survML: Tools for Flexible Survival Analysis Using Machine Learning
Statistical tools for analyzing time-to-event data using
machine learning. Implements survival stacking for conditional
survival estimation, standardized survival function estimation for
current status data, and methods for algorithm-agnostic variable
importance. See Wolock CJ, Gilbert PB, Simon N,
and Carone M (2024) <doi:10.1080/10618600.2024.2304070>.
Version: |
1.2.0 |
Depends: |
SuperLearner (≥ 2.0.28) |
Imports: |
Iso (≥ 0.0.18.1), haldensify (≥ 0.2.3), fdrtool (≥ 1.2.17), ChernoffDist (≥ 0.1.0), dplyr (≥ 1.0.10), gtools (≥ 3.9.5), mboost (≥ 2.9.0), survival (≥ 3.5.0), stats (≥ 4.3.2), methods (≥ 4.3.2) |
Suggests: |
knitr, rmarkdown, testthat (≥ 3.0.0), ggplot2 (≥ 3.4.0), gam (≥ 1.22.0) |
Published: |
2024-10-31 |
DOI: |
10.32614/CRAN.package.survML |
Author: |
Charles Wolock
[aut, cre, cph],
Avi Kenny [ctb] |
Maintainer: |
Charles Wolock <cwolock at gmail.com> |
BugReports: |
https://github.com/cwolock/survML/issues |
License: |
GPL (≥ 3) |
URL: |
https://github.com/cwolock/survML,
https://cwolock.github.io/survML/ |
NeedsCompilation: |
no |
Materials: |
README NEWS |
CRAN checks: |
survML results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=survML
to link to this page.