Package 'aihuman'

January 9, 2025

Type Package

Title Experimental Evaluation of Algorithm-Assisted Human Decision-Making

Version 1.0.0

Date 2024-12-23

Description Provides statistical methods for analyzing experimental evaluation of the causal impacts of algorithmic recommendations on human decisions developed by Imai, Jiang, Greiner, Halen, and Shin (2023) <doi:10.1093/jrsssa/qnad010> and Ben-Michael, Greiner, Huang, Imai, Jiang, and Shin (2024) <doi:10.48550/arXiv.2403.12108>. The data used for this paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

License GPL (>= 2)

URL https://github.com/sooahnshin/aihuman

BugReports https://github.com/sooahnshin/aihuman/issues

Encoding UTF-8

RoxygenNote 7.3.1

- **Imports** Rcpp, coda, stats, magrittr, purrr, abind, foreach, parallel, doParallel, ggplot2, dplyr, tidyr, metR, MASS, GLMMadaptive, gbm, tidyselect, stringr, forcats
- LinkingTo Rcpp, RcppArmadillo, RcppEigen

Depends R (>= 2.10)

Suggests knitr, rmarkdown

VignetteBuilder knitr

LazyData true

NeedsCompilation yes

Author Sooahn Shin [aut, cre] (<https://orcid.org/0000-0001-6213-2197>), Zhichao Jiang [aut], Kosuke Imai [aut] Maintainer Sooahn Shin <sooahnshin@g.harvard.edu>

Repository CRAN

Date/Publication 2025-01-09 12:40:02 UTC

Contents

aihuman-package
AiEvalmeme
APCEsummary
APCEsummaryipw
BootstrapAPCEipw
BootstrapAPCEipwRE
BootstrapAPCEipwREparallel
CalAPCE
CalAPCEipw
CalAPCEipwRE
CalAPCEparallel
CalDelta
CalDIM
CalDIMsubgroup
CalFairness
CalOptimalDecision
CalPS
compute_bounds_aipw
compute_nuisance_functions
compute_nuisance_functions_ai 29
compute_stats
compute_stats_agreement
compute_stats_aipw
compute_stats_subgroup
crossfit
FTAdata
g_legend
HearingDate
hearingdate_synth
NCAdata
NVCAdata
PlotAPCE
PlotDIMdecisions
PlotDIMoutcomes
PlotFairness
PlotOptimalDecision
PlotPS
PlotSpilloverCRT
PlotSpilloverCRTpower
PlotStackedBar
PlotStackedBarDMF

PlotUtilityDiff	50
PlotUtilityDiffCI	51
plot_agreement	52
plot_diff_ai_aipw	53
plot_diff_human	55
plot_diff_human_aipw	57
plot_diff_subgroup	58
plot_preference	60
PSAdata	62
psa_synth	63
SpilloverCRT	64
SpilloverCRTpower	64
synth	65
table_agreement	66
TestMonotonicity	68
TestMonotonicityRE	68

Index

aił	uman-package	Experimental Making	Evaluation	of	Algorithm-Assisted	Human	Decision-

Description

Provides statistical methods for analyzing experimental evaluation of the causal impacts of algorithmic recommendations on human decisions developed by Imai, Jiang, Greiner, Halen, and Shin (2023) <doi:10.1093/jrsssa/qnad010> and Ben-Michael, Greiner, Huang, Imai, Jiang, and Shin (2024) <doi:10.48550/arXiv.2403.12108>. The data used for this paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Package Content

Index of help topics:

APCEsummary	Summary of APCE		
APCEsummaryipw	Summary of APCE for frequentist analysis		
AiEvalmcmc	Gibbs sampler for the main analysis		
BootstrapAPCEipw	Bootstrap for estimating variance of APCE		
BootstrapAPCEipwRE	Bootstrap for estimating variance of APCE with		
	random effects		
BootstrapAPCEipwREparallel			
	Bootstrap for estimating variance of APCE with		
	random effects		
CalAPCE	Calculate APCE		
CalAPCEipw	Compute APCE using frequentist analysis		

3

70

CalAPCEipwRE	Compute APCE using frequentist analysis with random effects
CalAPCEparallel	Calculate APCE using parallel computing
CalDIM	Calculate diff-in-means estimates
CalDIMsubgroup	Calculate diff-in-means estimates
CalDelta	Calculate the delta given the principal stratum
CalFairness	Calculate the principal fairness
CalOptimalDecision	Calculate optimal decision & utility
CalPS	Calculate the proportion of principal strata
	(R)
FTAdata	Interim Dane data with failure to appear (FTA)
	as an outcome
HearingDate	Interim court event hearing date
NCAdata	Interim Dane data with new criminal activity
	(NCA) as an outcome
NVCAdata	Interim Dane data with new violent criminal
	activity (NVCA) as an outcome
PSAdata	Interim Dane PSA data
PlotAPCE	Plot APCE
PlotDIMdecisions	Plot diff-in-means estimates
PlotDIMoutcomes	Plot diff-in-means estimates
PlotFairness	Plot the principal fairness
PlotOptimalDecision	Plot optimal decision
PlotPS	Plot the proportion of principal strata (R)
PlotSpilloverCRT	Plot conditional randomization test
PlotSpilloverCRTpower	Plot power analysis of conditional
	randomization test
PlotStackedBar	Stacked barplot for the distribution of the
	decision given psa
PlotStackedBarDMF	Stacked barplot for the distribution of the
	decision given DMF recommendation
PlotUtilityDiff	Plot utility difference
PlotUtilityDiffCI	Plot utility difference with 95
	interval
SpilloverCRT	Conduct conditional randomization test
SpilloverCRTpower	Conduct power analysis of conditional
	randomization test
TestMonotonicity	Test monotonicity
TestMonotonicityRE	Test monotonicity with random effects
aihuman-package	Experimental Evaluation of Algorithm-Assisted
	Human Decision-Making
compute_bounds_aipw	Compute Risk (AI v. Human)
compute_nuisance_function	ons
	Fit outcome/decision and propensity score
	models
compute_nuisance_function	ons_ai
	Fit outcome/decision and propensity score
	models conditioning on the AI recommendation

4

AiEvalmcmc

compute_stats	Compute Risk (Human+AI v. Human)
compute_stats_agreement	
	Agreement of Human and AI Decision Makers
compute_stats_aipw	Compute Risk (Human+AI v. Human)
compute_stats_subgroup	
	Compute Risk (Human+AI v. Human) for a Subgroup
	Defined by AI Recommendation
crossfit	Crossfitting for nuisance functions
g_legend	Pulling ggplot legend
hearingdate_synth	Synthetic court event hearing date
<pre>plot_agreement</pre>	Visualize Agreement
plot_diff_ai_aipw	Visualize Difference in Risk (AI v. Human)
plot_diff_human	Visualize Difference in Risk (Human+AI v.
	Human)
plot_diff_human_aipw	Visualize Difference in Risk (Human+AI v.
	Human)
plot_diff_subgroup	Visualize Difference in Risk (Human+AI v.
	Human) for a Subgroup Defined by AI
	Recommendation
<pre>plot_preference</pre>	Visualize Preference
psa_synth	Synthetic PSA data
synth	Synthetic data
table_agreement	Table of Agreement

Maintainer

NA

Author(s)

NA

AiEvalmcmc

Gibbs sampler for the main analysis

Description

See Appendix S5 for more details.

Usage

```
AiEvalmcmc(
   data,
   rho = 0,
   Sigma0.beta.inv = NULL,
   Sigma0.alpha.inv = NULL,
   sigma0 = NULL,
```

```
beta = NULL,
alpha = NULL,
theta = NULL,
delta = NULL,
n.mcmc = 5 * 10,
verbose = FALSE,
out.length = 10,
beta.zx.off = FALSE,
theta.z.off = FALSE
)
```

Arguments

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
rho	A sensitivity parameter. The default is 0 which implies the unconfoundedness assumption (Assumption 4).
Sigma0.beta.inv	1
	Inverse of the prior covariance matrix of beta. The default is a diagonal matrix with 0.01 diagonal entries.
Sigma0.alpha.ir	าง
	Inverse of the prior covariance matrix of alpha. The default is a diagonal matrix with 0.01 diagonal entries.
sigma0	Prior variance of the cutoff points (theta and delta)
beta	Initial value for beta.
alpha	Initial value for alpha.
theta	Initial value for theta.
delta	Initial value for delta.
n.mcmc	The total number of MCMC iterations. The default is 50.
verbose	A logical argument specified to print the progress on the screen. The default is FALSE.
out.length	An integer to specify the progress on the screen. If verbose = TRUE, every out.length-th iteration is printed on the screen. The default is 10.
beta.zx.off	A logical argument specified to exclude the interaction terms (Z by X) from the model. The default is FALSE.
theta.z.off	A logical argument specified to set same cutoffs theta for treatment and control group. The default is FALSE.

Value

An object of class mcmc containing the posterior samples.

6

APCEsummary

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 2)</pre>
```

APCEsummary Summary of APCE

Description

Summary of average principal causal effects (APCE) with ordinal decision.

Usage

```
APCEsummary(apce.mcmc)
```

Arguments

apce.mcmc APCE.mcmc array generated from CalAPCE or CalAPCEparallel.

Value

A data. frame that consists of mean and quantiles (2.5

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth <- list(
    1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
    which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCE(data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth)
sample_apce_summary <- APCEsummary(sample_apce[["APCE.mcmc"]])</pre>
```

Description

Summary of average principal causal effects (APCE) with ordinal decision with frequentist results.

Usage

```
APCEsummaryipw(
  G1_est,
  G2_est,
  G3_est,
  G4_est,
  G5_est,
  G1_boot,
  G2_boot,
  G3_boot,
  G4_boot,
  G5_boot,
  name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
)
```

Arguments

G1_est	List generated from CalAPCEipw for the first subgroup.
G2_est	List generated from CalAPCEipw for the second subgroup.
G3_est	List generated from CalAPCEipw for the third subgroup.
G4_est	List generated from CalAPCEipw for the fourth subgroup.
G5_est	List generated from CalAPCEipw for the fifth subgroup.
G1_boot	List generated from BootstrapAPCEipw for the first subgroup.
G2_boot	$\label{eq:list-cond} List \ {\tt generated} \ {\tt from} \ {\tt Bootstrap} {\tt APCEipw} \ {\tt for} \ {\tt the} \ {\tt second} \ {\tt subgroup}.$
G3_boot	List generated from BootstrapAPCEipw for the third subgroup.
G4_boot	List generated from BootstrapAPCEipw for the fourth subgroup.
G5_boot	List generated from BootstrapAPCEipw for the fifth subgroup.
name.group	A list of character vectors for the label of five subgroups.

Value

A data.frame that consists of mean and quantiles (2.5

BootstrapAPCEipw

Examples

```
data(synth)
synth$SexWhite <- synth$Sex * synth$White</pre>
freq_apce <- CalAPCEipw(synth)</pre>
boot_apce <- BootstrapAPCEipw(synth, rep = 10)</pre>
# subgroup analysis
data_s0 <- subset(synth, synth$Sex == 0, select = -c(Sex, SexWhite))</pre>
freq_s0 <- CalAPCEipw(data_s0)</pre>
boot_s0 <- BootstrapAPCEipw(data_s0, rep = 10)</pre>
data_s1 <- subset(synth, synth$Sex == 1, select = -c(Sex, SexWhite))</pre>
freg_s1 <- CalAPCEipw(data_s1)</pre>
boot_s1 <- BootstrapAPCEipw(data_s1, rep = 10)</pre>
data_s1w0 <- subset(synth, synth$Sex == 1 & synth$White == 0, select = -c(Sex, White, SexWhite))</pre>
freq_s1w0 <- CalAPCEipw(data_s1w0)</pre>
boot_s1w0 <- BootstrapAPCEipw(data_s1w0, rep = 10)</pre>
data_s1w1 <- subset(synth, synth$Sex == 1 & synth$White == 1, select = -c(Sex, White, SexWhite))</pre>
freq_s1w1 <- CalAPCEipw(data_s1w1)</pre>
boot_s1w1 <- BootstrapAPCEipw(data_s1w1, rep = 10)</pre>
freq_apce_summary <- APCEsummaryipw(</pre>
  freq_apce, freq_s0, freq_s1, freq_s1w0, freq_s1w1,
  boot_apce, boot_s0, boot_s1, boot_s1w0, boot_s1w0
)
PlotAPCE(freq_apce_summary,
  y.max = 0.25, decision.labels = c(
    "signature", "small cash",
    "middle cash", "large cash"
  ), shape.values = c(16, 17, 15, 18),
  col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE
)
```

BootstrapAPCEipw Bootstrap for estimating variance of APCE

Description

Estimate variance of APCE for frequentist analysis using bootstrap. See S7 for more details.

Usage

```
BootstrapAPCEipw(data, rep = 1000)
```

data	A data.frame or matrix of which columns consists of pre-treatment covariates,
	a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).
	The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
rep	Size of bootstrap

An object of class list with the following elements:

P.D1.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d R=r)$, dimension 1 is rep (size of bootstrap), dimension 2 is $(k+1)$ values of D from 0 to k, dimension 3 is $(k+2)$ values of R from 0 to $k+1$.
P.D0.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d R=r)$.
APCE.boot	An array with dimension rep by (k+1) by (k+2) for quantity $P(D(1)=d R=r)-P(D(0)=d R=r)$.
P.R.boot	An array with dimension rep by (k+2) for quantity $P(R=r)$ for r from 0 to (k+1).
alpha.boot	An array with estimated alpha for each bootstrap.
delta.boot	An array with estimated delta for each bootstrap.

Examples

```
data(synth)
set.seed(123)
boot_apce <- BootstrapAPCEipw(synth, rep = 100)</pre>
```

BootstrapAPCEipwRE Bootstrap for estimating variance of APCE with random effects

Description

Estimate variance of APCE for frequentist analysis with random effects using bootstrap. See S7 for more details.

Usage

```
BootstrapAPCEipwRE(
   data,
   rep = 1000,
   fixed,
   random,
   CourtEvent_HearingDate,
   nAGQ = 1
)
```

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).
	The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
rep	Size of bootstrap

BootstrapAPCEipwRE

fixed	A formula for the fixed-effects part of the model to fit.
random	A formula for the random-effects part of the model to fit.
CourtEvent_Hear	ingDate The court event hearing date.
nAGQ	Integer scalar - the number of points per axis for evaluating the adaptive Gauss- Hermite approximation to the log-likelihood. Defaults to 1, corresponding to the Laplace approximation.

Value

An object of class list with the following elements:

P.D1.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity P(D(1)=dl R=r), dimension 1 is rep (size of bootstrap), dimension 2 is $(k+1)$ values of D from 0 to k, dimension 3 is $(k+2)$ values of R from 0 to $k+1$.
P.D0.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d R=r)$.
APCE.boot	An array with dimension rep by (k+1) by (k+2) for quantity $P(D(1)=d R=r)-P(D(0)=d R=r)$.
P.R.boot	An array with dimension rep by $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

```
BootstrapAPCEipwREparallel
```

Bootstrap for estimating variance of APCE with random effects

Description

Estimate variance of APCE for frequentist analysis with random effects using bootstrap. See S7 for more details.

Usage

```
BootstrapAPCEipwREparallel(data, rep = 1000, fixed, random, nAGQ = 1, size = 5)
```

Arguments

data	A data. frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
rep	Size of bootstrap
fixed	A formula for the fixed-effects part of the model to fit.
random	A formula for the random-effects part of the model to fit.
nAGQ	Integer scalar - the number of points per axis for evaluating the adaptive Gauss- Hermite approximation to the log-likelihood. Defaults to 1, corresponding to the Laplace approximation.
size	The number of parallel computing. The default is 5.

Value

An object of class list with the following elements:

P.D1.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity P(D(1)=dl R=r), dimension 1 is rep (size of bootstrap), dimension 2 is $(k+1)$ values of D from 0 to k, dimension 3 is $(k+2)$ values of R from 0 to k+1.
P.D0.boot	An array with dimension rep by $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d R=r)$.
APCE.boot	An array with dimension rep by (k+1) by (k+2) for quantity $P(D(1)=d R=r)-P(D(0)=d R=r)$.
P.R.boot	An array with dimension rep by $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

CalAPCE

Examples

CalAPCE

Calculate APCE

Description

Calculate average principal causal effects (APCE) with ordinal decision. See Section 3.4 for more details.

Usage

```
CalAPCE(
  data,
 mcmc.re,
  subgroup,
  name.group = c("overall", "Sex0", "Sex1", "Sex1 White0", "Sex1 White1"),
  rho = 0,
  burnin = 0,
  out.length = 500,
  c0 = 0,
  c1 = 0,
  ZX = NULL,
  save.individual.optimal.decision = FALSE,
  parallel = FALSE,
  optimal.decision.only = FALSE,
  dmf = NULL,
  fair.dmf.only = FALSE
)
```

Arguments

data

A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).

	The column names of the latter three should be specified as "Z", "D", and "Y" respectively.	
mcmc.re	A mcmc object generated by AiEvalmcmc() function.	
subgroup	A list of numeric vectors for the index of each of the five subgroups.	
name.group	A list of character vectors for the label of five subgroups.	
rho	A sensitivity parameter. The default is 0 which implies the unconfoundedness assumption (Assumption 4).	
burnin	A proportion of burnin for the Markov chain. The default is 0.	
out.length	An integer to specify the progress on the screen. Every out.length-th iteration is printed on the screen. The default is 500.	
c0	The cost of an outcome. See Section 3.7 for more details. The default is 0.	
c1	The cost of an unnecessarily harsh decision. See Section 3.7 for more details. The default is 0.	
ZX	The data matrix for interaction terms. The default is the interaction between Z and all of the pre-treatment covariates (X).	
save.individual.optimal.decision		
	A logical argument specified to save individual optimal decision rules. The default is FALSE.	
parallel	A logical argument specifying whether parallel computing is conducted. Do not change this argument manually.	
optimal.decisi	•	
	A logical argument specified to compute only the optimal decision rule. The default is FALSE.	
dmf	A numeric vector of binary DMF recommendations. If null, use judge's decisions (0 if the decision is 0 and 1 o.w; e.g., signature or cash bond).	
fair.dmf.only	A logical argument specified to compute only the fairness of given DMF rec- ommendations. The default is FALSE. Not used in the analysis for the JRSSA paper.	

An object of class list with the following elements:

P.D1.mcmc	An array with dimension n.mcmc by 5 by $(k+1)$ by $(k+2)$ for quantity P(D(1)=dl R=r), dimension 1 is each posterior sample; dimension 2 is subgroup, dimension 3 is $(k+1)$ values of D from 0 to k, dimension 4 is $(k+2)$ values of R from 0 to $k+1$.
P.D0.mcmc	An array with dimension n.mcmc by 5 by $(k+1)$ by $(k+2)$ for quantity P(D(0)=d R=r).
APCE.mcmc	An array with dimension n.mcmc by 5 by $(k+1)$ by $(k+2)$ for quantity P(D(1)=d R=r)-P(D(0)=d R=r).
P.R.mcmc	An array with dimension n.mcmc by 5 by $(k+2)$ for quantity P(R=r) for r from 0 to $(k+1)$.

Optimal.Z.mcmc	An array with dimension n.mcmc by 5 for the proportion of the cases where treatment (PSA provided) is optimal.	
Optimal.D.mcmc	An array with dimension n.mcmc by 5 by (k+1) for the proportion of optimal de- cision rule (average over observations). If save.individual.optimal.decision = TRUE, the dimension would be n by (k+1) (average over mcmc samples).	
P.DMF.mcmc	An array with dimension n.mcmc by 5 by $(k+1)$ by $(k+2)$ for the proportion of binary DMF recommendations. Not used in the analysis for the JRSSA paper.	
Utility.g_d.mcm	nc	
	Included if save.individual.optimal.decision = TRUE. An array with di- mension n for the individual utility of judge's decisions.	
Utility.g_dmf.mcmc		
	Included if save.individual.optimal.decision = TRUE. An array with di- mension n for the individual utility of DMF recommendation.	
Utility.diff.co	ontrol.mcmc	
	Included if save.individual.optimal.decision = TRUE. An array with di- mension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among control group.	
Utility.diff.treated.mcmc		
	Included if save.individual.optimal.decision = TRUE. An array with di- mension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among treated group.	

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 2)
subgroup_synth <- list(
    1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
    which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCE(data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth)</pre>
```

```
CalAPCEipw
```

Compute APCE using frequentist analysis

Description

Estimate propensity score and use Hajek estimator to compute APCE. See S7 for more details.

Usage

CalAPCEipw(data)

Arguments

data	A data.frame or matrix of which columns consists of pre-treatment covariates,
	a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).
	The column names of the latter three should be specified as "Z", "D", and "Y"
	respectively.

Value

An object of class list with the following elements:

P.D1	An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d R=r)$, dimension 1 is $(k+1)$ values of D from 0 to k, dimension 2 is $(k+2)$ values of R from 0 to $k+1$.
P.D0	An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d R=r)$.
APCE	An array with dimension (k+1) by (k+2) for quantity $P(D(1)=d R=r)-P(D(0)=d R=r)$.
P.R	An array with dimension $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.
alpha	An array with estimated alpha.
delta	An array with estimated delta.

Examples

```
data(synth)
freq_apce <- CalAPCEipw(synth)</pre>
```

CalAPCEipwRE

Compute APCE using frequentist analysis with random effects

Description

Estimate propensity score and use Hajek estimator to compute APCE. See S7 for more details.

Usage

```
CalAPCEipwRE(data, fixed, random, nAGQ = 1)
```

CalAPCEipwRE

Arguments

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
fixed	A formula for the fixed-effects part of the model to fit.
random	A formula for the random-effects part of the model to fit.
nAGQ	Integer scalar - the number of points per axis for evaluating the adaptive Gauss- Hermite approximation to the log-likelihood. Defaults to 1, corresponding to the Laplace approximation.

Value

An object of class list with the following elements:

P.D1	An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(1)=d R=r)$, dimension 1 is $(k+1)$ values of D from 0 to k, dimension 2 is $(k+2)$ values of R from 0 to $k+1$.
P.D0	An array with dimension $(k+1)$ by $(k+2)$ for quantity $P(D(0)=d R=r)$.
APCE	An array with dimension (k+1) by (k+2) for quantity $P(D(1)=d R=r)-P(D(0)=d R=r)$.
P.R	An array with dimension $(k+2)$ for quantity $P(R=r)$ for r from 0 to $(k+1)$.
alpha	An array with estimated alpha.
delta	An array with estimated delta.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

CalAPCEparallel

Description

Calculate average principal causal effects (APCE) with ordinal decision using parallel computing. See Section 3.4 for more details.

Usage

```
CalAPCEparallel(
  data,
 mcmc.re,
  subgroup,
  name.group = c("overall", "Sex0", "Sex1", "Sex1 White0", "Sex1 White1"),
  rho = 0,
 burnin = 0,
 out.length = 500,
  c0 = 0,
  c1 = 0,
  ZX = NULL,
  save.individual.optimal.decision = FALSE,
 optimal.decision.only = FALSE,
  dmf = NULL,
  fair.dmf.only = FALSE,
  size = 5
)
```

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
mcmc.re	A mcmc object generated by AiEvalmcmc() function.
subgroup	A list of numeric vectors for the index of each of the five subgroups.
name.group	A list of character vectors for the label of five subgroups.
rho	A sensitivity parameter. The default is 0 which implies the unconfoundedness assumption (Assumption 4).
burnin	A proportion of burnin for the Markov chain. The default is 0.
out.length	An integer to specify the progress on the screen. Every out.length-th iteration is printed on the screen. The default is 500.
c0	The cost of an outcome. See Section 3.7 for more details. The default is 0.
c1	The cost of an unnecessarily harsh decision. See Section 3.7 for more details. The default is 0 .

ZX	The data matrix for interaction terms. The default is the interaction between Z and all of the pre-treatment covariates (X).
save.individua	1.optimal.decision
	A logical argument specified to save individual optimal decision rules. The default is FALSE.
optimal.decision.only	
	A logical argument specified to compute only the optimal decision rule. The default is FALSE.
dmf	A numeric vector of binary DMF recommendations. If null, use judge's decisions (0 if the decision is 0 and 1 o.w; e.g., signature or cash bond).
fair.dmf.only	A logical argument specified to compute only the fairness of given DMF rec- ommendations. The default is FALSE. Not used in the analysis for the JRSSA paper.
size	The number of parallel computing. The default is 5.

An object of class list with the following elements:

P.D1.mcmc	An array with dimension n.mcmc by 5 by $(k+1)$ by $(k+2)$ for quantity P(D(1)=dl R=r), dimension 1 is each posterior sample; dimension 2 is subgroup, dimension 3 is $(k+1)$ values of D from 0 to k, dimension 4 is $(k+2)$ values of R from 0 to $k+1$.
P.D0.mcmc	An array with dimension n.mcmc by 5 by (k+1) by (k+2) for quantity $P(D(0)=d R=r)$.
APCE.mcmc	An array with dimension n.mcmc by 5 by (k+1) by (k+2) for quantity $P(D(1)=dR=r)-P(D(0)=dR=r)$.
P.R.mcmc	An array with dimension n.mcmc by 5 by (k+2) for quantity $P(R=r)$ for r from 0 to (k+1).
Optimal.Z.mcmc	An array with dimension n.mcmc by 5 for the proportion of the cases where treatment (PSA provided) is optimal.
Optimal.D.mcmc	An array with dimension n.mcmc by 5 by $(k+1)$ for the proportion of optimal decision rule.
P.DMF.mcmc	An array with dimension n.mcmc by 5 by $(k+1)$ by $(k+2)$ for the proportion of binary DMF recommendations. Not used in the analysis for the JRSSA paper.
Utility.g_d.mcm	IC
	Included if save.individual.optimal.decision = TRUE. An array with di- mension n for the individual utility of judge's decisions.
Utility.g_dmf.m	icmc
	Included if save.individual.optimal.decision = TRUE. An array with dimension n for the individual utility of DMF recommendation.
Utility.diff.co	ntrol.mcmc
	Included if save.individual.optimal.decision = TRUE. An array with di- mension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among control group.

Utility.diff.treated.mcmc

Included if save.individual.optimal.decision = TRUE. An array with dimension n.mcmc for estimated difference in utility between judge's decisions and DMF recommendation among treated group.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth <- list(
    1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
    which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCEparallel(
    data = synth, mcmc.re = sample_mcmc,
    subgroup = subgroup_synth,
    size = 1
) # adjust the size</pre>
```

CalDelta Calculate the delta given the principal stratum	
--	--

Description

Calculate the maximal deviation of decisions probability among the distributions for different groups (delta) given the principal stratum (R).

Usage

CalDelta(r, k, pd0, pd1, attr)

r	The given principal stratum.
k	The maximum decision (e.g., largest bail amount).
pd0	P.D0.mcmc array generated from CalAPCE or CalAPCEparallel.
pd1	P.D1.mcmc array generated from CalAPCE or CalAPCEparallel.
attr	The index of subgroups (within the output of CalAPCE/CalAPCEparallel) that corresponds to the protected attributes.

CalDIM

Value

A data.frame of the delta.

Examples

```
data(synth)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
sample_apce <- CalAPCE(
   data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth,
   burnin = 0
)
CalDelta(0, 3, sample_apce[["P.D0.mcmc"]], sample_apce[["P.D1.mcmc"]], c(2, 3))</pre>
```

CalDIM

Calculate diff-in-means estimates

Description

Calculate average causal effect based on diff-in-means estimator.

Usage

```
CalDIM(data)
```

Arguments

data

A data.frame of which columns includes a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).

Value

A data.frame of diff-in-means estimates effect for each value of D and Y.

Examples

data(synth) CalDIM(synth) CalDIMsubgroup

Description

Calculate average causal effect based on diff-in-means estimator.

Usage

```
CalDIMsubgroup(
   data,
   subgroup,
   name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
)
```

Arguments

data	A data.frame of which columns includes a binary treatment (Z), an ordinal
	decision (D), and an outcome variable (Y).
subgroup	A list of numeric vectors for the index of each of the five subgroups.
name.group	A character vector including the labels of five subgroups.

Value

A data.frame of diff-in-means estimates for each value of D and Y for each subgroup.

Examples

```
data(synth)
subgroup_synth <- list(
    1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
    which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
CalDIMsubgroup(synth, subgroup = subgroup_synth)</pre>
```

CalFairness Calculate the principal fairness

Description

See Section 3.6 for more details.

Usage

CalFairness(apce, attr = c(2, 3))

CalOptimalDecision

Arguments

apce	The list generated from CalAPCE or CalAPCEparallel.
attr	The index of subgroups (within the output of CalAPCE/CalAPCEparallel) that corresponds to the protected attributes.

Value

A data.frame of the delta.

Examples

```
data(synth)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
sample_apce <- CalAPCE(
   data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth,
   burnin = 0
)
CalFairness(sample_apce)</pre>
```

CalOptimalDecision Calculate optimal decision & utility

Description

(1) Calculate optimal decision for each observation given each of c0 (cost of an outcome) and c1 (cost of an unnecessarily harsh decision) from the lists. (2) Calculate difference in the expected utility between binary version of judge's decisions and DMF recommendations given each of c0 (cost of an outcome) and c1 (cost of an unnecessarily harsh decision) from the lists.

Usage

```
CalOptimalDecision(
  data,
  mcmc.re,
  c0.ls,
  c1.ls,
  dmf = NULL,
  rho = 0,
  burnin = 0,
  out.length = 500,
  ZX = NULL,
  size = 5,
```

```
include.utility.diff.mcmc = FALSE
)
```

Arguments

data	A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.
mcmc.re	A mcmc object generated by AiEvalmcmc() function.
c0.ls	The list of cost of an outcome. See Section 3.7 for more details.
c1.ls	The list of cost of an unnecessarily harsh decision. See Section 3.7 for more details.
dmf	A numeric vector of binary DMF recommendations. If null, use judge's decisions (0 if the decision is 0 and 1 o.w; e.g., signature or cash bond).
rho	A sensitivity parameter. The default is 0 which implies the unconfoundedness assumption (Assumption 4).
burnin	A proportion of burnin for the Markov chain. The default is 0.
out.length	An integer to specify the progress on the screen. Every out.length-th iteration is printed on the screen. The default is 500.
ZX	The data matrix for interaction terms. The default is the interaction between Z and all of the pre-treatment covariates (X) .
size	The number of parallel computing. The default is 5.
include.utilit	y.diff.mcmc
	A logical argument specifying whether to save Utility.diff.control.mcmc and Utility.diff.treated.mcmc for Figure S17. The default is FALSE.

Value

A data.frame of (1) the probability that the optimal decision for each observation being d in (0,1,...,k), (2) expected utility of binary version of judge's decision (g_d), (3) expected utility of binary DMF recommendation, and (4) the difference between (2) and (3). If include.utility.diff.mcmc = TRUE, returns a list of such data.frame and a data.frame that includes the result for mean and quantile of Utility.diff.control.mcmc and Utility.diff.treated.mcmc across mcmc samples.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
sample_optd <- CalOptimalDecision(
   data = synth, mcmc.re = sample_mcmc,
   c0.ls = seq(0, 5, 1), c1.ls = seq(0, 5, 1),
   size = 1
) # adjust the size</pre>
```

24

CalPS

Description

Calculate the proportion of each principal stratum (R).

Usage

```
CalPS(
   p.r.mcmc,
   name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
)
```

Arguments

p.r.mcmc	P.R.mcmc array generated from CalAPCE or CalAPCEparallel.
name.group	A character vector including the labels of five subgroups.

Value

A data. frame of the proportion of each principal stratum.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth <- list(
    1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
    which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCE(
    data = synth, mcmc.re = sample_mcmc,
    subgroup = subgroup_synth
)
CalPS(sample_apce[["P.R.mcmc"]])</pre>
```

Description

Compute the difference in risk between AI and human decision makers using AIPW estimators.

Usage

```
compute_bounds_aipw(
   Y,
   A,
   D,
   Z,
   X = NULL,
   nuis_funcs,
   nuis_funcs_ai,
   true.pscore = NULL,
   101 = 1
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).
A	An observed AI recommendation (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
Х	Pretreatment covariate used for subgroup analysis (vector). Must be the same length as Y, D, Z, and A if provided. Default is NULL.
nuis_funcs	<pre>output from compute_nuisance_functions</pre>
nuis_funcs_ai	<pre>output from compute_nuisance_functions_ai</pre>
true.pscore	A vector of true propensity scores (numeric), if available. Optional.
101	Ratio of the loss between false positives and false negatives

Value

A tibble the following columns:

- Z_focal: The focal treatment indicator. '1' indicates the treatment group.
- Z_compare: The comparison treatment indicator. '0' indicates the control group.
- X: Pretreatment covariate (if provided).
- fn_diff_lb: The lower bound of difference in false negatives
- fn_diff_ub: The upper bound of difference in false negatives

- fp_diff_lb: The lower bound of difference in false positives
- fp_diff_ub: The upper bound of difference in false positives
- loss_diff_lb: The lower bound of difference in loss
- loss_diff_ub: The upper bound of difference in loss
- fn_diff_lb_se: The standard error of the difference in false negatives
- fn_diff_ub_se: The standard error of the difference in false negatives
- fp_diff_lb_se: The standard error of the difference in false positives
- fp_diff_ub_se: The standard error of the difference in false positives
- loss_diff_lb_se: The standard error of the difference in loss
- loss_diff_ub_se: The standard error of the difference in loss

Examples

```
compute_bounds_aipw(
  Y = NCAdata$Y,
  A = PSAdata$DMF,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  nuis_funcs = nuis_func,
  nuis_funcs_ai = nuis_func_ai,
  true.pscore = rep(0.5, nrow(NCAdata)),
  X = NULL,
  101 = 1
)
```

compute_nuisance_functions

Fit outcome/decision and propensity score models

Description

Fit (1) the decision model $m^D(z, X_i) := \Pr(D = 1 | Z = z, X = X_i)$ and (2) the outcome model $m^Y(z, X_i) := \Pr(Y = 1 | D = 0, Z = z, X = X_i)$ for each treatment group $z \in \{0, 1\}$ and (3) the propensity score model $e(1, X_i) := \Pr(Z = 1 | X = X_i)$.

Usage

```
compute_nuisance_functions(
  Y,
  D,
  Z,
  V,
  d_form = D ~ .,
  y_form = Y ~ .,
  ps_form = Z ~ .,
```

```
distribution = "bernoulli",
  n.trees = 1000,
  shrinkage = 0.01,
  interaction.depth = 1,
  ...
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).	
D	An observed decision (binary: numeric vector of 0 or 1).	
Z	A treatment indicator (binary: numeric vector of 0 or 1).	
٧	Pretreatment covariates for nuisance functions. A vector, a matrix, or a data frame.	
d_form	A formula for decision model where the dependent variable is D.	
y_form	A formula for outcome model where the dependent variable is Y.	
ps_form	A formula for propensity score model.	
distribution	A distribution argument used in gbm function. Default is "bernoulli".	
n.trees	Integer specifying the total number of trees to fit used in gbm function.	
shrinkage	A shrinkage parameter used in gbm function.	
interaction.depth		
	Integer specifying the maximum depth of each tree used in gbm function.	
	Additional arguments to be passed to gbm function called in crossfit	

Value

A list with the following components:

z_models A data.frame with the following columns:

idx Index of observation.

d_pred Predicted probability of decision.

y_pred Predicted probability of outcome.

Z Treatment group.

pscore A vector of predicted propensity scores.

Examples

```
compute_nuisance_functions(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  V = NCAdata[, c("Sex", "White", "Age")],
  shrinkage = 0.01,
  n.trees = 1000
)
```

28

compute_nuisance_functions_ai

Fit outcome/decision and propensity score models conditioning on the AI recommendation

Description

Fit (1) the decision model $m^D(z, a, X_i) := \Pr(D = 1 | Z = z, A = a, X = X_i)$ and (2) the outcome model $m^Y(z, a, X_i) := \Pr(Y = 1 | D = 0, Z = z, A = a, X = X_i)$ for each treatment group $z \in \{0, 1\}$ and AI recommendation $a \in \{0, 1\}$, and (3) the propensity score model $e(1, X_i) := \Pr(Z = 1 | X = X_i)$.

Usage

```
compute_nuisance_functions_ai(
   Y,
   D,
   Z,
   A,
   V,
   d_form = D ~ .,
   y_form = Y ~ .,
   ps_form = Z ~ .,
   distribution = "bernoulli",
   n.trees = 1000,
   shrinkage = 0.01,
   interaction.depth = 1,
   ...
)
```

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
А	An AI recommendation (binary: numeric vector of 0 or 1).
V	A matrix of pretreatment covariates for nuisance functions.
d_form	A formula for decision model where the dependent variable is D.
y_form	A formula for outcome model where the dependent variable is Y.
ps_form	A formula for propensity score model.
distribution	A distribution argument used in gbm function. Default is "bernoulli".
n.trees	Integer specifying the total number of trees to fit used in gbm function.
shrinkage	A shrinkage parameter used in gbm function.
interaction.de	pth
	Integer specifying the maximum depth of each tree used in gbm function.
	Additional arguments to be passed to gbm function called in crossfit

A list with the following components:

z_models A data.frame with the following columns:

idx Index of observation.

d_pred Predicted probability of decision.

y_pred Predicted probability of outcome.

- Z Treatment group.
- A AI recommendation.

pscore A vector of predicted propensity scores.

Examples

```
compute_nuisance_functions_ai(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  A = PSAdata$DMF,
  V = NCAdata[, c("Sex", "White", "Age")],
  shrinkage = 0.01,
  n.trees = 1000
)
```

compute_stats Compute Risk (Human+AI v. Human)

Description

Compute the difference in risk between human+AI and human decision makers using differencein-means estimators.

Usage

compute_stats(Y, D, Z, X = NULL, 101 = 1)

Y	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
Х	Pretreatment covariate used for subgroup analysis (vector). Must be the same length as Y, D, Z, and A if provided. Default is NULL.
101	Ratio of the loss between false positives and false negatives

A tibble the following columns:

- Z_focal: The focal treatment indicator. '1' indicates the treatment group.
- Z_compare: The comparison treatment indicator. '0' indicates the control group.
- X: Pretreatment covariate (if provided).
- loss_diff: The difference in loss between human+AI and human decision
- loss_diff_se: The standard error of the difference in loss
- fn_diff: The difference in false negatives between human+AI and human decision
- fn_diff_se: The standard error of the difference in false negatives
- fp_diff: The difference in false positives between human+AI and human decision
- fp_diff_se: The standard error of the difference in false positives

Examples

```
compute_stats(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  X = NULL,
  101 = 1
)
```

compute_stats_agreement

Agreement of Human and AI Decision Makers

Description

Estimate the impact of AI recommendations on the agreement between human decisions and AI recommendations using a difference-in-means estimator of an indicator $1\{D_i = A_i\}$.

Usage

```
compute_stats_agreement(Y, D, Z, A, X = NULL)
```

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
A	An AI recommendation (binary: numeric vector of 0 or 1).
Х	Pretreatment covariate used for subgroup analysis (vector). Must be the same length as Y, D, Z, and A if provided. Default is NULL.

A tibble with the following columns:

- X: Pretreatment covariate (if provided).
- agree_diff: Difference in agreement between human decisions and AI recommendations.
- agree_diff_se: Standard error of the difference in agreement.

Examples

```
compute_stats_agreement(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  A = PSAdata$DMF
)
```

compute_stats_aipw Compute Risk (Human+AI v. Human)

Description

Compute the difference in risk between human+AI and human decision makers using AIPW estimators.

Usage

```
compute_stats_aipw(Y, D, Z, nuis_funcs, true.pscore = NULL, X = NULL, 101 = 1)
```

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
nuis_funcs	<pre>output from compute_nuisance_functions</pre>
true.pscore	A vector of true propensity scores (numeric), if available. Optional.
Х	Pretreatment covariate used for subgroup analysis (vector). Must be the same length as Y, D, Z, and A if provided. Default is NULL.
101	Ratio of the loss between false positives and false negatives

A tibble the following columns:

- Z_focal: The focal treatment indicator. '1' indicates the treatment group.
- Z_compare: The comparison treatment indicator. '0' indicates the control group.
- X: Pretreatment covariate (if provided).
- loss_diff: The difference in loss between human+AI and human decision
- loss_diff_se: The standard error of the difference in loss
- fn_diff: The difference in false negatives between human+AI and human decision
- fn_diff_se: The standard error of the difference in false negatives
- fp_diff: The difference in false positives between human+AI and human decision
- fp_diff_se: The standard error of the difference in false positives

Examples

```
compute_stats_aipw(
 Y = NCAdata$Y,
 D = ifelse(NCAdata$D == 0, 0, 1),
 Z = NCAdata$Z,
 nuis_funcs = nuis_func,
 true.pscore = rep(0.5, nrow(NCAdata)),
 X = NULL,
 101 = 1
)
```

compute_stats_subgroup

Compute Risk (Human+AI v. Human) for a Subgroup Defined by AI Recommendation

Description

Compute the difference in risk between human+AI and human decision makers, for a subgroup $\{A_i = a\}$, using AIPW estimators. This can be used for computing how the decision maker overrides the AI recommendation.

Usage

```
compute_stats_subgroup(
   Y,
   D,
   Z,
   A,
   a = 1,
```

```
nuis_funcs,
true.pscore = NULL,
X = NULL,
101 = 1
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
A	An AI recommendation (binary: numeric vector of 0 or 1).
а	A specific AI recommendation value to create the subset (numeric: 0 or 1).
nuis_funcs	output from compute_nuisance_functions. If NULL, the function will compute the nuisance functions using the provided data. Note that V must be provided if nuis_funcs is NULL.
true.pscore	A vector of true propensity scores (numeric), if available. Optional.
Х	Pretreatment covariate used for subgroup analysis (vector). Must be the same length as Y, D, Z, and A if provided. Default is NULL.
101	Ratio of the loss between false positives and false negatives

Value

A tibble the following columns:

- Z_focal: The focal treatment indicator. '1' indicates the treatment group.
- Z_compare: The comparison treatment indicator. '0' indicates the control group.
- X: Pretreatment covariate (if provided).
- loss_diff: The difference in loss between human+AI and human decision
- loss_diff_se: The standard error of the difference in loss
- tn_fn_diff: The difference in true negatives and false negatives between human+AI and human decision
- tn_fn_diff_se: The standard error of the difference in true negatives and false negatives
- tp_diff: The difference in true positives between human+AI and human decision
- tp_diff_se: The standard error of the difference in true positives
- tn_diff: The difference in true negatives between human+AI and human decision
- tn_diff_se: The standard error of the difference in true negatives
- fn_diff: The difference in false negatives between human+AI and human decision
- fn_diff_se: The standard error of the difference in false negatives
- fp_diff: The difference in false positives between human+AI and human decision
- fp_diff_se: The standard error of the difference in false positives

34

crossfit

Examples

```
compute_stats_subgroup(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  A = PSAdata$DMF,
  a = 1,
  nuis_funcs = nuis_func,
  true.pscore = rep(0.5, nrow(NCAdata)),
  X = NULL,
  101 = 1
)
```

crossfit

Crossfitting for nuisance functions

Description

Implement crossfitting with boosting methods and get predicted values for outcome/decision regression or propensity score models

Usage

```
crossfit(data, include_for_fit, form, ...)
```

Arguments

data	A data.frame or matrix to fit on.	
include_for_fit		
	Boolean vector for whether or not a unit should be included in fitting (e.g. treated/control).	
form	Formula for outcome regression/propensity score models.	
	Additional arguments to be passed to gbm function.	

Value

A vector of predicted values

FTAdata

Description

An interim dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

FTAdata

Format

A data frame with 1891 rows and 19 variables:

- Z binary treatment
- D ordinal decision
- Y outcome
- Sex male or female
- White white or non-white
- SexWhite the interaction between gender and race
- Age age
- **PendingChargeAtTimeOfOffense** binary variable for pending charge (felony, misdemeanor, or both) at the time of offense

NCorNonViolentMisdemeanorCharge binary variable for current non-violent felony charge ViolentMisdemeanorCharge binary variable for current violent misdemeanor charge ViolentFelonyCharge binary variable for current violent felony charge NonViolentFelonyCharge binary variable for current non-violent felony charge PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor PriorFelonyConviction binary variable for prior conviction of felony PriorViolentConviction four-level ordinal variable for prior violent conviction PriorSentenceToIncarceration binary variable for prior sentence to incarceration PriorFTAInPast2Years three-level ordinal variable for FTAs from past two years PriorFTAOlderThan2Years binary variable for FTAs from over two years ago Staff_ReleaseRecommendation four-level ordinal variable for the DMF recommendation g_legend

Description

Pulling ggplot legend

Usage

g_legend(p)

Arguments

р

A ggplot of which legend should be pulled.

Value

A ggplot legend.

HearingDate

Interim court event hearing date

Description

An Interim Dane court event hearing date of Dane data in factor format. The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

HearingDate

Format

A date variable in factor format.

hearingdate_synth Synthetic court event hearing date

Description

A synthetic court event hearing date

Usage

hearingdate_synth

Format

A date variable.

NCAdata

Interim Dane data with new criminal activity (NCA) as an outcome

Description

An interim dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

NCAdata

Format

A data frame with 1891 rows and 19 variables:

- Z binary treatment
- ${\bf D}\,$ ordinal decision
- Y outcome

Sex male or female

White white or non-white

SexWhite the interaction between gender and race

Age age

PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense

NCorNonViolentMisdemeanorCharge binary variable for current non-violent felony charge

ViolentMisdemeanorCharge binary variable for current violent misdemeanor charge ViolentFelonyCharge binary variable for current violent felony charge NonViolentFelonyCharge binary variable for current non-violent felony charge PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor PriorFelonyConviction binary variable for prior conviction of felony PriorViolentConviction four-level ordinal variable for prior violent conviction PriorSentenceToIncarceration binary variable for prior sentence to incarceration PriorFTAInPast2Years three-level ordinal variable for FTAs from past two years PriorFTAOlderThan2Years binary variable for FTAs from over two years ago Staff_ReleaseRecommendation four-level ordinal variable for the DMF recommendation

NVCAdata

Interim Dane data with new violent criminal activity (NVCA) as an outcome

Description

An interim dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

NVCAdata

Format

A data frame with 1891 rows and 19 variables:

Z binary treatment

D ordinal decision

Y outcome

Sex male or female

White white or non-white

SexWhite the interaction between gender and race

Age age

PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense

NCorNonViolentMisdemeanorCharge binary variable for current non-violent felony charge

ViolentMisdemeanorCharge binary variable for current violent misdemeanor charge

ViolentFelonyCharge binary variable for current violent felony charge

NonViolentFelonyCharge binary variable for current non-violent felony charge PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor PriorFelonyConviction binary variable for prior conviction of felony PriorViolentConviction four-level ordinal variable for prior violent conviction PriorSentenceToIncarceration binary variable for prior sentence to incarceration PriorFTAInPast2Years three-level ordinal variable for FTAs from past two years PriorFTAOlderThan2Years binary variable for FTAs from over two years ago Staff_ReleaseRecommendation four-level ordinal variable for the DMF recommendation

PlotAPCE

Plot APCE

Description

See Figure 4 for example.

Usage

```
PlotAPCE(
  res,
  y.max = 0.1,
  decision.labels = c("signature bond", "small cash bond", "large cash bond"),
  shape.values = c(16, 17, 15),
  col.values = c("blue", "black", "red", "brown"),
  label = TRUE,
  r.labels = c("safe", "easily\npreventable", "prevent-\nable", "risky\n"),
  label.position = c("top", "top", "top", "top"),
  top.margin = 0.01,
  bottom.margin = 0.01,
  name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale"),
  label.size = 4
)
```

Arguments

res	A data.frame generated with APCEsummary().	
y.max	Maximum value of y-axis.	
decision.labels		
	Labels of decisions (D).	
shape.values	Shape of point for each decisions.	
col.values	Color of point for each principal stratum.	
label	A logical argument whether to specify label of each principal stratum. default is TRUE.	The

PlotDIMdecisions

r.labels	Label of each principal stratum.
label.position	The position of labels.
top.margin	Top margin of labels.
bottom.margin	Bottom margin of labels.
name.group	A character vector including the labels of five subgroups.
label.size	Size of label.

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)</pre>
subgroup_synth <- list(</pre>
  1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
  which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCE(</pre>
  data = synth, mcmc.re = sample_mcmc,
  subgroup = subgroup_synth
)
sample_apce_summary <- APCEsummary(sample_apce[["APCE.mcmc"]])</pre>
PlotAPCE(sample_apce_summary,
  y.max = 0.25, decision.labels = c(
    "signature", "small cash",
    "middle cash", "large cash"
  ), shape.values = c(16, 17, 15, 18),
  col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE
)
```

PlotDIMdecisions Plot diff-in-means estimates

Description

See Figure 2 for example.

Usage

```
PlotDIMdecisions(
  res,
  y.max = 0.2,
  decision.labels = c("signature bond ", "small cash bond ", "large cash bond"),
  col.values = c("grey60", "grey30", "grey6"),
  shape.values = c(16, 17, 15)
)
```

Arguments

res	A data.frame generated with <code>CalDIMsubgroup</code> .	
y.max	Maximum value of y-axis.	
decision.labels		
	Labels of decisions (D).	
col.values	Color of point for each decisions.	
shape.values	Shape of point for each decisions.	

Value

A ggplot.

Examples

```
data(synth)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
res_dec <- CalDIMsubgroup(synth, subgroup = subgroup_synth)
PlotDIMdecisions(res_dec,
   decision.labels = c("signature", "small cash", "middle cash", "large cash"),
   col.values = c("grey60", "grey30", "grey6", "grey1"),
   shape.values = c(16, 17, 15, 18)
)</pre>
```

PlotDIMoutcomes Plot diff-in-means estimates

Description

See Figure 2 for example.

Usage

```
PlotDIMoutcomes(
    res.fta,
    res.nca,
    res.nvca,
    label.position = c("top", "top", "top"),
    top.margin = 0.01,
    bottom.margin = 0.01,
    y.max = 0.2,
    label.size = 7,
    name.group = c("Overall", "Female", "Male", "Non-white\nMale", "White\nMale")
)
```

PlotFairness

Arguments

res.fta	A data.frame generated with CalDIMsubgroup with $Y=FTA.$
res.nca	A data.frame generated with CalDIMsubgroup with $Y=NCA.$
res.nvca	A data.frame generated with CalDIMsubgroup with $Y=NVCA.$
label.position	The position of labels.
top.margin	Top margin of labels.
bottom.margin	Bottom margin of labels.
y.max	Maximum value of y-axis.
label.size	Size of label.
name.group	A character vector including the labels of five subgroups.

Value

A ggplot.

Examples

```
data(synth)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
synth_fta <- synth_nca <- synth_nvca <- synth
set.seed(123)
synth_fta$Y <- sample(0:1, 1000, replace = TRUE)
synth_nvca$Y <- sample(0:1, 1000, replace = TRUE)
synth_nvca$Y <- sample(0:1, 1000, replace = TRUE)
res_fta <- CalDIMsubgroup(synth_fta, subgroup = subgroup_synth)
res_nvca <- CalDIMsubgroup(synth_nvca, subgroup = subgroup_synth)
PlotDIMoutcomes(res_fta, res_nca, res_nvca)</pre>
```

PlotFairness

Plot the principal fairness

Description

See Figure 5 for example.

Usage

```
PlotFairness(
  res,
  top.margin = 0.01,
  y.max = 0.2,
  y.min = -0.1,
  r.labels = c("Safe", "Easily\nPreventable", "Preventable", "Risky"),
  label = TRUE
)
```

Arguments

res	The data frame generated from CalFairness.
top.margin	The index of subgroups (within the output of CalAPCE/CalAPCEparallel) that corresponds to the protected attributes.
y.max	Maximum value of y-axis.
y.min	Minimum value of y-axis.
r.labels	Label of each principal stratum.
label	A logical argument whether to specify label.

Value

A data.frame of the delta.

Examples

```
data(synth)
subgroup_synth <- list(
   1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
   which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
sample_apce <- CalAPCE(
   data = synth, mcmc.re = sample_mcmc, subgroup = subgroup_synth,
   burnin = 0
)
sample_fair <- CalFairness(sample_apce)
PlotFairness(sample_fair, y.max = 0.4, y.min = -0.4, r.labels = c(
    "Safe", "Preventable 1",
    "Preventable 2", "Preventable 3", "Risky"
))</pre>
```

44

PlotOptimalDecision Plot optimal decision

Description

See Figure 6 for example.

Usage

PlotOptimalDecision(res, colname.d, idx = NULL)

Arguments

res	The data frame generated from CalOptimalDecision.
colname.d	The column name of decision to be plotted.
idx	The row index of observations to be included. The default is all the observations from the data.

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
sample_optd <- CalOptimalDecision(
    data = synth, mcmc.re = sample_mcmc,
    c0.ls = seq(0, 5, 1), c1.ls = seq(0, 5, 1),
    size = 1
) # adjust the size
sample_optd$cash <- sample_optd$d1 + sample_optd$d2 + sample_optd$d3
PlotOptimalDecision(sample_optd, "cash")</pre>
```

PlotPS

Plot the proportion of principal strata (*R*)

Description

See Figure 3 for example.

Usage

Arguments

res	A data.frame generated with CalPS.
y.min	Minimum value of y-axis.
y.max	Maximum value of y-axis.
col.values	Color of point for each principal stratum.
label	A logical argument whether to specify label of each principal stratum. The default is TRUE.
r.labels	Label of each principal stratum.
label.position	The position of labels.
top.margin	Top margin of labels.
bottom.margin	Bottom margin of labels.
label.size	Size of label.

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
subgroup_synth <- list(
    1:nrow(synth), which(synth$Sex == 0), which(synth$Sex == 1),
    which(synth$Sex == 1 & synth$White == 0), which(synth$Sex == 1 & synth$White == 1)
)
sample_apce <- CalAPCE(
    data = synth, mcmc.re = sample_mcmc,
    subgroup = subgroup_synth
)
sample_ps <- CalPS(sample_apce[["P.R.mcmc"]])
PlotPS(sample_ps, col.values = c("blue", "black", "red", "brown", "purple"), label = FALSE)</pre>
```

46

PlotSpilloverCRT Plot conditional randomization test

Description

See Figure S8 for example.

Usage

PlotSpilloverCRT(res)

Arguments res

A list generated with SpilloverCRT.

Value

A ggplot

Examples

```
data(synth)
data(hearingdate_synth)
crt <- SpilloverCRT(D = synth$D, Z = synth$Z, CourtEvent_HearingDate = hearingdate_synth)
PlotSpilloverCRT(crt)</pre>
```

PlotSpilloverCRTpower Plot power analysis of conditional randomization test

Description

See Figure S9 for example.

Usage

```
PlotSpilloverCRTpower(res)
```

Arguments

res

A data.frame generated with ${\tt SpilloverCRTpower}.$

Value

A ggplot

Examples

```
data(synth)
data(hearingdate_synth)
crt_power <- SpilloverCRTpower(
    D = synth$D, Z = synth$Z,
    CourtEvent_HearingDate = hearingdate_synth,
    size = 1
) # adjust the size
PlotSpilloverCRTpower(crt_power)</pre>
```

PlotStackedBar

Stacked barplot for the distribution of the decision given psa

Description

See Figure 1 for example.

Usage

```
PlotStackedBar(
    data,
    fta.label = "FTAScore",
    nca.label = "NCAScore",
    nvca.label = "NVCAFlag",
    d.colors = c("grey60", "grey30", "grey10"),
    d.labels = c("signature bond", "small cash bond", "large cash bond"),
    legend.position = "none"
)
```

Arguments

data	A data.frame of which columns includes an ordinal decision (D), and psa variables (fta, nca, and nvca).
fta.label	Column name of fta score in the data. The default is "FTAScore".
nca.label	Column name of nca score in the data. The default is "NCAScore".
nvca.label	Column name of nvca score in the data. The default is "NVCAFlag".
d.colors	The color of each decision.
d.labels	The label of each decision.
legend.positio	n
	The position of legend. The default is "none".

48

PlotStackedBarDMF

Value

A list of three ggplots.

Examples

```
data(psa_synth)
# Control group (PSA not provided)
PlotStackedBar(psa_synth[psa_synth$Z == 0, ], d.colors = c(
  "grey80", "grey60",
  "grey30", "grey10"
), d.labels = c(
  "signature", "small",
  "middle", "large"
))
# Treated group (PSA provided)
PlotStackedBar(psa_synth[psa_synth$Z == 0, ], d.colors = c(
  "grey80", "grey60",
"grey30", "grey10"
), d.labels = c(
  "signature", "small",
  "middle", "large"
))
```

PlotStackedBarDMF	Stacked barplot for the distribution of the decision given DMF recom-
	mendation

Description

See Figure 1 for example.

Usage

```
PlotStackedBarDMF(
    data,
    dmf.label = "dmf",
    dmf.category = NULL,
    d.colors = c("grey60", "grey30", "grey10"),
    d.labels = c("signature bond", "small cash bond", "large cash bond"),
    legend.position = "none"
)
```

Arguments

data	A data.frame of which columns includes a binary treatment (Z; PSA provi-
	sion), an ordinal decision (D), and DMF recommendation.
dmf.label	Column name of DMF recommendation in the data. The default is "dmf".

dmf.category	The name of each category of DMF recommendation.	
d.colors	The color of each decision.	
d.labels	The label of each decision.	
legend.position		
	The position of legend. The default is "none".	

Value

A list of three ggplots.

Examples

```
data(psa_synth)
PlotStackedBarDMF(psa_synth, dmf.label = "DMF", d.colors = c(
    "grey80",
    "grey60", "grey30", "grey10"
), d.labels = c(
    "signature",
    "small", "middle", "large"
))
```

PlotUtilityDiff *Plot utility difference*

Description

See Figure 7 for example.

Usage

```
PlotUtilityDiff(res, idx = NULL)
```

Arguments

res	The data frame generated from CalUtilityDiff.
idx	The row index of observations to be included. The default is all the observations from the data.

Value

A ggplot.

PlotUtilityDiffCI

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
synth_dmf <- sample(0:1, nrow(synth), replace = TRUE) # random dmf recommendation
sample_utility <- CalOptimalDecision(
    data = synth, mcmc.re = sample_mcmc,
    c0.ls = seq(0, 5, 1), c1.ls = seq(0, 5, 1),
    dmf = synth_dmf, size = 1
) # adjust the size
PlotUtilityDiff(sample_utility)</pre>
```

PlotUtilityDiffCI Plot utility difference with 95% confidence interval

Description

See Figure S17 for example.

Usage

PlotUtilityDiffCI(res)

Arguments

res

The second data frame (res.mcmc) generated from CalUtilityDiff(include.utility.diff.mcmc = TRUE).

Value

A ggplot.

Examples

```
data(synth)
sample_mcmc <- AiEvalmcmc(data = synth, n.mcmc = 10)
synth_dmf <- sample(0:1, nrow(synth), replace = TRUE) # random dmf recommendation
sample_utility <- CalOptimalDecision(
    data = synth, mcmc.re = sample_mcmc,
    c0.ls = seq(0, 5, 1), c1.ls = seq(0, 5, 1),
    dmf = synth_dmf, size = 1, # adjust the size
    include.utility.diff.mcmc = TRUE
)
PlotUtilityDiffCI(sample_utility$res.mcmc)</pre>
```

plot_agreement

Description

Visualize the agreement between human decisions and AI recommendations using a difference-inmeans estimator of an indicator $1\{D_i = A_i\}$. Generate a plot based on the overall agreement and subgroup-specific agreement.

Usage

```
plot_agreement(
    Y,
    D,
    Z,
    A,
    subgroup1,
    subgroup2,
    label.subgroup1 = "Subgroup 1",
    label.subgroup2 = "Subgroup 2",
    x.order = NULL,
    p.title = NULL,
    p.lb = -0.3,
    p.ub = 0.3,
    y.lab = "Impact of PSA"
)
```

Arguments

Y	An observed outcome (binary: numeric vector of 0 or 1).	
D	An observed decision (binary: numeric vector of 0 or 1).	
Z	A treatment indicator (binary: numeric vector of 0 or 1).	
A	An AI recommendation (binary: numeric vector of 0 or 1).	
subgroup1	A pretreatment covariate used for subgroup analysis (vector).	
subgroup2	A pretreatment covariate used for subgroup analysis (vector).	
label.subgroup1		
	A label for subgroup1 (character). Default "Subgroup 1".	
label.subgroup2		
	A label for subgroup2 (character). Default "Subgroup 2".	
x.order	An order for the x-axis (character vector). Default NULL.	
p.title	A title for the plot (character). Default NULL.	
p.lb	A lower bound for the y-axis (numeric). Default -0.3.	
p.ub	An upper bound for the y-axis (numeric). Default 0.3.	
y.lab	A label for the y-axis (character). Default "Impact of PSA".	

plot_diff_ai_aipw

Value

A ggplot object.

Examples

```
plot_agreement(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  A = PSAdata$DMF,
  subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
  subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
  label.subgroup1 = "Race",
  label.subgroup2 = "Gender",
  x.order = c("Overall", "Non-white", "White", "Female", "Male")
)
```

plot_diff_ai_aipw Visualize Difference in Risk (AI v. Human)

Description

Visualize the difference in risk between AI and human decision makers using AIPW estimators. Generate a plot based on the overall and subgroup-specific results.

Usage

```
plot_diff_ai_aipw(
  Υ,
 D,
  Ζ,
  V = NULL,
  Α,
  z_{compare} = 0,
  101 = 1,
  nuis_funcs = NULL,
  nuis_funcs_ai = NULL,
  true.pscore = NULL,
  subgroup1,
  subgroup2,
  label.subgroup1 = "Subgroup 1",
  label.subgroup2 = "Subgroup 2",
  x.order = NULL,
  zero.line = TRUE,
  \operatorname{arrows} = \operatorname{TRUE},
  y.min = -Inf,
  p.title = NULL,
```

```
p.lb = -1,
p.ub = 1,
y.lab = "PSA versus Human",
p.label = c("PSA worse", "PSA better")
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
V	A matrix of pretreatment covariates (numeric matrix). Optional.
A	An observed AI recommendation (binary: numeric vector of 0 or 1).
z_compare	A compare treatment indicator (numeric). Default 0.
101	Ratio of the loss between false positives and false negatives. Default 1.
nuis_funcs	output from compute_nuisance_functions. If NULL, the function will compute the nuisance functions using the provided data. Note that V must be provided if nuis_funcs is NULL.
nuis_funcs_ai	<pre>output from compute_nuisance_functions_ai</pre>
true.pscore	A vector of true propensity scores (numeric), if available. Optional.
subgroup1	A pretreatment covariate used for subgroup analysis (vector).
subgroup2	A pretreatment covariate used for subgroup analysis (vector).
label.subgroup1	
label.subgroup2	A label for subgroup1 (character). Default "Subgroup 1".
Tabel.Subgroup2	A label for subgroup2 (character). Default "Subgroup 2".
x.order	An order for the x-axis (character vector). Default NULL.
zero.line	A logical indicating whether to include a zero line. Default TRUE.
arrows	A logical indicating whether to include arrows. Default TRUE.
y.min	A lower bound for the y-axis (numeric). Default -Inf.
p.title	A title for the plot (character). Default NULL.
p.lb	A lower bound for the y-axis (numeric). Default -0.2.
p.ub	An upper bound for the y-axis (numeric). Default 0.2.
y.lab	A label for the y-axis (character). Default "PSA versus Human".
p.label	A vector of two labels for the annotations (character). Default c("PSA harms", "PSA helps").

Value

A ggplot object.

54

plot_diff_human

Examples

```
plot_diff_ai_aipw(
  Y = NCAdata Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata Z,
  A = PSAdata$DMF,
  z_compare = 0,
  nuis_funcs = nuis_func,
  nuis_funcs_ai = nuis_func_ai,
  true.pscore = rep(0.5, nrow(NCAdata)),
  101 = 1,
  subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
  subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
  label.subgroup1 = "Race",
  label.subgroup2 = "Gender",
  x.order = c("Overall", "Non-white", "White", "Female", "Male"),
  zero.line = TRUE, arrows = TRUE, y.min = -Inf,
  p.title = NULL, p.1b = -0.3, p.ub = 0.3
)
```

plot_diff_human Visualize Difference in Risk (Human+AI v. Human)

Description

Visualize the difference in risk between human+AI and human decision makers using differencein-means estimators. Generate a plot based on the overall agreement and subgroup-specific agreement.

Usage

```
plot_diff_human(
 Υ,
 D,
 Ζ,
 101 = 1,
  subgroup1,
  subgroup2,
  label.subgroup1 = "Subgroup 1",
  label.subgroup2 = "Subgroup 2",
 x.order = NULL,
 p.title = NULL,
 p.1b = -1,
 p.ub = 1,
 y.lab = "Impact of PSA",
  p.label = c("PSA harms", "PSA helps")
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
101	Ratio of the loss between false positives and false negatives. Default 1.
subgroup1	A pretreatment covariate used for subgroup analysis (vector).
subgroup2	A pretreatment covariate used for subgroup analysis (vector).
label.subgroup	
	A label for subgroup1 (character). Default "Subgroup 1".
label.subgroup2	
	A label for subgroup2 (character). Default "Subgroup 2".
x.order	An order for the x-axis (character vector). Default NULL.
p.title	A title for the plot (character). Default NULL.
p.lb	A lower bound for the y-axis (numeric). Default -1.
p.ub	An upper bound for the y-axis (numeric). Default 1.
y.lab	A label for the y-axis (character). Default "Impact of PSA".
p.label	A vector of two labels for the annotations (character). Default c("PSA harms", "PSA helps").

Value

A ggplot object.

Examples

```
plot_diff_human(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  101 = 1,
  subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
  subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
  label.subgroup1 = "Race",
  label.subgroup2 = "Gender",
  x.order = c("Overall", "Non-white", "White", "Female", "Male"),
  p.title = NULL, p.lb = -0.3, p.ub = 0.3
)
```

plot_diff_human_aipw Visualize Difference in Risk (Human+AI v. Human)

Description

Visualize the difference in risk between human+AI and human decision makers using AIPW estimators. Generate a plot based on the overall agreement and subgroup-specific agreement.

Usage

```
plot_diff_human_aipw(
 Υ,
 D,
 Ζ,
 V = NULL,
 101 = 1,
 nuis_funcs = NULL,
  true.pscore = NULL,
  subgroup1,
  subgroup2,
  label.subgroup1 = "Subgroup 1",
  label.subgroup2 = "Subgroup 2",
 x.order = NULL,
 p.title = NULL,
 p.1b = -1,
 p.ub = 1,
 y.lab = "Impact of PSA",
 p.label = c("PSA harms", "PSA helps")
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).
D	An observed decision (binary: numeric vector of 0 or 1).
Z	A treatment indicator (binary: numeric vector of 0 or 1).
V	A matrix of pretreatment covariates (numeric matrix). Optional.
101	Ratio of the loss between false positives and false negatives. Default 1.
nuis_funcs	output from compute_nuisance_functions. If NULL, the function will compute the nuisance functions using the provided data. Note that V must be provided if nuis_funcs is NULL.
true.pscore	A vector of true propensity scores (numeric), if available. Optional.
subgroup1	A pretreatment covariate used for subgroup analysis (vector).
subgroup2	A pretreatment covariate used for subgroup analysis (vector).
label.subgroup1	
	A label for subgroup 1 (abgraater) Default "Subgroup 1"

A label for subgroup1 (character). Default "Subgroup 1".

label.subgroup2	
	A label for subgroup2 (character). Default "Subgroup 2".
x.order	An order for the x-axis (character vector). Default NULL.
p.title	A title for the plot (character). Default NULL.
p.lb	A lower bound for the y-axis (numeric). Default -1.
p.ub	An upper bound for the y-axis (numeric). Default 1.
y.lab	A label for the y-axis (character). Default "Impact of PSA".
p.label	A vector of two labels for the annotations (character). Default c("PSA harms", "PSA helps").

Value

A ggplot object.

Examples

```
plot_diff_human_aipw(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  nuis_funcs = nuis_func,
  true.pscore = rep(0.5, nrow(NCAdata)),
  l01 = 1,
  subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
  subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
  label.subgroup1 = "Race",
  label.subgroup2 = "Gender",
  x.order = c("Overall", "Non-white", "White", "Female", "Male"),
  p.title = NULL, p.lb = -0.3, p.ub = 0.3
)
```

<pre>plot_diff_subgroup</pre>	Visualize Difference in Risk (Human+AI v.	Human) for a Subgroup
	Defined by AI Recommendation	

Description

Visualize the difference in risk between human+AI and human decision makers using AIPW estimators, for a subgroup defined by AI recommendation. Generate a plot based on the overall agreement and subgroup-specific agreement.

Usage

```
plot_diff_subgroup(
 Υ,
 D,
 Ζ,
 Α,
 a = 1,
 V = NULL,
 101 = 101,
  nuis_funcs = NULL,
  true.pscore = NULL,
  subgroup1,
  subgroup2,
  label.subgroup1 = "Subgroup 1",
  label.subgroup2 = "Subgroup 2",
  x.order = NULL,
  p.title = NULL,
 p.1b = -1,
 p.ub = 1,
 y.lab = "Impact of PSA",
 p.label = c("Human correct", "PSA correct"),
 label = "TNP - FNP",
 metrics = c("Misclassification Rate", "False Negative Proportion",
    "False Positive Proportion")
)
```

Arguments

Y	An observed outcome (binary: numeric vector of 0 or 1).	
D	An observed decision (binary: numeric vector of 0 or 1).	
Z	A treatment indicator (binary: numeric vector of 0 or 1).	
А	An AI recommendation (binary: numeric vector of 0 or 1).	
а	A specific AI recommendation value to create the subset (numeric: 0 or 1).	
V	A matrix of pretreatment covariates (numeric matrix). Optional.	
101	Ratio of the loss between false positives and false negatives. Default 1.	
nuis_funcs	output from compute_nuisance_functions. If NULL, the function will compute the nuisance functions using the provided data. Note that V must be provided if nuis_funcs is NULL.	
true.pscore	A vector of true propensity scores (numeric), if available. Optional.	
subgroup1	A pretreatment covariate used for subgroup analysis (vector).	
subgroup2 label.subgroup	A pretreatment covariate used for subgroup analysis (vector).	
	A label for subgroup1 (character). Default "Subgroup 1".	
label.subgroup2		
	A label for subgroup2 (character). Default "Subgroup 2".	

x.order	An order for the x-axis (character vector). Default NULL.
p.title	A title for the plot (character). Default NULL.
p.lb	A lower bound for the y-axis (numeric). Default -1.
p.ub	An upper bound for the y-axis (numeric). Default 1.
y.lab	A label for the y-axis (character). Default "Impact of PSA".
p.label	A vector of two labels for the annotations (character). Default c("Human correct", "PSA correct").
label	A label for the plot (character). Default "TNP - FNP".
metrics	A vector of metrics to include in the plot (character). Default c("Misclassification Rate", "False Negative Proportion", "False Positive Proportion").

Value

A ggplot object.

Examples

```
plot_diff_subgroup(
  Y = NCAdata Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata Z,
  A = PSAdata$DMF,
  a = 1,
  101 = 1,
  nuis_funcs = nuis_func,
  true.pscore = rep(0.5, nrow(NCAdata)),
subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
  subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
  label.subgroup1 = "Race",
  label.subgroup2 = "Gender",
  x.order = c("Overall", "Non-white", "White", "Female", "Male"),
  p.title = NULL, p.1b = -0.5, p.ub = 0.5,
  label = "TNP - FNP",
 metrics = c("True Negative Proportion (TNP)", "False Negative Proportion (FNP)", "TNP - FNP")
)
```

plot_preference Visualize Preference

Description

Compute the difference in risk between AI and human decision makers using AIPW estimators over a set of loss ratios, and then visualize when we prefer human over AI decision makers. Generate a plot based on the overall and subgroup-specific results.

plot_preference

Usage

```
plot_preference(
 Υ,
 D,
 Ζ,
 V = NULL,
 Α,
 z_compare = 0,
 true.pscore = NULL,
 nuis_funcs = NULL,
 nuis_funcs_ai = NULL,
 101_seq = 10^seq(-2, 2, length.out = 100),
 alpha = 0.05,
  subgroup1,
  subgroup2,
  label.subgroup1 = "Subgroup 1",
  label.subgroup2 = "Subgroup 2",
 x.order = NULL,
 p.title = NULL,
 legend.position = "none",
 p.label = c("AI-alone preferred", "Human-alone preferred", "Ambiguous")
)
```

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).	
D	An observed decision (binary: numeric vector of 0 or 1).	
Z	A treatment indicator (binary: numeric vector of 0 or 1).	
V	A matrix of pretreatment covariates (numeric matrix). Optional.	
A	An observed AI recommendation (binary: numeric vector of 0 or 1).	
z_compare	A compare treatment indicator (numeric). Default 0.	
true.pscore	A vector of true propensity scores (numeric), if available. Optional.	
nuis_funcs	output from compute_nuisance_functions. If NULL, the function will compute the nuisance functions using the provided data. Note that V must be provided if nuis_funcs is NULL.	
nuis_funcs_ai	<pre>output from compute_nuisance_functions_ai</pre>	
101_seq	A candidate list of ratio of the loss between false positives and false negatives. Default 10^seq(-2, 2, length.out = 100).	
alpha	A significance level (numeric). Default 0.05.	
subgroup1	A pretreatment covariate used for subgroup analysis (vector).	
subgroup2	A pretreatment covariate used for subgroup analysis (vector).	
label.subgroup1		
	A label for subgroup1 (character). Default "Subgroup 1".	
label.subgroup2		
	A label for subgroup2 (character). Default "Subgroup 2".	

x.order	An order for the x-axis (character vector). Default NULL.	
p.title	e A title for the plot (character). Default NULL.	
legend.position		
	Position of the legend (character).	
p.label	A vector of three labels for the annotations (character). Default c("AI-alone preferred", "Human-alone preferred", "Ambiguous").	

Value

A ggplot object.

Examples

```
plot_preference(
 Y = NCAdata Y,
 D = ifelse(NCAdata$D == 0, 0, 1),
 Z = NCAdata Z,
 A = PSAdata$DMF,
 z_compare = 0,
 nuis_funcs = nuis_func,
 nuis_funcs_ai = nuis_func_ai,
 true.pscore = rep(0.5, nrow(NCAdata)),
 101_seq = 10^seq(-2, 2, length.out = 10),
 alpha = 0.05,
 subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
 subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
 label.subgroup1 = "Race",
 label.subgroup2 = "Gender";
 x.order = c("Overall", "Non-white", "White", "Female", "Male"),
 p.title = NULL, legend.position = "none",
 p.label = c("AI-alone preferred", "Human-alone preferred", "Ambiguous")
)
```

PSAdata

Interim Dane PSA data

Description

An interim dataset containing a binary treatment (Z), ordinal decision (D), three PSA variables (FTAScore, NCAScore, and NVCAFlag), DMF recommendation, and two pre-treatment covariates (binary indicator for gender; binary indicator for race). The data used for the paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions.

Usage

PSAdata

psa_synth

Format

A data frame with 1891 rows and 7 variables:

Z binary treatment

D ordinal decision

FTAScore FTA score

NCAScore NCA score

NVCAFlag NVCA flag

DMF DMF recommendation

Sex male or female

White white or non-white

psa_synth

Synthetic PSA data

Description

A synthetic dataset containing a binary treatment (Z), ordinal decision (D), three PSA variables (FTAScore, NCAScore, and NVCAFlag), and DMF recommendation.

Usage

psa_synth

Format

A data frame with 1000 rows and 4 variables:

Z binary treatment

 ${\bf D}\,$ ordinal decision

FTAScore FTA score

NCAScore NCA score

NVCAFlag NVCA flag

DMF DMF recommendation

SpilloverCRT

Description

See S3.1 for more details.

Usage

```
SpilloverCRT(D, Z, CourtEvent_HearingDate, n = 100, seed.number = 12345)
```

Arguments

D	A numeric vector of judge's decision.	
Z	A numeric vector of treatment variable.	
CourtEvent_HearingDate		
	The court event hearing date.	
n	Number of permutations.	
seed.number	An integer for random number generator.	

Value

A list of the observed and permuted test statistics and its p-value.

Examples

```
data(synth)
data(hearingdate_synth)
crt <- SpilloverCRT(D = synth$D, Z = synth$Z, CourtEvent_HearingDate = hearingdate_synth)</pre>
```

SpilloverCRTpower Conduct power analysis of conditional randomization test

Description

See S3.2 for more details.

synth

Usage

```
SpilloverCRTpower(
   D,
   Z,
   CourtEvent_HearingDate,
   n = 4,
   m = 4,
   size = 2,
   cand_omegaZtilde = seq(-1.5, 1.5, by = 0.5)
)
```

Arguments

D	A numeric vector of judge's decision.	
Z	A numeric vector of treatment variable.	
CourtEvent_HearingDate		
	The court event hearing date.	
n	Number of permutations.	
m	Number of permutations.	
size	The number of parallel computing. The default is 2.	
cand_omegaZtilde		
	Candidate values	

Value

A data.frame of the result of power analysis.

Examples

```
data(synth)
data(hearingdate_synth)
crt_power <- SpilloverCRTpower(
    D = synth$D, Z = synth$Z,
    CourtEvent_HearingDate = hearingdate_synth,
    size = 1
) # adjust the size</pre>
```

synth

Synthetic data

Description

A synthetic dataset containing pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).

Usage

synth

Format

A data frame with 1000 rows and 11 variables:

Z binary treatment

D ordinal decision

Y outcome

Sex male or female

White white or non-white

Age age

CurrentViolentOffense binary variable for current violent offense

PendingChargeAtTimeOfOffense binary variable for pending charge (felony, misdemeanor, or both) at the time of offense

PriorMisdemeanorConviction binary variable for prior conviction of misdemeanor

PriorFelonyConviction binary variable for prior conviction of felony

PriorViolentConviction four-level ordinal variable for prior violent conviction

table_agreement Table of Agreement

Description

Estimate the impact of AI recommendations on the agreement between human decisions and AI recommendations using a difference-in-means estimator of an indicator $1\{D_i = A_i\}$. Generate a table based on the overall agreement and subgroup-specific agreement.

Usage

```
table_agreement(
   Y,
   D,
   Z,
   A,
   subgroup1,
   subgroup2,
   label.subgroup1 = "Subgroup 1",
   label.subgroup2 = "Subgroup 2"
)
```

66

Arguments

Υ	An observed outcome (binary: numeric vector of 0 or 1).	
D	An observed decision (binary: numeric vector of 0 or 1).	
Z	A treatment indicator (binary: numeric vector of 0 or 1).	
A	An AI recommendation (binary: numeric vector of 0 or 1).	
subgroup1	A pretreatment covariate used for subgroup analysis (vector).	
subgroup2	A pretreatment covariate used for subgroup analysis (vector).	
label.subgroup1		
	A label for subgroup1 (character). Default "Subgroup 1".	
label.subgroup2		

A label for subgroup2 (character). Default "Subgroup 2".

Value

A tibble with the following columns:

- cov: Subgroup label.
- X: Subgroup value.
- agree_diff: Difference in agreement between human decisions and AI recommendations.
- agree_diff_se: Standard error of the difference in agreement.
- ci_lb: Lower bound of the 95% confidence interval.
- ci_ub: Upper bound of the 95% confidence interval.

Examples

```
table_agreement(
  Y = NCAdata$Y,
  D = ifelse(NCAdata$D == 0, 0, 1),
  Z = NCAdata$Z,
  A = PSAdata$DMF,
  subgroup1 = ifelse(NCAdata$White == 1, "White", "Non-white"),
  subgroup2 = ifelse(NCAdata$Sex == 1, "Male", "Female"),
  label.subgroup1 = "Race",
  label.subgroup2 = "Gender"
)
```

TestMonotonicity Test monotonicity

Description

Test monotonicity using frequentist analysis

Usage

TestMonotonicity(data)

Arguments

data

A data.frame or matrix of which columns consists of pre-treatment covariates, a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y). The column names of the latter three should be specified as "Z", "D", and "Y" respectively.

Value

Message indicating whether the monotonicity assumption holds.

Examples

data(synth)
TestMonotonicity(synth)

TestMonotonicityRE *Test monotonicity with random effects*

Description

Test monotonicity using frequentist analysis with random effects for the hearing date of the case.

Usage

TestMonotonicityRE(data, fixed, random)

Arguments

data	A data.frame or matrix of which columns consists of pre-treatment covariates,
	a binary treatment (Z), an ordinal decision (D), and an outcome variable (Y).
	The column names of the latter three should be specified as "Z", "D", and "Y"
	respectively.
fixed	A formula for the fixed-effects part of the model to fit.
random	A formula for the random-effects part of the model to fit.

Value

Message indicating whether the monotonicity assumption holds.

References

Imai, K., Jiang, Z., Greiner, D.J., Halen, R., and Shin, S. (2023). "Experimental evaluation of algorithm-assisted human decision-making: application to pretrial public safety assessment." Journal of the Royal Statistical Society: Series A. <DOI:10.1093/jrsssa/qnad010>.

Examples

Index

* datasets FTAdata, 36 HearingDate, 37 hearingdate_synth, 38 NCAdata, 38 NVCAdata. 39 psa_synth, 63 PSAdata, 62 synth, 65 * package aihuman-package, 3 AiEvalmcmc, 5 aihuman (aihuman-package), 3 aihuman-package, 3 APCEsummary, 7 APCEsummaryipw, 8 BootstrapAPCEipw, 9 BootstrapAPCEipwRE, 10 BootstrapAPCEipwREparallel, 12 CalAPCE, 13 CalAPCEipw, 15 CalAPCEipwRE, 16 CalAPCEparallel, 18 CalDelta, 20 CalDIM, 21 CalDIMsubgroup, 22 CalFairness, 22 ${\tt CalOptimalDecision, 23}$ CalPS, 25 compute_bounds_aipw, 26 compute_nuisance_functions, 26, 27, 32, 34, 54, 57, 59, 61 compute_nuisance_functions_ai, 26, 29, 54, 61 compute_stats, 30 compute_stats_agreement, 31 compute_stats_aipw, 32

compute_stats_subgroup, 33 crossfit, 35 FTAdata, 36 g_legend, 37 gbm (crossfit), 35 HearingDate, 37 hearingdate_synth, 38 NCAdata, 38 NVCAdata, 39 plot_agreement, 52 plot_diff_ai_aipw, 53 plot_diff_human, 55 plot_diff_human_aipw, 57 plot_diff_subgroup, 58 plot_preference, 60 PlotAPCE, 40 PlotDIMdecisions, 41 PlotDIMoutcomes, 42 PlotFairness, 43 PlotOptimalDecision, 45 PlotPS, 45 PlotSpilloverCRT, 47 PlotSpilloverCRTpower, 47 PlotStackedBar, 48 PlotStackedBarDMF, 49 PlotUtilityDiff, 50 PlotUtilityDiffCI, 51 psa_synth, 63 PSAdata, 62 SpilloverCRT, 64

SpilloverCRTpower, 64 synth, 65

table_agreement, 66
TestMonotonicity, 68
TestMonotonicityRE, 68