object with transferred labels stored in the metadata. If a UMAP model is provided, the full data are also projected onto the UMAP space, with the results stored in a new reduction, full.'reduction.model'

UnSketchEmbeddings Transfer embeddings from sketched cells to the full data

Description

Transfer embeddings from sketched cells to the full data

Usage

```
UnSketchEmbeddings(
   atom.data,
   atom.cells = NULL,
   orig.data,
   embeddings,
   sketch.matrix = NULL
)
```

Arguments

atom.data	Atom data
atom.cells	Atom cells
orig.data	Original data
embeddings	Embeddings of atom cells
sketch.matrix	Sketch matrix

UpdateSCTAssays	Update pre-V4 Assays generated with SCTransform in the Seurat
	to the new SCTAssay class

Description

Update pre-V4 Assays generated with SCT ransform in the Seurat to the new SCTAssay class

Usage

UpdateSCTAssays(object)

Arguments

object A Seurat object

Value

A Seurat object with updated SCTAssays

UpdateSymbolList Get updated synonyms for gene symbols

Description

Find current gene symbols based on old or alias symbols using the gene names database from the HUGO Gene Nomenclature Committee (HGNC)

UpdateSymbolList

Usage

```
GeneSymbolThesarus(
   symbols,
   timeout = 10,
   several.ok = FALSE,
   search.types = c("alias_symbol", "prev_symbol"),
   verbose = TRUE,
   ...
)
UpdateSymbolList(
   symbols,
   timeout = 10,
   several.ok = FALSE,
   verbose = TRUE,
   ...
)
```

Arguments

symbols	A vector of gene symbols
timeout	Time to wait before canceling query in seconds
several.ok	Allow several current gene symbols for each provided symbol
search.types	Type of query to perform:
	"alias_symbol" Find alternate symbols for the genes described by symbols
	"prev_symbol" Find new new symbols for the genes described by symbols
	This parameter accepts multiple options and short-hand options (eg. "prev" for "prev_symbol")
verbose	Show a progress bar depicting search progress
	Extra parameters passed to GET

Details

For each symbol passed, we query the HGNC gene names database for current symbols that have the provided symbol as either an alias (alias_symbol) or old (prev_symbol) symbol. All other queries are **not** supported.

Value

GeneSymbolThesarus:, if several.ok, a named list where each entry is the current symbol found for each symbol provided and the names are the provided symbols. Otherwise, a named vector with the same information.

UpdateSymbolList: symbols with updated symbols from HGNC's gene names database

Note

This function requires internet access

Source

https://www.genenames.org/ https://www.genenames.org/help/rest/

See Also

GET

Examples

```
## Not run:
GeneSybmolThesarus(symbols = c("FAM64A"))
```

End(Not run)

```
## Not run:
UpdateSymbolList(symbols = cc.genes$s.genes)
```

```
## End(Not run)
```

VariableFeaturePlot View variable features

Description

View variable features

Usage

```
VariableFeaturePlot(
   object,
   cols = c("black", "red"),
   pt.size = 1,
   log = NULL,
   selection.method = NULL,
   assay = NULL,
   raster = NULL,
   raster.dpi = c(512, 512)
)
```

Arguments

object	Seurat object
cols	Colors to specify non-variable/variable status
pt.size	Size of the points on the plot
log	Plot the x-axis in log scale

VisiumV1-class

selection.method	
	[Deprecated]
assay	Assay to pull variable features from
raster	Convert points to raster format, default is NULL which will automatically use raster if the number of points plotted is greater than $100,000$
raster.dpi	Pixel resolution for rasterized plots, passed to geom_scattermore (). Default is c(512, 512).

Value

A ggplot object

See Also

FindVariableFeatures

Examples

data("pbmc_small")
VariableFeaturePlot(object = pbmc_small)

VisiumV1-class The VisiumV1 class

Description

The VisiumV1 class represents spatial information from the 10X Genomics Visium platform

\mathbf{Slots}

image A three-dimensional array with PNG image data, see readPNG for more details scale.factors An object of class scalefactors; see scalefactors for more information coordinates A data frame with tissue coordinate information spot.radius Single numeric value giving the radius of the spots

VisiumV2-class	$The \ Visium V2 \ class$	
----------------	---------------------------	--

Description

The VisiumV2 class represents spatial information from the 10X Genomics Visium HD platform - it can also accomodate data from the standard Visium platform

Slots

image A three-dimensional array with PNG image data, see readPNG for more details scale.factors An object of class scalefactors; see scalefactors for more information

VizDimLoadings

Description

Visualize top genes associated with reduction components

Usage

```
VizDimLoadings(
   object,
   dims = 1:5,
   nfeatures = 30,
   col = "blue",
   reduction = "pca",
   projected = FALSE,
   balanced = FALSE,
   ncol = NULL,
   combine = TRUE
)
```

Arguments

object	Seurat object
dims	Number of dimensions to display
nfeatures	Number of genes to display
col	Color of points to use
reduction	Reduction technique to visualize results for
projected	Use reduction values for full dataset (i.e. projected dimensional reduction values)
balanced	Return an equal number of genes with $+$ and $-$ scores. If FALSE (default), returns the top genes ranked by the scores absolute values
ncol	Number of columns to display
combine	Combine plots into a single ${\tt patchwork}$ ggplot object. If ${\tt FALSE},$ return a list of ggplot objects

Value

A patchwork ggplot object if combine = TRUE; otherwise, a list of ggplot objects

Examples

```
data("pbmc_small")
VizDimLoadings(object = pbmc_small)
```

VlnPlot

Description

Draws a violin plot of single cell data (gene expression, metrics, PC scores, etc.)

Usage

```
VlnPlot(
  object,
 features,
  cols = NULL,
 pt.size = NULL,
  alpha = 1,
  idents = NULL,
  sort = FALSE,
  assay = NULL,
  group.by = NULL,
  split.by = NULL,
  adjust = 1,
 y.max = NULL,
  same.y.lims = FALSE,
  log = FALSE,
  ncol = NULL,
  slot = deprecated(),
  layer = NULL,
  split.plot = FALSE,
  stack = FALSE,
  combine = TRUE,
  fill.by = "feature",
  flip = FALSE,
  add.noise = TRUE,
  raster = NULL
)
```

Arguments

object	Seurat object
features	Features to plot (gene expression, metrics, PC scores, anything that can be retreived by FetchData)
cols	Colors to use for plotting
pt.size	Point size for points
alpha	Alpha value for points
idents	Which classes to include in the plot (default is all)

sort	Sort identity classes (on the x-axis) by the average expression of the at- tribute being potted, can also pass 'increasing' or 'decreasing' to change sort direction
assay	Name of assay to use, defaults to the active assay
group.by	Group (color) cells in different ways (for example, orig.ident)
split.by	A factor in object metadata to split the plot by, pass 'ident' to split by cell identity
adjust	Adjust parameter for geom_violin
y.max	Maximum y axis value
<pre>same.y.lims</pre>	Set all the y-axis limits to the same values
log	plot the feature axis on log scale
ncol	Number of columns if multiple plots are displayed
slot	Slot to pull expression data from (e.g. "counts" or "data")
layer	Layer to pull expression data from (e.g. "counts" or "data")
split.plot	plot each group of the split viol in plots by multiple or single viol in shapes.
stack	Horizontally stack plots for each feature
combine	Combine plots into a single $\ensuremath{patchworked}$ ggplot object. If FALSE, return a list of ggplot
fill.by	Color violins/ridges based on either 'feature' or 'ident'
flip	flip plot orientation (identities on x-axis)
add.noise	determine if adding a small noise for plotting
raster	Convert points to raster format. Requires 'ggrastr' to be installed.

Value

A patchworked ggplot object if combine = TRUE; otherwise, a list of ggplot objects

See Also

FetchData

Examples

```
data("pbmc_small")
VlnPlot(object = pbmc_small, features = 'PC_1')
VlnPlot(object = pbmc_small, features = 'LYZ', split.by = 'groups')
```

Index

* clustering BuildNicheAssay, 28 FindClusters, 76 FindMultiModalNeighbors, 89 FindNeighbors, 90 FindSubCluster, 96 RunLeiden, 214 * convenience DimHeatmap, 51 DimPlot, 52ReadParseBio, 197 ReadSTARsolo, 198 SpatialPlot, 252 * datasets cc.genes, 32cc.genes.updated.2019, 32 * data cc.genes, 32cc.genes.updated.2019, 32 * differential expression FindAllMarkers, 71 FindConservedMarkers, 78 FindMarkers, 83 FoldChange, 103 PrepSCTFindMarkers, 176 * dimensional reduction JackStraw, 132 L2CCA, 137 L2Dim, 137 PCASigGenes, 166 ProjectDim, 180 ProjectUMAP, 183 RunCCA, 208 RunGraphLaplacian, 210 RunICA, 211 RunPCA, 218 RunSLSI, 220 RunSPCA, 222 RunTSNE, 224

RunUMAP, 226 ScoreJackStraw, 236 * future PrepSCTFindMarkers, 176 ReadNanostring, 195ReadVizgen, 200 * integration AnnotateAnchors, 15BridgeCellsRepresentation, 25 CCAIntegration, 33 FastRPCAIntegration, 62 FindBridgeIntegrationAnchors, 74FindBridgeTransferAnchors, 75 FindIntegrationAnchors, 80 FindTransferAnchors, 96 GetTransferPredictions, 110 HarmonyIntegration, 112IntegrateData, 124 IntegrateEmbeddings, 127 IntegrateLayers, 129 JointPCAIntegration, 135 LocalStruct, 148 MappingScore, 150MapQuery, 152MixingMetric, 156NNtoGraph, 164 PredictAssay, 172 PrepareBridgeReference, 173 PrepSCTIntegration, 177 ProjectDimReduc, 181 ProjectIntegration, 182 SelectIntegrationFeatures, 243 SelectIntegrationFeatures5, 244 SelectSCTIntegrationFeatures, 245 TransferData, 261 UnSketchEmbeddings, 265 * mixscape CalcPerturbSig, 28 DEenrichRPlot, 48

```
MixscapeHeatmap, 157
    MixscapeLDA, 160
    PlotPerturbScore, 169
    PrepLDA, 175
    RunLDA, 213
    RunMixscape, 216
* objects
    AnchorSet-class. 14
    as.CellDataSet, 16
    as.Seurat.CellDataSet, 16
    as.SingleCellExperiment, 17
    as.sparse.H5Group, 18
    BridgeReferenceSet-class, 26
    Cells.SCTModel, 37
    CreateSCTAssayObject, 46
    DietSeurat. 50
    FilterSlideSeq, 70
    GetAssay, 106
    GetImage.SlideSeq, 106
    GetIntegrationData, 107
    GetTissueCoordinates.SlideSeq, 109
    HVFInfo.SCTAssay, 118
    IntegrationAnchorSet-class, 130
    IntegrationData-class, 130
    merge.SCTAssay, 154
    ModalityWeights-class, 161
    Radius.SlideSeq, 187
    RenameCells.SCTAssay, 204
    ScaleFactors, 235
    SCTAssay-class, 237
    SCTResults, 242
    SetIntegrationData, 246
    SplitObject, 255
    STARmap-class, 256
    subset.AnchorSet, 257
    TopCells, 259
    TopFeatures, 259
    TopNeighbors, 260
    TransferAnchorSet-class, 261
    UpdateSCTAssays, 266
    VisiumV1-class, 269
    VisiumV2-class, 269
* preprocessing
    CalculateBarcodeInflections, 30
    FetchResiduals, 68
    FindSpatiallyVariableFeatures, 93
    FindVariableFeatures, 100
    GetResidual, 108
```

HTODemux, 115Load10X_Spatial, 143 LoadCurioSeeker, 145 LoadSTARmap, 146 LoadXenium, 147 LogNormalize, 149 MULTIseqDemux, 161 NormalizeData, 164 Read10X, 188 Read10X_Coordinates, 189 Read10X_h5, 190 Read10X_Image, 190 Read10X_probe_metadata, 191 Read10X_ScaleFactors, 192 ReadAkoya, 192 ReadMtx. 194 ReadNanostring, 195 ReadSlideSeq, 198 ReadVitessce, 199 ReadVizgen, 200 RelativeCounts, 203 RunMarkVario, 215 RunMoransI, 217 SampleUMI, 231 ScaleData, 232 SCTransform, 238 SubsetByBarcodeInflections, 258 * sketching LeverageScore, 140ProjectData, 179 SketchData, 250 TransferSketchLabels, 264 * spatial Cells.SCTModel, 37 FilterSlideSeq, 70 FindSpatiallyVariableFeatures, 93 GetImage.SlideSeq, 106 GetTissueCoordinates.SlideSeq, 109 ImageDimPlot, 119 ImageFeaturePlot, 121 ISpatialDimPlot, 131 ISpatialFeaturePlot, 131 LinkedPlots, 142 PolyFeaturePlot, 171 Radius.SlideSeq, 187 ScaleFactors, 235 SlideSeq-class, 251 SpatialPlot, 252

INDEX

STARmap-class, 256 VisiumV1-class, 269 VisiumV2-class, 269 * tree BuildClusterTree, 26 * utilities AddAzimuthResults, 10 AddModuleScore, 11 AggregateExpression, 13as.sparse.H5Group, 18 AverageExpression, 20CaseMatch, 31 CellCycleScoring, 36 CollapseSpeciesExpressionMatrix, 41 CreateCategoryMatrix, 46 CustomDistance, 47 ExpMean, 60 ExpSD, 60 ExpVar, 61 FastRowScale. 62 GroupCorrelation, 111 LoadAnnoyIndex, 145 LogVMR, 150MetaFeature, 155MinMax. 156 PercentAbove, 167 PercentageFeatureSet, 168 PseudobulkExpression, 185 RegroupIdents, 202 RPCAIntegration, 206 SaveAnnoyIndex, 232 SetQuantile, 246 UpdateSymbolList, 266 * visualization AugmentPlot, 19 AutoPointSize, 20 BarcodeInflectionsPlot, 22 BGTextColor, 23 BlackAndWhite, 24 CellScatter, 38 CellSelector, 39 CollapseEmbeddingOutliers, 40 ColorDimSplit, 42 CombinePlots, 44 contrast-theory, 45DimHeatmap, 51 DimPlot, 52

DiscretePalette, 55 DoHeatmap, 56 DotPlot, 58 ElbowPlot, 59 FeaturePlot, 63 FeatureScatter, 67 GroupCorrelationPlot, 112 HoverLocator, 115HTOHeatmap, 117 IFeaturePlot, 119 ImageDimPlot, 119 ImageFeaturePlot, 121 ISpatialDimPlot, 131 ISpatialFeaturePlot, 131 JackStrawPlot, 134 LabelClusters, 138 LabelPoints, 139 LinkedPlots, 142 NNPlot, 163PlotClusterTree, 169 PolyDimPlot, 170 PolyFeaturePlot, 171 RidgePlot, 204 SeuratTheme, 248 SpatialPlot, 252 VariableFeaturePlot, 268 VizDimLoadings, 270 VlnPlot, 271 ?future::plan, 176, 197, 202 AddAzimuthResults, 10 AddModuleScore, 11, 36 AggregateExpression, 13AnchorSet, 15, 82, 124, 130, 257, 261, 262 AnchorSet (AnchorSet-class), 14 AnchorSet-class, 14 AnnotateAnchors, 15annotation_raster, 19 ape::plot.phylo, 169 as.CellDataSet, 16 as.data.frame.Matrix (as.sparse.H5Group), 18 as.Seurat.CellDataSet, 16 as.Seurat.SingleCellExperiment (as.Seurat.CellDataSet), 16 as.SingleCellExperiment, 17 as.sparse.H5Group, 18 Assay, 126, 178, 237, 238 Assay-class, 19

Assay5, 113 AugmentPlot, 19 AutoPointSize, 20 AverageExpression, 20BarcodeInflectionsPlot, 22, 31, 258 BGTextColor, 23 BlackAndWhite, 24 BlueAndRed (BlackAndWhite), 24 BoldTitle (SeuratTheme), 248 brewer.pal.info, 42, 53, 120, 134, 254 BridgeCellsRepresentation, 25 BridgeReferenceSet, 74, 75 BridgeReferenceSet (BridgeReferenceSet-class), 26 BridgeReferenceSet-class, 26 BuildClusterTree, 26, 73, 87, 105, 158 BuildNicheAssay, 28 CalcPerturbSig, 28 CalculateBarcodeInflections, 22, 30, 258 CaseMatch, 31 cc.genes, <u>32</u>, <u>33</u> cc.genes.updated.2019, 32 CCAIntegration, 33 CellCycleScoring, 36 CellPlot (CellScatter), 38 Cells.SCTModel, 37 Cells.SlideSeq (Cells.SCTModel), 37 Cells.STARmap (Cells.SCTModel), 37 Cells.VisiumV1 (Cells.SCTModel), 37 CellScatter, 38 CellSelector, 39, 55, 66 CenterTitle (SeuratTheme), 248 CollapseEmbeddingOutliers, 40 CollapseSpeciesExpressionMatrix, 41 ColorDimSplit, 42CombinePlots, 44, 143 contrast-theory, 45correct_counts, 242 CreateCategoryMatrix, 46 CreateSCTAssayObject, 46 CreateSeuratObject, 13, 21, 187 CustomDistance, 47CustomPalette (BlackAndWhite), 24

DarkTheme (SeuratTheme), 248 data.frame, *18* DEenrichRPlot, 48

DefaultAssay, 174 DietSeurat, 50 dimensional reduction, 113 DimHeatmap, 51 DimPlot, 39, 42, 43, 52, 66, 115 DimReduc, 34, 125, 128, 136, 206, 207 DimReduc-class, 55 DiscretePalette, 42, 53, 55, 120, 134 DoHeatmap, 56DotPlot, 58 ElbowPlot, 59 Embeddings, 259 ExpMean, 60 ExpSD, 60ExpVar, 61 facet_grid, 138 facet_wrap, 138 FastRowScale, 62 FastRPCAIntegration, 62 FeatureHeatmap (FeaturePlot), 63 FeatureLocator (CellSelector), 39 FeaturePlot, 39, 55, 63, 66, 115 FeatureScatter, 67 FetchData, 55, 59, 171, 272 FetchResiduals, 68 FilterSlideSeq, 70 FindAllMarkers, 71 FindAllMarkersNode (FindAllMarkers), 71 FindBridgeIntegrationAnchors, 74 FindBridgeTransferAnchors, 75, 175 FindClusters, 76 FindConservedMarkers, 78 FindIntegrationAnchors, 62, 63, 80, 124, 125, 263 FindMarkers, 83, 105 FindMarkersNode (FindMarkers), 83 FindMultiModalNeighbors, 89, 161 FindNeighbors, 90 FindSpatiallyVariableFeatures, 93 FindSubCluster, 96 FindTransferAnchors, 16, 96, 152, 262 FindVariableFeatures, 100, 244, 269 FindVariableGenes (FindVariableFeatures), 100 FoldChange, 103 FontSize (SeuratTheme), 248

INDEX

GenePlot (FeatureScatter), 67 GeneSymbolThesarus (UpdateSymbolList), 266geom_raster, 52 geom_text, 138, 139 geom_text_repel, 138 GET, 267, 268 get_residuals, 69, 108, 242 GetAssay, 106 GetAssayData, 153, 262 GetImage.SlideSeq, 106 GetImage.STARmap (GetImage.SlideSeq), 106 GetImage.VisiumV1 (GetImage.SlideSeq), 106 GetImage.VisiumV2 (GetImage.SlideSeq), 106 GetIntegrationData, 107 GetResidual, 108, 177 GetTissueCoordinates.SlideSeq, 109 GetTissueCoordinates.STARmap (GetTissueCoordinates.SlideSeq), 109 GetTissueCoordinates.VisiumV1 (GetTissueCoordinates.SlideSeq), 109GetTissueCoordinates.VisiumV2 (GetTissueCoordinates.SlideSeq), 109 GetTransferPredictions, 110 ggplot_build, 115 Graph, 93 Graph-class, 111 Graphs, 93 GroupCorrelation, 111 GroupCorrelationPlot, 112 harmony::HarmonyMatrix, 114 HarmonyIntegration, 112hclust, 35, 125, 128, 136, 207 HoverLocator, 55, 66, 115 HTODemux, 115, 118 HTOHeatmap, *117*, 117 HVFInfo, 118 HVFInfo.SCTAssay, 118 ICAPlot (DimPlot), 52 IFeaturePlot, 119

image, 52

ImageDimPlot, 119 ImageFeaturePlot, 121 IntegrateData, 14, 80, 82, 124, 129 IntegrateEmbeddings, 62, 74-76, 99, 127, 152-154 IntegrateLayers, 129 IntegrationAnchorSet (IntegrationAnchorSet-class), 130IntegrationAnchorSet-class, 130 IntegrationData (IntegrationData-class), 130 IntegrationData-class, 130 Intensity (contrast-theory), 45 ISpatialDimPlot, 131, 255 ISpatialFeaturePlot, 131, 255 JackStraw, 132, 167 JackStrawData-class, 133 JackStrawPlot, 134, 237 JointPCAIntegration, 135 L2CCA, 137 L2Dim, 137 LabelClusters, 138 Labeler (LabelPoints), 139 LabelPoints, 139 layout, *115* levels.SCTAssay (SCTAssay-class), 237 levels<-.SCTAssay (SCTAssay-class), 237</pre> LeverageScore, 140 LinkedDimPlot (LinkedPlots), 142 LinkedFeaturePlot (LinkedPlots), 142 LinkedPlot (LinkedPlots), 142 LinkedPlots, 142 Load10X_Spatial, 143, 191 LoadAkoya (ReadAkoya), 192 LoadAnnoyIndex, 145 LoadCurioSeeker, 145 LoadHuBMAPCODEX (ReadVitessce), 199 Loadings, 260 LoadNanostring (ReadNanostring), 195 LoadSTARmap, 146 LoadVizgen (ReadVizgen), 200 LoadXenium, 147 LocalStruct, 148 LogNormalize, 149 LogVMR, 150Luminance (contrast-theory), 45

make.names, 18 MappingScore, 150MapQuery, 75, 76, 99, 152 MeanVarPlot (VariableFeaturePlot), 268 merge.SCTAssay, 154 merge.Seurat, 210 MetaFeature, 155 MinMax, 156 MixingMetric, 156MixscapeHeatmap, 157MixscapeLDA, 160 ModalityWeights, 90 ModalityWeights (ModalityWeights-class), 161 ModalityWeights-class, 161 MULTIseqDemux, 161 Neighbor, 92, 93, 260 Neighbor-class, 162 Neighbors, 93 NNPlot, 163 NNtoGraph, 164 NoAxes (SeuratTheme), 248 NoGrid (SeuratTheme), 248 NoLegend (SeuratTheme), 248 NormalizeData, 13, 164, 187 patchwork, 43, 52, 54, 55, 57, 66, 68, 123, 164, 205, 272 PCAPlot (DimPlot), 52 PCASigGenes, 166 PCHeatmap (DimHeatmap), 51 PercentAbove, 167 PercentageFeatureSet, 168 plan, 176, 197, 202 PlotClusterTree, 169 PlotPerturbScore, 169 PolyDimPlot, 170, 248 PolyFeaturePlot, 171, 248 PredictAssay, 172 PrepareBridgeReference, 74, 76, 173 PrepLDA, 175 PrepSCTFindMarkers, 176 PrepSCTIntegration, 177 ProjectData, 179 ProjectDim, 167, 180 ProjectDimReduc, 181 ProjectIntegration, 182 ProjectUMAP, 152-154, 183

PseudobulkExpression, 185 PurpleAndYellow (BlackAndWhite), 24 Radius.SlideSeg, 187 Radius.STARmap (Radius.SlideSeq), 187 Radius.VisiumV1 (Radius.SlideSeq), 187 Radius.VisiumV2 (Radius.SlideSeq), 187 RANN, 98, 125, 262 RcppAnnoy, 98 Read10X, 188 Read10X_Coordinates, 189 Read10X_h5, 144, 190 Read10X_Image, 190 Read10X_probe_metadata, 191 Read10X_ScaleFactors, 192 ReadAkova, 192 ReadMtx, 194, 197, 198 ReadNanostring, 195ReadParseBio, 197 readPNG, 269 ReadSlideSeq, 198 ReadSTARsolo, 198 ReadVitessce, 199 ReadVizgen, 200 ReadXenium (LoadXenium), 147 RegroupIdents, 202 RelativeCounts, 203 RenameCells.SCTAssay, 204 RenameCells.SlideSeq (RenameCells.SCTAssay), 204 RenameCells.STARmap (RenameCells.SCTAssay), 204 RenameCells.VisiumV1 (RenameCells.SCTAssay), 204 RestoreLegend (SeuratTheme), 248 RidgePlot, 204 RotatedAxis (SeuratTheme), 248 RPCAIntegration, 206 RunCCA, 208 RunGraphLaplacian, 210 RunICA, 211 RunLDA, 213RunLeiden, 214RunMarkVario, 95, 215 RunMixscape, 216 RunMoransI, 95, 217 RunPCA, 62, 218 RunSLSI, 220 RunSPCA, 222

INDEX

RunSVD, *98* RunTFIDF, 98 RunTSNE, 224 RunUMAP, 9, 185, 226 SampleUMI, 231 SaveAnnoyIndex, 232 ScaleData, 13, 21, 232 ScaleFactors, 235 scalefactors, 269 scalefactors (ScaleFactors), 235 ScoreJackStraw, 135, 236 SCTAssay, 118, 242 SCTAssay (SCTAssay-class), 237 SCTAssay-class, 237 SCTModel (SCTAssay-class), 237 SCTransform, 177, 178, 237, 238, 238 SCTResults, *242*, 242 SCTResults<- (SCTResults), 242 SelectIntegrationFeatures, 63, 81, 177, 178, 243 SelectIntegrationFeatures5, 244 SelectSCTIntegrationFeatures, 245 SetIntegrationData, 246 SetQuantile, 246 Seurat, 10, 14, 21, 50, 63, 80, 93, 97, 120, 126, 129, 137, 145, 146, 148, 154, 177, 178, 187, 193, 197, 200, 202, 246 Seurat (Seurat-package), 8 Seurat-class, 247 Seurat-package, 8 SeuratAxes (SeuratTheme), 248 SeuratCommand-class, 247 SeuratObject, 19, 55, 111, 133, 162, 247, 251SeuratObject::as.Seurat, 17 SeuratObject::as.sparse, 19 SeuratObject::Cells, 37 SeuratObject::GetImage, 107 SeuratObject::GetTissueCoordinates, 109 SeuratObject::Radius, 188 SeuratObject::RenameCells, 204 SeuratTheme, 248SketchData, 250 SlideSeq, 198 SlideSeq (SlideSeq-class), 251 SlideSeq-class, 251

sparse matrix, 148, 193, 197, 202 SpatialDimPlot, 70 SpatialDimPlot (SpatialPlot), 252 SpatialFeaturePlot (SpatialPlot), 252 SpatialImage-class, 251 SpatialPlot, 252 SpatialTheme (SeuratTheme), 248 split, 234 SplitDotPlotGG (DotPlot), 58 SplitObject, 255 STARmap, 146 STARmap (STARmap-class), 256 STARmap-class, 256 subset.AnchorSet, 257 SubsetByBarcodeInflections, 22, 31, 258

theme, 249 Tool, 27 TopCells, 259 TopFeatures, 259 TopNeighbors, 260 TransferAnchorSet (TransferAnchorSet-class), 261 TransferAnchorSet-class, 261 TransferData, 14, 76, 96, 99, 110, 152-154, 261 TransferSketchLabels, 264 TSNEPlot (DimPlot), 52

umap, 229 UMAPPlot (DimPlot), 52 UnSketchEmbeddings, 265 UpdateSCTAssays, 266 UpdateSymbolList, 12, 266

```
VariableFeaturePlot, 268
VariableGenePlot
(VariableFeaturePlot), 268
VisiumV1 (VisiumV1-class), 269
VisiumV2-class, 269
VisiumV2, 191
VisiumV2 (VisiumV2-class), 269
VisiumV2-class, 269
VizDimLoadings, 270
VlnPlot, 271
```

 $\label{eq:whiteBackground (SeuratTheme), 248} \\ \text{with_progress}, 176, 193, 197, 200, 202 \\ \text{Writing integration method functions}, \\ 130 \\ \end{tabular}$