
Modelling, visualization and analysis with the grainscape package

Paul Galpern∗ Alex M. Chubaty†

Contents
Visual table of contents 3

Introduction 5

Modelling with grainscape 6
Model 1: The minimum planar graph . 6

Step 1: Preparing the resistance surface . 7
Step 2: Extracting the MPG . 8
Step 3: Quick visualization of the MPG . 9
Step 4: Reporting on the MPG . 10
Step 5: Thresholding the MPG . 11
Step 6: Visualizing a thresholded graph . 12
Step 7: Next steps . 14

Model 2: Patch grains of connectivity . 15
Step 1: Begin with a MPG . 15
Step 2: Exploring the Voronoi tessellation . 16
Step 3: Building GOC models . 17
Step 4: Visualizing a GOC model . 18

Landscape networks with 1D and 2D nodes 19
Modelling . 19

Planar network with one-dimensional nodes on a Euclidean surface 19
Planar network with one-dimensional nodes on a non-Euclidean resistance surface . . 21
Planar network with two-dimensional nodes on a non-Euclidean resistance surface

(minimum planar graph) . 23
Visualization . 25

Centroid representation of nodes . 25
Perimeter representation of links . 26
Spatially-explicit representation of links . 27
Characteristics of nodes (weights) . 28
Characteristics of links (weights) . 29
Link thresholding by plotting . 31
Link thresholding to show components . 32

Analysis . 34
∗Department of Biological Sciences, University of Calgary, AB, Canada
†FOR-CAST Research & Analytics, Calgary, AB, Canada

1

Network metrics to assess node importance . 34
Shortest-path distance between nodes . 36

Scaling landscape networks 39
Modeling . 39

Scaling resistance surfaces (lattice grains of connectivity) 39
Scaling networks with two-dimensional nodes (patch grains of connectivity) 40

Visualization . 42
Characteristics of grains of connectivity . 42

Analysis . 43
Corridor analyses at multiple scales . 43

Modeling . 45

References 47

2

Visual table of contents

Figure 1: Landscape network modelling with grainscape. Numerals refer to figures.

3

Figure 2: Scaling of landscape networks with grainscape. Numerals refer to figures.

4

Introduction
The grainscape package enables a range of analyses within R that have applications across the
disciplines of ecology, conservation biology and geography. For example, networks extracted by
grainscape can be used to model habitat connectivity or evaluate protected area network resilience.
These networks can be modelled, visualized and analyzed at multiple spatial scales. A more general
contribution is the ability to extract Voronoi tessellations on a continuous resistance surface. This
has applications in spatial analysis, for example to model service areas where travel times or the
cost of movement vary continuously across space.

The inspiration for the grainscape package is the analysis of landscape connectivity. The approach
comes from the patch-based landscape graphs tradition (Urban and Keitt 2001; Fall et al. 2007;
Galpern, Manseau, and Fall 2011) where a mathematical graph or network is used to represent the
relationships among habitat patches. In grainscape these could equally be protected areas where
connectivity for terrestrial ecological processes is of interest, such as ranging behaviour or plant
and animal dispersal.

There are two types of models produced by grainscape. The first, a minimum planar graph (Fall
et al. 2007) is an efficient approximation of the potential for connectivity among a set of focal two
dimensional nodes. In landscape connectivity modelling these nodes might be habitat patches or
protected areas.

The second model type is the grain of connectivity, which is based on the minimum planar graph,
but extends it in a way that may be useful for scaling (Galpern, Manseau, and Wilson 2012; Galpern
and Manseau 2013a, 2013b). Again, using landscape connectivity as an example, these grains can
be used for sensitivity analyses of protected area connectivity, or to model highly mobile terrestrial
animals, such as ungulates and carnivores, where the habitat patch may be not be a discrete and
definable feature but is rather defined probabilistically. The model achieves this by using the
complement of the minimum planar graph, a Voronoi tessellation of the map, and modelling the
relationships among polygons in a Voronoi tessellation rather than discrete patches. This approach
has been shown to improve the ability to model movements of highly-mobile organisms (Galpern,
Manseau, and Wilson 2012). For example, grains of connectivity provides continuous coverage of
the entire landscape surface in a way that a typical patch-based network does not. It also permits
the examination of connectivity at multiple scales, which can accommodate uncertainty in how
species may perceive landscape features (Galpern and Manseau 2013a, 2013b).

The grainscape package provides functions to extract the minimum planar graph and create two
types of grains of connectivity: patch and lattice forms. This reference begins by introducing these
two model types, and concludes by demonstrating a variety of grainscape models, visualizations,
and analyses using a consistent visual style. Code and commentary are included throughout. All
analyses are reproducible with data distributed with this package.

5

Modelling with grainscape

In this section we demonstrate how to prepare rasters for modelling with grainscape. Data
provided with the package are used as examples. The input to grainscape is a resistance surface,
and optionally a second raster describing the focal regions on a raster which will serve as nodes in a
network. The resistance surface may represent the resistance to the flow of some ecological process
of interest, and the nodes, focal regions where this process has an origin. A typical application
is to model connectivity of landscapes for dispersal of terrestrial animals. Here, the resistance
surface models the costs to movement, and the nodes habitat from which animals may disperse.
Many other applications of nodes and resistance surfaces are equally valid and could represent both
ecological and non-ecological processes.

Inputs to grainscape are typically raster images. Rasters may represent a geographical region,
and ideally have a projected coordinate system. This raster must contain cells with value >= 1,
where values are real or integers. If data are missing, cells must have value == NA (e.g, commonly
in the boundary cells of an irregularly shaped region of interest).

The following are key packages required to complete analyses with grainscape. The igraph
package provides network analytical functions, while raster provides the the data structure and
raster analytical functions upon which grainscape depends to manage data. Finally model and
analytical products are compatible with visualizing using the popular ggplot2 idiom.

Model 1: The minimum planar graph
The minimum planar graph (hereafter MPG) is a spatial representation of a graph or a network
that provides an efficient approximation of all possible pairwise connections between graph nodes
(Fall et al. 2007). In graph-based landscape connectivity analyses, graph nodes have typically been
patches of habitat that are demonstrably important for the species in question (Fall et al. 2007).
In the following example we will continue the habitat connectivity modelling objective for clarity,
but emphasize that this is not the only task to which these methods can be applied.

An MPG representing habitat connectivity has links that model the possibility for organism move-
ment and dispersal between spatially-adjacent habitat patches. In some cases spatially-adjacent
patches may not be linked, if the shortest connection between them can be made through a third
patch. In practice, this property means that the MPG can be used to make a simple and easily
visualized picture of how a set of habitat patches is connected. The alternative, the complete graph,
can quickly become challenging to interpret because these may contain a dense set of graph links
making the pattern difficult to discern. A second advantage of the MPG is the much reduced set of
graph links; this can be valuable where computational efficiency is important, and essential where
the number of habitat patches being modelled numbers in the thousands.

However, there are some types of connectivity analyses where the MPG approximation of the
complete graph is not appropriate. For example, assessing community structure within a landscape
patch network (i.e., finding sets of patches that are densely connected) is not possible as redundant
connections have been removed intentionally. Equally, the MPG is a poor choice for prioritizing
the influence of a patch for connectivity, the objective in a number of landscape graph studies
(e.g., Pascual-Hortal and Saura 2006). Please see Galpern, Manseau, and Fall (2011) for further
discussion of these limitations and of the MPG.

6

Step 1: Preparing the resistance surface

The MPG has typically been constructed using shortest path links between the perimeters of two
dimensional node patches. In habitat connectivity terms, this implies that landscape structure in
the “matrix” between patches is influencing movement, and that the organism in question is on
average minimizing its costs when moving through this matrix (an assumption possibly appropriate
for terrestrial animals, and terrestrial animal-dispersed plants). Equally, MPGs can be constructed
using Euclidean links, where the only influence of the matrix on movement is the effect of spatial
separation (i.e., distance it presents between neighbouring habitat).

Here, we illustrate just the case where links are shortest paths on a resistance surface. Euclidean
links can be produced by passing a uniform cost surface (a constant raster), and a raster describing
the patches. An example of this is given later in the document.

We begin by loading a landscape raster distributed with the package. Note that any raster format
readable using the raster package can be used here. The .asc format rasters distributed with the
package are ESRI ArcASCII format.
patchy <- raster(system.file("extdata/patchy.asc", package = "grainscape"))

Then, for convenience, we use R to turn this raster into a resistance surface. In this example we
will assume the feature class 1 (i.e., cells with value == 1) are the patches. We will set them to
resistance value also equal to 1 (i.e., no additional resistance to movement than distance alone). The
river, feature class 2, is assigned the highest resistance of 10. Other features are assigned values
in between. The parameterization of resistance surfaces for landscape connectivity modelling is
itself a big topic (Zeller, McGarigal, and Whiteley 2012). The matrix isBecomes describes the
transformation from feature class to resistance surface. The result is shown in Figure 3.
Create an is-becomes matrix for reclassification
isBecomes <- cbind(c(1, 2, 3, 4, 5), c(1, 10, 8, 3, 6))
patchyCost <- reclassify(patchy, rcl = isBecomes)
patchyCost_df <- ggGS(patchyCost)
patchyCost_df$value <- as.factor(patchyCost_df$value)

Plot this raster using ggplot2 functionality
and the default grainscape theme
ggplot() +

geom_raster(
data = patchyCost_df,
aes(x = x, y = y, fill = value)

) +
scale_fill_brewer(

type = "qual", palette = "Paired",
direction = -1, guide = "legend"

) +
guides(fill = guide_legend(title = "Resistance")) +
theme_grainscape() +
theme(legend.position = "right")

7

Resistance

1

3

6

8

10

Figure 3: Input raster resistance surface to create the minimum planar graph (MPG). Features with
value of 1 (red) will be the patches in the network. A river (light blue) has the highest resistance
in this example.

Step 2: Extracting the MPG

With a resistance surface in hand the next step is to create the MPG. Basic use of the function,
MPG() to do this is shown here. For simplicity we assume that all areas with the resistance value
equal to 1 on the raster are patches. This is a convenient short cut when patches are the only part
of the raster where resistance is equal to geographic distance. However, in many applications focal
patches will be a subset of these areas, or represent areas with multiple resistance values. These can
be accommodated by passing a patch raster to the patch= parameter, created using any method.
Equally patches below a certain size could be filtered by passing the patch raster to patchfilter()
first.
patchyMPG <- MPG(patchyCost, patch = (patchyCost == 1))

8

Step 3: Quick visualization of the MPG

A quick way to visualize the MPG is provided by the plot method in grainscape. This appears
in Figure 4.
plot(patchyMPG, quick = "mpgPlot", theme = FALSE)

Figure 4: A quick visualization of the minimum planar graph (MPG). Grey areas are patches
(nodes) in the graph, and green lines are links showing the shortest paths between the perimeters
of the patches on the resistance surface. In depth discussion of how the MPG is generated can be
found elsewhere (Fall et al. 2007).

9

Step 4: Reporting on the MPG

Following extraction, the MPG is available as an igraph object (see patchyMPG@mpg) and can be
analyzed using any of the functions in this package. A quick way to report on the structure of the
graph in tabular format is provided by the function graphdf():
Extract tabular node information using the graphdf() function
nodeTable <- graphdf(patchyMPG)[[1]]$v

Render table using the kable function,
retaining the first three rows
kable(nodeTable[1:3,], digits = 0, row.names = FALSE)

name patchId patchArea patchEdgeArea coreArea centroidX centroidY
5 5 3995 388 3607 81 -33
7 7 1682 189 1493 356 -28
9 9 937 154 783 302 -54

Extract tabular link information using the graphdf() function
linkTable <- graphdf(patchyMPG)[[1]]$e

Render table using the kable function,
retaining the first three rows
kable(linkTable[1:3,], digits = 0, row.names = FALSE)

e1 e2 linkId lcpPerimWeight startPerimX startPerimY endPerimX endPerimY
24 37 1 45 315 -259 314 -246
36 37 2 90 342 -273 360 -262
9 12 3 120 289 -70 277 -97

The output in shows the structure of the nodes (vertices) and their attributes under the list element
$v as well as the structure of the graph in the form of an link list (i.e., pairs of nodes e1 and e2
that are connected) and associated link (edge) attributes under the list element $e. Note that only
the first three lines of each has been reproduced here. Please see the manual for the interpretation
of the attributes.

10

Step 5: Thresholding the MPG

A frequent step in the analysis of a network is to threshold it into a series of clusters or components
representing connected areas (Urban and Keitt 2001; Galpern, Manseau, and Fall 2011; Galpern,
Manseau, and Wilson 2012). This has sometimes been called a scalar analysis (Brooks 2003).

The function threshold() provides a way to conduct a scalar analysis at multiple scales. Here we
ask for 5 thresholds, and the function finds five approximately evenly-spaced threshold values in
link length.
scalarAnalysis <- threshold(patchyMPG, nThresh = 5)

Use kable to render this as a table
kable(scalarAnalysis$summary,

caption = paste(
"The number of components ('nComponents') in the",
"minimum planar graph at five automatically-selected",
"link thresholds ('maxLink)."

)
)

Table 3: The number of components (‘nComponents’) in
the minimum planar graph at five automatically-selected link
thresholds (’maxLink).

maxLink nComponents
0.00 13

313.25 5
626.50 1
939.75 1

1253.00 1

The $summary of this analysis can be plotted to explore scales of aggregation in the landscape.
Figure 5 shows a scalar analysis of this landscape with 100 thresholds, where the response variables
is the number of components or sub-graphs created by the thresholding.
scalarAnalysis <- threshold(patchyMPG, nThresh = 100)
ggplot(scalarAnalysis$summary, aes(x = maxLink, y = nComponents)) +

geom_line(colour = "forestgreen") +
xlab("Link Threshold (resistance units)") +
ylab("Number of components") +
scale_x_continuous(breaks = seq(0, 1000, by = 100)) +
scale_y_continuous(breaks = 1:20) +
theme_light() +
theme(axis.title = element_text())

Other independent variables describing the components (e.g., area of patches) could, of course, be
calculated by processing the thresholded graphs scalarAnalysis$th and their attributes using the
igraph function components().

11

1

2

3

4

5

6

7

8

9

10

11

12

13

0 1002003004005006007008009001000
Link Threshold (resistance units)

N
um

be
r

of
 c

om
po

ne
nt

s

Figure 5: A scalar analysis at 100 thresholds of the MPG in Figure 4. When the landscape is a
single component at higher link thresholds all patches are completely connected. As an example,
an organism able to disperse 250 resistance units would experience this landscape as six connected
regions.

Step 6: Visualizing a thresholded graph

Consider an organism able to disperse a maximum of 250 resistance units. According to Figure 5
this organism would experience this landscape as 6 connected regions. This is visualized in Figure 6.
links_df <- ggGS(patchyMPG, "links") |>

dplyr::filter(lcpPerimWeight >= 250)

ggplot() +
geom_raster(

data = ggGS(patchyMPG, "patchId"),
mapping = aes(x = x, y = y, fill = value > 0)

) +
scale_fill_manual(values = "grey") +
geom_segment(

data = links_df,
mapping = aes(

x = x1, y = y1, xend = x2, yend = y2,
colour = as.factor(lcpPerimWeight)

)
) +
scale_colour_manual(values = rep("forestgreen", nrow(links_df))) +
geom_point(

data = ggGS(patchyMPG, "nodes"),
mapping = aes(x = x, y = y),
colour = "darkgreen"

12

)

Figure 6: The thresholded MPG depicted with a link length of 250 resistance units. An organism
that can disperse a maximum of 250 resistance units would experience this landscape as 6 con-
nected regions in the depicted spatial configuration. Note that the plotting has been customized
to emphasize which patches are connected. This was done by plotting links with less than the
threshold length from the centroids of patches

13

Step 7: Next steps

With the MPG in hand, several additional types of analyses are possible. Grains of connectivity
(GOC), the subject of the next section, is an example of using the MPG and its complement the
Voronoi tessellation.

When programming your own analyses in R based on the MPG it is helpful to observe that the
patchyMPG@patchId and patchyMPG@lcpLinkId rasters contain the numerical IDs of the patches
(nodes) and links respectively. These are are also contained as attributes in the igraph object
patchyMPG@mpg. Using these three data objects together gives flexibility to visualize any graph
analysis. Additional example visualizations and analyses are contained later in this document.

14

Model 2: Patch grains of connectivity
Grains of connectivity (hereafter GOC) was initially developed in three papers (Galpern, Manseau,
and Wilson 2012; Galpern and Manseau 2013b, 2013a). Please refer to these papers for much more
detail on this method. In summary, grains of connectivity describes a tessellation of functionally-
connected regions of the map. In this example we present these in the context of modelling landscape
connectivity for highly-mobile terrestrial organisms that are not obligate patch occupants.

Step 1: Begin with a MPG

Here, we repeat the steps as before for the same patchy resistance surface explored in the MPG
examples. Any of the variations imaginable for the MPG modelling can provide a valid basis to
build a GOC.
Load the patchy raster distributed with grainscape
patchy <- raster(system.file("extdata/patchy.asc", package = "grainscape"))

Create an is-becomes matrix for reclassification
isBecomes <- cbind(c(1, 2, 3, 4, 5), c(1, 10, 8, 3, 6))
patchyCost <- reclassify(patchy, rcl = isBecomes)

Create the MPG model using cells = 1 as patches
patchyMPG <- MPG(patchyCost, patch = (patchyCost == 1))

15

Step 2: Exploring the Voronoi tessellation

Before we build the GOC graph, we should explore the essential building block of GOC, which is
the Voronoi tessellation. This particular Voronoi tessellation was first described elsewhere (Fall et
al. 2007) and is the complement of the MPG. It is identified by finding the region of proximity in
resistance units around a resource patch. In contrast to the well-known Voronoi tessellation where
the generators are points and distance is Euclidean, this tessellation uses two-dimensional patches
as generators and distance is calculated in cost or resistance space. The tessellation is found in
grainscape using a marching algorithm implemented in C++.

The Voronoi tessellation is extracted as part of finding the MPG(). A plot with the Voronoi tessel-
lation and the patches superimposed is shown in Figure 7.
patchPlusVoronoi <- patchyMPG@voronoi
patchPlusVoronoi[patchyMPG@patchId] <- 0

ggplot() +
geom_raster(data = ggGS(patchPlusVoronoi), aes(x = x, y = y, fill = value))

Figure 7: A Voronoi tessellation. This is the complement of the MPG. The patches (darkest blue)
are used as generators, and regions of proximity (polygons of different colours) are found in cost or
resistance units. The method was first described by Fall et al. (2007).

16

Step 3: Building GOC models

GOC analysis is essentially a scalar or thresholding analysis (see threshold() and above) except
the graph being thresholded is one of Voronoi polygons rather than patches. In particular, it is the
MPG of Voronoi polygons that is thresholded. As links are added, and Voronoi polygons linked,
the relevant polygons are combined describing larger connected regions. An additional step is that
the links connecting a pair of polygons are the mean value of all links connecting any patches in
each of the two polygons from the MPG (Galpern, Manseau, and Wilson 2012).

The function GOC() builds GOC models at multiple thresholds. As with threshold() we can
specify the number of thresholds, or grains of connectivity models, we want to create using the
nThresh parameter.
patchyGOC <- GOC(patchyMPG, nThresh = 10)

17

Step 4: Visualizing a GOC model

To get a quick sense of the connected regions described by a GOC model at a given threshold (or
scale of movement) we can use the function grain(). This example uses the functions plotting
mechanism to plot the 6th threshold in the patchyGOC object. Figure 8 shows the resulting plot.
plot(grain(patchyGOC, whichThresh = 6), quick = "grainPlot", theme = FALSE)

Extracting voronoi boundaries...

Figure 8: A visualization of a GOC model. In this case it is the 6th scale or threshold extracted.
Voronoi polygons imply regions that are functionally-connected at the given movement threshold.

The remainder of this document serves as a reference to modelling, visualization and analysis using
the grainscape package. Please refer to the visual table of contents.

18

Landscape networks with 1D and 2D nodes
Modelling
Planar network with one-dimensional nodes on a Euclidean surface

One-dimensional nodes (i.e., points) can represent map locations of an ecological or spatial process
of interest. While the Euclidean distance between these points is easily calculated in R using the
dist() function, we may be interested in the path distance to just the immediate neighbours of
each point. A planar network extracted on a Euclidean resistance surface can be used to identify
which nodes are neighbours and find their pairwise distances (Fall et al. 2007; Galpern, Manseau,
and Fall 2011). In grainscape a Euclidean resistance surface is simply a resistance surface where
all values are = 1)
Make a new resistance raster of 400 by 400 cells
with a coordinate system that corresponds to cells
res <- raster(xmn = 0, xmx = 100, ymn = 0, ymx = 100, resolution = 1)

Assign all values to 1
res[] <- 1

Create 20 "random" points representing nodes,
(i.e. the loci of a process of interest)
pts <- data.frame(

x = rep(seq(10, 90, length.out = 5), 4),
y = seq(10, 90, length.out = 4)

) +
cbind(runif(20) * 10, runif(20) * 10)

Represent these on a patch raster
by duplicating the resistance raster and
setting the relevant cells to 1
patchPts <- res
patchPts <- setValues(patchPts, 0)
patchPts[cellFromXY(patchPts, pts)] <- 1

Extract the MPG
mpg <- MPG(res, patchPts)

Plot the result using the quick 'network' visualization
setting and add labels (dodging them by 3 to the upper-right)
figure09 <- plot(mpg, quick = "network", theme = FALSE) +

geom_text(
data = ggGS(mpg, "nodes"),
aes(x = x + 3, y = y + 3, label = patchId)

) +
ggtitle("Planar 1D; Euclidean surface")

figure09

19

56 78 9

10 1112 13
14

1516 17 1819

20
2122 23

24

Planar 1D; Euclidean surface

Figure 9: A planar network with one-dimensional point nodes extracted using grainscape. Nodes
are represented as points and labelled with their patchId. Links are line segments among nodes.

The distance between nodes can be extracted from the objects. Note how the distances are integers,
because they do not represent the Euclidean distance, but rather the accumulated path distance
among nodes. On this particular raster one cell equals one unit of distance, therefore distances are
the count of cells separating nodes.
Here we show the first five rows of the link attribute table
extracted from the mpg object. This shows selected columns,
using the formatting function kable()
neighbours <- graphdf(mpg)[[1]]$e[, c(1, 2, 4)]
neighbours <- neighbours[order(neighbours[, 1]),][1:5,]
names(neighbours) <- c("Node 1", "Node 2", "Path distance (Euclidean)")
kable(neighbours, row.names = FALSE)

Node 1 Node 2 Path distance (Euclidean)
5 7 19
5 6 20
5 12 32
6 8 24
6 10 31

20

Planar network with one-dimensional nodes on a non-Euclidean resistance surface

Similarly, when the distance among points, or nodes, is best explained by some cost or resistance,
neighbour distance can be modelled in an identical manner, leveraging the planarity of the network.
The only difference in the code from the previous 1D Euclidean example is the use of the resistance
surface rather than a raster consisting only of the value 1. We will borrow objects made in previous
steps to keep the code concise.
Add some cost values to the resistance
surface we used in the last step
Here we use random integers >= 2
res2 <- res
res2[] <- floor(runif(ncell(res2)) * 10 + 1)

Extract the minimum planar graph using the
raster made previously which represents the points only
mpg <- MPG(res2, patchPts)

Plot the result using the quick 'mpgPlot' visualization
setting and add labels (dodging them by 3 to the upper-right)
This demonstrates the non-linear paths.
figure10 <- plot(mpg, quick = "mpgPlot", theme = FALSE) +

geom_text(
data = ggGS(mpg, "nodes"),
aes(x = x + 3, y = y + 3, label = patchId)

) +
ggtitle("Planar 1D; Resistance surface")

figure10

56 78 9

10 1112 13
14

1516 17 1819

20
2122 23

24

Planar 1D; Resistance surface

Figure 10: A planar network with one-dimensional nodes extracted on a resistance surface. Nodes
are represented by grey-coloured cells and labelled with their patchId. Links are green paths
between nodes, shown in a spatially-explicit representation.

21

The distances between nodes are still integers, and they also represent a path distance. Now, this
is rather the shortest accumulated path distance through the resistance surface between nodes.
Once again, their metric is an integer because resistance values were also integers. The table below
demonstrates that the non-Euclidean path distance is longer among the same pairs of nodes, and
they are not perfectly correlated, as we expect.
Here we show the first five rows of the link attribute table
extracted from the mpg object. This shows selected columns, using
the formatting function kable()
resNeighbours <- graphdf(mpg)[[1]]$e[, c(1, 2, 4)]
resNeighbours <- resNeighbours[order(resNeighbours[, 1]),][1:5,]
comparison <- cbind(neighbours, resNeighbours)[, -c(4, 5)]
names(comparison)[4] <- c("Path distance (Resistance)")
kable(comparison, row.names = FALSE)

Node 1 Node 2 Path distance (Euclidean) Path distance (Resistance)
5 7 19 74
5 6 20 110
5 12 32 123
6 8 24 106
6 10 31 126

22

Planar network with two-dimensional nodes on a non-Euclidean resistance surface
(minimum planar graph)

This is the minimum planar graph (MPG) (Fall et al. 2007), and the inspiration for the grainscape
package. Please see the first part of this document for a more thorough presentation of the MPG.
Andrew Fall and colleagues originally articulated this graph theory-based model as a spatial graph.
It was an approach that built a graph (or a network) of patches and, critically, it was aware of a
spatially-explicit landscape. This incorporated multiple landscape elements that might be visible
on a map, such as the shape, size and configuration of two-dimensional node patches as well as
continuous geographic variation in the spaces between the nodes (i.e., the matrix). In a minimum
planar graph (MPG) the matrix presents resistance to connectivity and influences the paths and
therefore the lengths of the links. The shape, size and configuration of patches with respect to their
neighbours that influences where on the patch perimeters these links begin and end. The value of
using patch perimeters rather than centroids is that it potentially improves the estimation of the
shortest paths among patches.

An MPG can be understood as a planar network (i.e., no links “cross” nodes), that provides an
efficient representation of connections among neighbouring nodes. Its nodes are two-dimensional
patches and its links are the shortest paths through a resistance surface.

The following example uses a more realistic resistance surface based on a simulated land cover
raster.
Load a land cover raster distributed with grainscape
frag <- raster(system.file("extdata/fragmented.asc", package = "grainscape"))

Convert land cover to resistance units
Use an "is-becomes" reclassification
isBecomes <- cbind(c(1, 2, 3, 4), c(1, 5, 10, 12))

fragRes <- reclassify(frag, rcl = isBecomes)

Extract a network using cells = 1 on original raster
as the focal patches or nodes
patches <- (frag == 1)
fragMPG <- MPG(fragRes, patch = patches)

Plot the minimum planar graph with node labels for several
focal nodes of interest
figure11 <- plot(fragMPG, quick = "mpgPlot", theme = FALSE) +

geom_text(
data = ggGS(fragMPG, "nodes"),
aes(

x = x, y = y,
label = ifelse(patchId %in% c(7, 23, 52, 106, 158, 221),

patchId, ""
)

),
size = 2

) +

23

ggtitle("Planar 2D; Resistance surface")
figure11

7 2352

106
158

221

Planar 2D; Resistance surface

Figure 11: A minimum planar graph (MPG) of a simulated resistance surface. Focal patches are
grey regions and green lines indicate spatially-explicit links among patches. Several patches are
labelled with their numerical patchId.

The distances from the perimeters of the nodes along the paths of the links (green in figure) are
available in the output object in the same manner as before.
Here we show only patch 7 and its neighbours that are labelled on
the network using the formatting function kable().
fragNeighbours <- graphdf(fragMPG)[[1]]$e[, c(1, 2, 4)]
fragNeighbours <- fragNeighbours[order(fragNeighbours[, 1]),][1:5,]
names(fragNeighbours) <- c("Node 1", "Node 2", "Path distance (Resistance)")
kable(fragNeighbours, row.names = FALSE)

Node 1 Node 2 Path distance (Resistance)
7 23 27
7 52 90
7 106 135
7 158 137
7 221 235

24

Visualization
Centroid representation of nodes

Where nodes represent two-dimensional regions (e.g, patches, protected areas) it can be convenient
to visualize nodes as points plotted at the centroid location of the region (Urban and Keitt 2001;
Galpern, Manseau, and Fall 2011). While the links themselves may be measured from patch
perimeters, or quantities related to the nodes summarized across patch areas, visualization can be
improved by omitting complexities such as these. Cases where centroid node representation may be
justified include: (1) mapping of the topology of a complex network; (2) mapping the number and
distribution of links; (3) mapping the properties of the nodes (see example below); or, (4) where a
large plotting extent makes regions hard to see.

This example uses the resistance surface and minimum planar graph from a previous example
(fragMPG).
Plot the minimum planar graph using centroid nodes
A single line of code will do this as follows:
plot(fragMPG, quick = "network")

However the following approach gives more control,
allowing reduction of the size of the nodes to avoid crowding
figure12 <- ggplot() +

geom_segment(
data = ggGS(fragMPG, "links"),
aes(

x = x1, y = y1, xend = x2, yend = y2,
colour = "forestgreen", size = 0.25

)
) +
geom_point(

data = ggGS(fragMPG, "nodes"),
aes(x = x, y = y, colour = "darkgreen", size = 0.5)

) +
scale_colour_identity() +
scale_size_identity() +
ggtitle("Centroid representation of nodes")

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.
figure12

25

Centroid representation of nodes

Figure 12: A minimum planar graph (MPG) shown with centroid node representation and linear
link representation among these nodes.

Perimeter representation of links

Where the spatially-explicit nature of the connections among these nodes is important, perimeter
representation of links and two-dimensional visualization of the nodes may be a useful technique.

Plotting the region covered by a node, and links as lines drawn between the perimeters of these
regions is an efficient way to convey the topology of the network and which parts of a node are
closest to its neighbours. It also signals that the linking of nodes was done from the perimeter
rather than the centroid.

This example extends the previous one, where centroid representation of links was used.
Plot the minimum planar graph using perimeter links
and two dimensional nodes
figure13 <- plot(fragMPG, quick = "mpgPerimPlot", theme = FALSE) +

ggtitle("Perimeter representation of links")
figure13

26

Perimeter representation of links

Figure 13: A minimum planar graph (MPG) with links represented from the perimeter of the
patches (i.e., at the start and end points of spatially-explicit links). This rendering can simplify
visualization.

Spatially-explicit representation of links

Spatially-explicit representation of the links implies both that the end points of links are on the
perimeter of the region represented by the node, and that the predicted shortest paths among those
node perimeters have coordinates. This approach conveys all available spatial information in the
minimum planar graph. It also has the potential to mislead. Shortest paths between nodes are
estimates of the shortest distance on the resistance surface and not necessarily of the route by
which the process of interest actually flows. This kind of representation should therefore be used
with appropriate caution.

However, using this visualization does efficiently communicate how the minimum planar graph
model was constructed, and suggests which parts of the resistance surface may influence the pattern
of the connections among nodes, both of which may aid in interpretation.

This example uses this same data as the previous one to permit comparison among visualizations.
Plot the minimum planar graph using spatially-explicit links
and two dimensional nodes.
figure14 <- plot(fragMPG, quick = "mpgPlot", theme = FALSE) +

ggtitle("Spatially-explicit representation of links")
figure14

27

Spatially−explicit representation of links

Figure 14: A minimum planar graph (MPG) with the shortest links among patch perimeters
rendered as spatially-explicit paths. This rendering can help demonstrate the modelling procedure,
but risks overinterpretation of the actual paths involved (see text).

Characteristics of nodes (weights)

Variables that are associated with a focal ecological process at a node can be represented on a
network visualization. These variables are sometimes known as node “weights”. For example,
where nodes represent regions such as patches of habitat or protected areas, a useful node weight
may be the area of the region represented by the node. Equally, measures of node quality such as
the area of core or edge habitat could be represented. Any metric that is associated with the node
can be plotted at that node by varying the shape, size or colour of plotting symbol.

In this example, the area of the patch represented by the node is used to scale the size of the symbol
plotted at the centroid of the node.
figure15 <- ggplot() +

geom_segment(
data = ggGS(fragMPG, "links"),
aes(x = x1, y = y1, xend = x2, yend = y2),
colour = "forestgreen"

) +
geom_point(

data = ggGS(fragMPG, "nodes"),
aes(x = x, y = y, size = patchArea), colour = "darkgreen"

) +
scale_size_area(max_size = 10, breaks = c(1000, 3000)) +
ggtitle("Characteristics of nodes (weights)")

figure15

28

Characteristics of nodes (weights)

Figure 15: A minimum planar graph (MPG) with centroid node representation and links between
centroids, where the plotted size of the node symbol has been scaled with the area of the patch it
represents.

Characteristics of links (weights)

Variables associated with links, called link weights, often contain information on the modelled con-
nectivity among nodes. Measures of interest in ecology can include the expected flow of organisms,
or a variable correlated with this flow such as geographic distance or the distance of the shortest
path across a resistance surface.

In this example, the length of the shortest path between patch perimeters is plotted by varying
the width of the link connecting nodes. The link weight is found as a proportion of the Euclidean
distance between those nodes. So, proportions higher than 1 imply a resistance to movement greater
than expected by distance alone. On the scale used thinner lines describe a greater expectation of
connectivity for an ecological process that is influenced by resistance (proportion closer to 1).
figure16 <- ggplot() +

geom_segment(
data = ggGS(fragMPG, "links"),
aes(

x = x1, y = y1, xend = x2, yend = y2,
size = lcpPerimWeight / (sqrt((x2 - x1)^2 + (y2 - y1)^2))

),
colour = "forestgreen", alpha = 0.5

) +
scale_size(range = c(0, 3), breaks = seq(1, 6, by = 0.5)) +
geom_point(

data = ggGS(fragMPG, "nodes"),
aes(x = x, y = y), size = 3, colour = "darkgreen"

) +
ggtitle("Characteristics of links (weights)")

29

figure16

Characteristics of links (weights)

Figure 16: A minimum planar graph with centroid node and link representation where the width
of the links has been scaled in proportion to the reduction in connectivity due to resistance. Wider
links correspond to reduced connectivity.

30

Link thresholding by plotting

Removing links with weights that are greater than a threshold value is referred to as link thresholding
and can be used to identify components, or connected sets of nodes (Urban and Keitt 2001; Galpern,
Manseau, and Fall 2011). It is the most basic approach to scaling a network, and the technique
upon which grains of connectivity is based (see later examples).

Here, we remove links greater than a threshold of 20. This is measured in the units of the resistance
surface. Thresholding at this level implies we wish to remove all links that represent a cumulative
path distance on the resistance surface of 20 times the dimension of a raster cell. The resulting
components (also called clusters) in the network identify groups of nodes that have a minimum
level of connectivity among them.

In the simplest approach to link thresholding, rather than remove links from the network that are
greater than this threshold, we elect not to plot them. We do this by rendering longer links as
transparent (NA is the ggplot2 colour specification for transparency).

This visualization may be useful to demonstrate which nodes are most strongly connected to one
another. It does an adequate job of highlighting which groups of nodes are connected as a single
component or cluster. However, we can do better. See the next example.
figure17 <- ggplot() +

geom_raster(
data = ggGS(fragMPG, "patchId"),
aes(x = x, y = y, fill = value > 0)

) +
scale_fill_manual(values = "grey") +
geom_segment(

data = ggGS(fragMPG, "links"),
aes(

x = x1, y = y1, xend = x2, yend = y2,
colour = lcpPerimWeight > 20

)
) +
scale_colour_manual(values = c("forestgreen", NA)) +
geom_point(

data = ggGS(fragMPG, "nodes"),
aes(x = x, y = y), colour = "darkgreen"

) +
ggtitle("Link thresholding by plotting")

figure17

31

Link thresholding by plotting

Figure 17: A link threshold representation of a minimum planar graph (MPG), where links connect
the centroids of adjacent patches in the same component (cluster). Nodes that form their own
component are shown as circles without links.

Link thresholding to show components

As noted in the last example, highlighting which nodes are connected into components (or clusters)
after the network has been subjected to link thresholding can improve the visualization of connected
regions of the map.

Here, grainscape::threshold() is used to remove links longer than a certain length from the
igraph model of the landscape network. The igraph::components() function is then called to
label nodes by their membership in a particular component (or cluster). We can then use this
information to label the nodes by their component membership. To improve the visualization, the
nodes are also plotted as large circles and the labels in a reverse colour. This could also be done
(perhaps more effectively) using a colour or shape scale for node symbols that have been carefully
selected to accentuate patterns of interest in the figure.
Use the grainscape::threshold() function to create a new network
by thresholding links
fragTh <- threshold(fragMPG, doThresh = 20)

Find the components in that thresholded network using
an igraph package function
fragThC <- components(fragTh$th[[1]])

Extract the node table and append the
component membership information
fragThNodes <- data.frame(vertex_attr(fragTh$th[[1]]),

component = fragThC$membership
)

32

We don't want to show nodes that are in components with
only one node, so remove them
singleNodes <- fragThNodes$component %in% which(fragThC$csize == 1)
fragThNodes <- fragThNodes[!(singleNodes),]

Rename some columns to improve readability
fragThNodes$x <- fragThNodes$centroidX
fragThNodes$y <- fragThNodes$centroidY

figure18 <- ggplot() +
geom_raster(

data = ggGS(fragMPG, "patchId"),
aes(x = x, y = y, fill = value > 0)

) +
scale_fill_manual(values = "grey") +
geom_segment(

data = ggGS(fragMPG, "links"),
aes(

x = x1, y = y1, xend = x2, yend = y2,
colour = lcpPerimWeight > 20

)
) +
scale_colour_manual(values = c("forestgreen", NA)) +
geom_point(

data = fragThNodes,
aes(x = x, y = y), shape = 19, size = 4, colour = "darkgreen"

) +
geom_text(

data = fragThNodes, aes(x = x, y = y, label = component),
colour = "white", size = 2

) +
ggtitle("Link thresholding to show components")

figure18

33

13
15

13
1521

21
21 13

25

25
2521

2121
2821 30

30
2834

34 36
38

41 3830 41

42
30 38

4536 414742 484842

47
48

42
53

53
45 5454

42 45

42

61
61 6262

63 6464 6163 48
63 65 6542

65

6563
65

42 6666
65

6942

6569

Link thresholding to show components

Figure 18: A link threshold representation of a minimum planar graph (MPG), where links connect
the centroids of adjacent patches in the same component (cluster). Nodes that are part of a
component are labelled with their component membership.

Analysis
Network metrics to assess node importance

There are numerous network metrics available that describe properties of nodes and network topol-
ogy. The igraph package used by grainscape implements a selection of these metrics. A simple
and intuitive node-based network metric is degree. This is a count of the number of links adjacent
to a node. A node with a higher degree, then, might be deemed as contributing more to connectiv-
ity. The usefulness of this metric depends on the application, and more sophisticated measures of
node importance such as centrality may be more appropriate. These are also available in igraph.
However caution is appropriate, as the MPG is itself an approximation of all possible links among
nodes. Please see Galpern, Manseau, and Fall (2011) for more information on this limitation.

Here we demonstrate how to calculate degree using the igraph package and visualize the result
of this simple network analysis. We calculate degree on a link thresholded network, implying that
there is a maximum level of link resistance above which we do not consider that link as making a
contribution to a node’s connectivity.
Assess degree on the nodes of a thresholded network
made in the previous example (threshold = 20)
fragThDegree <- degree(fragTh$th[[1]])

Add degree to the node table
fragThNodes <- data.frame(vertex_attr(fragTh$th[[1]]), degree = fragThDegree)

Remove nodes with a degree of 0
fragThNodes <- fragThNodes[fragThNodes$degree > 0,]

34

Rename some columns to improve readability
fragThNodes$x <- fragThNodes$centroidX
fragThNodes$y <- fragThNodes$centroidY

figure19 <- ggplot() +
geom_raster(

data = ggGS(fragMPG, "patchId"),
aes(x = x, y = y, fill = value > 0)

) +
scale_fill_manual(values = "grey") +
geom_segment(

data = ggGS(fragMPG, "links"),
aes(

x = x1, y = y1, xend = x2, yend = y2,
colour = lcpPerimWeight > 20

)
) +
scale_colour_manual(values = c("forestgreen", NA)) +
geom_point(

data = fragThNodes,
aes(x = x, y = y, size = degree), colour = "darkgreen"

) +
ggtitle("Node importance metrics (degree)")

figure19

Node importance metrics (degree)

Figure 19: A link threshold representation of a minimum planar graph (MPG), where nodes, plotted
at patch centroids, are scaled in proportion to the degree of the node (i.e., the number of links
adjacent on the node). Larger circles indicate nodes with a higher degree in the MPG.

35

Shortest-path distance between nodes

Finding the shortest path through the network from a source to a destination node and the length of
that path is a useful prediction of the network model and has many applications (Zeller, McGarigal,
and Whiteley 2012; Galpern, Manseau, and Wilson 2012; Adriaensen et al. 2003) . It gives an
expected distance through the network, taking into account the modelled connectivity among nodes.

This example illustrates how to use igraph functions to find the shortest path through the network,
calculate its length in the metric of the resistance surface, and visualize the path.

The plot uses links between patch centroids and recolouring of the patch raster to add emphasis.
If we were to use a link thresholded network, here, (which we will not for simplicity), the entire
network would not be completely connected, so certain patches may not have a shortest path
between them. Finding shortest paths on thresholded networks may still be a useful technique, and
the absence of a shortest path an important finding.
Declare the start and end patchIds
These were identified by plotting the patchIds (see earlier examples)
startEnd <- c(1546, 94)

Find the shortest path between these nodes using
the shortest path through the resistance surface
(i.e. weighted by 'lcpPerimWeight')
shPath <- shortest_paths(fragMPG$mpg,

from = which(V(fragMPG$mpg)$patchId == startEnd[1]),
to = which(V(fragMPG$mpg)$patchId == startEnd[2]),
weights = E(fragMPG$mpg)$lcpPerimWeight,
output = "both"

)

Extract the nodes and links of this shortest path
shPathN <- as.integer(names(shPath$vpath[[1]]))
shPathL <- E(fragMPG$mpg)[shPath$epath[[1]]]$linkId

Produce shortest path tables for plotting
shPathNodes <- subset(ggGS(fragMPG, "nodes"), patchId %in% shPathN)
shPathLinks <- subset(ggGS(fragMPG, "links"), linkId %in% shPathL)

Find the distance of the shortest path
shPathD <- distances(fragMPG$mpg,

v = which(V(fragMPG$mpg)$patchId == startEnd[1]),
to = which(V(fragMPG$mpg)$patchId == startEnd[2]),
weights = E(fragMPG$mpg)$lcpPerimWeight

)[1]

Plot shortest path
figure20 <- ggplot() +

geom_raster(
data = ggGS(fragMPG, "patchId"),
aes(

36

x = x, y = y,
fill = ifelse(value %in% shPathN, "grey70", "grey90")

)
) +
scale_fill_identity() +
geom_segment(

data = shPathLinks, aes(x = x1, y = y1, xend = x2, yend = y2),
colour = "forestgreen", size = 1

) +
geom_point(data = shPathNodes, aes(x = x, y = y), colour = "darkgreen") +
ggtitle("Shortest-path distance between nodes") +
annotate("text", 260, 340,

label = paste0(shPathD, " resistance units"), size = 2.5
)

figure20

560 resistance units

Shortest−path distance between nodes

Figure 20: The shortest path through a minimum planar graph (MPG) given a start and end
patchId. Links and nodes that form part of this “corridor” are highlighted.

Pairwise distances between a set of nodes can be found using the igraph::distances() function
as follows.
Create a pairwise table of shortest path distances among nodes using
the resistance surface based links
allShPathD <- distances(fragMPG$mpg, weights = E(fragMPG$mpg)$lcpPerimWeight)

Create a table for the first 8 nodes
tableD <- allShPathD[1:8, 1:8]
tableD[upper.tri(tableD)] <- NA
dimnames(tableD)[[1]] <- paste("patchId", dimnames(tableD)[[1]], sep = " ")

37

kable(tableD)

7 10 12 13 19 23 27 52
patchId 7 0
patchId 10 398 0
patchId 12 405 65 0
patchId 13 419 95 30 0
patchId 19 454 130 65 35 0
patchId 23 27 371 378 392 427 0
patchId 27 534 210 145 115 80 507 0
patchId 52 90 488 495 509 544 117 624 0

38

Scaling landscape networks
Modeling
Scaling resistance surfaces (lattice grains of connectivity)

Resistance surfaces produced from remotely-sensed land cover or elevation data may be too fine-
scaled for the process being modelled. By having a scale that is mismatched with the one of interest,
the signal or pattern may be obscured (Cushman and Landguth 2010). A common strategy is to
upscale these rasters and remove potentially unimportant variation by coalescing adjacent raster
cells and representing these by their mode or mean. Another approach uses moving windows to
smooth out variation (Galpern and Manseau 2013a).

grainscape enables a different approach to upscaling a resistance surface based on remotely-sensed
data. Lattice grains of connectivity drops a lattice of focal points (or nodes), finds the minimum
planar graph and its complementary Voronoi polygons on the resistance surface among these points,
and then coalesces adjacent Voronoi polygons using the graph as guidance. It can be classified as a
model-based approach to upscaling (where the model is the resistance surface, and its representation
of some ecological or geographical process). Unlike arbitrarily upscaling a raster based on cell-
proximity, this approach uses spatial information in the surface itself. The grid spacing of the
lattice as well as the amount of link thresholding together influence the amount of upscaling that
occurs.

This example uses the familiar resistance surface of previous examples. It specifies a lattice grid
spacing of 25 cells. We use grainscape grains of connectivity analysis functions to coalesce Voronoi
polygons at 5 thresholds or scales. We could examine the resulting lattice grains of connectivity at
any of these five scales. We choose the third to illustrate an intermediate level of scaling.
Extract a minimum planar graph and complementary
Voronoi polygons from the fragmented resistance surface
Note the use of an integer for the 'patch' parameter, which
specifies the spacing in cells of the lattice grid
fragLatticeMPG <- MPG(fragRes, patch = 25)

Extract grains of connectivity from this MPG at
five link thresholds (or scales)
fragLatticeGOC <- GOC(fragLatticeMPG, nThresh = 5)

Visualize the Voronoi polygons at the third threshold
figure21 <- plot(grain(fragLatticeGOC, whichThresh = 3),

quick = "grainPlot", theme = FALSE
) +

ggtitle("Lattice grains of connectivity")

Extracting voronoi boundaries...
figure21

39

Lattice grains of connectivity

Figure 21: A scaled lattice grains of connectivity (GOC) model showing the outline of Voronoi
polygons in grey, and the network connections among polygons as links plotted from adjacent
polygon centroids.

Scaling networks with two-dimensional nodes (patch grains of connectivity)

Patch grains of connectivity extends the idea of the point nodes in the lattice model to two-
dimensional node regions (Galpern, Manseau, and Wilson 2012). It leverages the minimum planar
graph demonstrated in previous examples and its complement the Voronoi tessellation of the resis-
tance surface. Voronoi polygons are identified and coalesced at different thresholds or “grains” in
these models.

A key contribution is the capacity to model landscape connectivity at multiple spatial scales, and to
account for uncertainty in the nature of the patch and the surrounding matrix (Galpern, Manseau,
and Wilson 2012; Galpern and Manseau 2013a). The use of polygons rather than discrete two
dimensional nodes (i.e., surrounded by a matrix that presents resistance) allows for uncertainty in
patch definition. Such an approach may be particularly valuable in ecology for modelling landscape
connectivity in highly-mobile terrestrial animals, for which both patch definition and resistance
surface parameterization have large amounts of uncertainty.

The product is a continuously distributed set of two-dimensional nodes, such that every point on
the surface is associated with a node. Critically these polygons can be scaled. Relationships among
these polygons are based on the relationships among two-dimensional nodes contained within. In a
later example we show how grains of connectivity can be used to identify potential spatial corridors
between points.

This patch grains of connectivity model uses the familiar resistance surface and the same patches
(=1) used in many earlier examples.
Use the MPG extracted in previous examples to find a
patch grains of connectivity model, where patches
are cells on the resistance surface equal to 1
Do this at five thresholds

40

fragPatchGOC <- GOC(fragMPG, nThresh = 5)

Plot the fourth grain
figure22 <- plot(grain(fragPatchGOC, whichThresh = 4),

quick = "grainPlot", theme = FALSE
) +

ggtitle("Patch grains of connectivity")

Extracting voronoi boundaries...
figure22

Patch grains of connectivity

Figure 22: A scaled patch grains of connectivity (GOC) model showing the outline of Voronoi
polygons in grey, and the network connections among polygons as links plotted from adjacent
polygon centroids.

41

Visualization
Characteristics of grains of connectivity

The Voronoi polygons that are complementary to a given scale or threshold of a landscape network
describe a geographic area. As polygons are coalesced and the network is scaled, grainscape
collects summary statistics on several variables in the newly aggregated areal units. These include
the total area and core area of two-dimensional nodes that fall within the boundary of the polygon,
the median link weight within the cluster, and several others.

Visualizing these quantities at multiple spatial scales (i.e., grains) can support a sensitivity analysis
for the area or connectivity of sub-regions in the model. For example, to assess the availability of
connected habitat or protected areas, or the risks to the functioning of these elements.

The following example maps the amount of core area of patches at an intermediate scale by varying
the size of symbols plotted at the centroids of the Voronoi polygons. Core area is defined as the
area of all patches in the polygon excluding the edges of those patches, which consists of a one-cell
wide margin. In this resistance surface node core area appears to be correlated generally with the
size of the Voronoi polygon (i.e., larger node circles appear in larger polygons)
Put the fourth grain of the GOC model into its own object
fragPatchGrain4 <- grain(fragPatchGOC, whichThresh = 4)

figure23 <- ggplot() +
geom_raster(

data = ggGS(fragPatchGrain4, "vorBound"),
aes(x = x, y = y, fill = ifelse(value > 0, "grey", "white"))

) +
scale_fill_identity() +
geom_segment(

data = ggGS(fragPatchGrain4, "links"),
aes(x = x1, y = y1, xend = x2, yend = y2), colour = "forestgreen"

) +
geom_point(

data = ggGS(fragPatchGrain4, "nodes"),
aes(x = x, y = y, size = totalCoreArea), colour = "darkgreen"

) +
ggtitle("Voronoi polygon metrics (core area)")

Extracting voronoi boundaries...
figure23

42

Voronoi polygon metrics (core area)

Figure 23: A scaled patch grains of connectivity (GOC) model showing the outline of Voronoi
polygons in grey, and the network connections among polygons. Node symbols have been scaled
in proportion to the core area of patches (i.e., area excluding edge) contained within the Voronoi
polygon.

Analysis
Corridor analyses at multiple scales

Finding the shortest path through a grain of connectivity is conceptually identical to finding the
shortest path between nodes in the minimum planar graph. The key difference is that use of a
grain permits the scaling of the network. Links between Voronoi polygons in a grain are selected
links between components or clusters on the minimum planar graph. In a minimum planar graph
we cannot find a shortest path between nodes that are disconnected, but with a grains of connec-
tivity model the goal is rather to find the shortest path between these disconnected components
(represented by Voronoi polygons). The links connecting polygons are the shortest of all those that
span patches in two components.

An application of grains of connectivity is to scale a corridor analysis, effectively to find a shortest
path between two locations on the map and understand how sensitive this path may be to the scale.
In this example, we use the grainscape function corridor() to identify and plot this corridor.
Because grains of connectivity are continuously distributed across the map we do not need to
provide a focal node or patch identifier. Rather, we pass coordinates to the function.
Set coordinates for the start and end of the corridor
startEnd <- rbind(c(5, 180), c(395, 312))

fragCorridor3 <- corridor(fragPatchGOC, whichThresh = 3, coords = startEnd)

Use the default plotting functionality for corridor objects
figure24 <- plot(fragCorridor3, theme = FALSE) +

annotate("text",

43

x = startEnd[1, 1], y = startEnd[1, 2] - 20,
label = "START", colour = "red", size = 2

) +
annotate("text",

x = startEnd[1, 1], y = startEnd[1, 2],
label = "X", colour = "red", size = 2

) +
annotate("text",

x = startEnd[2, 1], y = startEnd[2, 2] + 20,
label = "END", colour = "red", size = 2

) +
annotate("text",

x = startEnd[2, 1], y = startEnd[2, 2],
label = "X", colour = "red", size = 2

) +
annotate("text",

x = 250, y = 400,
label = paste0(

"Corridor length: ",
round(fragCorridor3@corridorLength, 0),
" resistance units"

), size = 2
) +
ggtitle("Corridor analysis; grain of connectivity")

Extracting Voronoi boundaries...
figure24

44

START
X

END
X

Corridor length: 351 resistance units

Corridor analysis; grain of connectivity

Figure 24: A corridor through a scaled patch grains of connectivity (GOC) model. The black
nodes and links demonstrate the corridor between the polygons containing the start and end points
(plotted in red as X). Green nodes and links show the remainder of the grains of connectivity
network.

Modeling
Distances between polygons at multiple scales

grainscape provides functions to automate corridor analyses at multiple scales (grains), and for
multiple points on the map. The products are distance matrices.

In this example, the grain depicted in the previous corridor analysis is used to find the pairwise
shortest path distances between eight randomly positioned points. Distances at all of the grains
that are available in the GOC object are produced. However, the table that appears below shows
distances for only this grain.
Create eight random points on the map
pts <- cbind(sample(seq_len(ncol(fragRes)))[1:8], sample(seq_len(nrow(fragRes)))[1:8])

Plot these points and the grains of connectivity network
figure25 <- plot(grain(fragPatchGOC, 4), quick = "grainPlot", theme = FALSE) +

annotate("text", x = pts[, 1], y = pts[, 2], label = 1:8, colour = "red") +
ggtitle("Eight points for pairwise distances")

Extracting voronoi boundaries...
figure25

Find the pairwise distances between them at all grains
available in the GOC object created earlier
ptsD <- grainscape::distance(fragPatchGOC, pts)

45

1

2

3

4

56

7

8

Eight points for pairwise distances

Figure 25: A scaled patch grains of connectivity (GOC) model showing the outline of Voronoi
polygons in grey, and the network connections among polygons as links plotted from adjacent
polygon centroids. The locations of eight focal points used to calculate a pairwise distance matrix
are plotted in red.

Extract distances for the grain of interest (4)
ptsD2 <- ptsD$th[[4]]$grainD

Prepare this distance matrix for printing
ptsD2[upper.tri(ptsD2)] <- NA
ptsD2 <- round(ptsD2, 1)
dimnames(ptsD2)[[1]] <- paste0(

"Point ", 1:8, " (Polygon ",
dimnames(ptsD2)[[2]], ")"

)
dimnames(ptsD2)[[2]] <- 1:8

kable(ptsD2)

1 2 3 4 5 6 7 8
Point 1 (Polygon 2) 0.0
Point 2 (Polygon 2) 0.0 0.0
Point 3 (Polygon 2) 0.0 0.0 0.0
Point 4 (Polygon 2) 0.0 0.0 0.0 0.0
Point 5 (Polygon 2) 0.0 0.0 0.0 0.0 0.0
Point 6 (Polygon 2) 0.0 0.0 0.0 0.0 0.0 0.0
Point 7 (Polygon 9) 180.8 180.8 180.8 180.8 180.8 180.8 0.0
Point 8 (Polygon 2) 0.0 0.0 0.0 0.0 0.0 0.0 180.8 0

46

References
Adriaensen, F, J P Chardon, G De Blust, E Swinnen, S Villalba, H Gulinck, and E Matthysen.

2003. “The application of ’least-cost’ modelling as a functional landscape model.” Landscape
and Urban Planning 64 (4): 233–47. https://doi.org/10.1016/s0169-2046(02)00242-6.

Brooks, C P. 2003. “A scalar analysis of landscape connectivity.” Oikos 102 (2): 433–39. http:
//www.jstor.org/stable/3548048.

Cushman, Samuel A, and Erin L Landguth. 2010. “Scale dependent inference in landscape genetics.”
Landscape Ecology 25 (6): 967–79. https://doi.org/10.1007/s10980-010-9467-0.

Fall, Andrew, Marie-Josée Fortin, Micheline Manseau, and Dan O’Brien. 2007. “Spatial Graphs:
Principles and Applications for Habitat Connectivity.” Ecosystems 10 (3): 448–61. https:
//doi.org/10.1007/s10021-007-9038-7.

Galpern, Paul, and Micheline Manseau. 2013a. “Finding the functional grain: Comparing methods
for scaling resistance surfaces.” Landscape Ecology 28 (7): 1269–81. https://doi.org/10.1007/s1
0980-013-9873-1.

———. 2013b. “Modelling the influence of landscape connectivity on animal distribution: A
functional grain approach.” Ecography 36 (9): 1004–16. https://doi.org/10.1111/j.1600-
0587.2012.00081.x.

Galpern, Paul, Micheline Manseau, and Andrew Fall. 2011. “Patch-based graphs of landscape
connectivity: A guide to construction, analysis and application for conservation.” Biological
Conservation 144 (1): 44–55. https://doi.org/10.1016/j.biocon.2010.09.002.

Galpern, Paul, Micheline Manseau, and Paul J Wilson. 2012. “Grains of connectivity: analysis
at multiple spatial scales in landscape genetics.” Molecular Ecology 21 (16): 3996–4009. https:
//doi.org/10.1111/j.1365-294X.2012.05677.x.

Pascual-Hortal, Lucía, and Santiago Saura. 2006. “Comparison and development of new graph-
based landscape connectivity indices: Towards the priorization of habitat patches and corridors
for conservation.” Landscape Ecology 21 (7): 959–67. https://doi.org/10.1007/s10980-006-0013-
z.

Urban, Dean, and Timothy Keitt. 2001. “Landscape Connectivity: A Graph-Theoretic Perspec-
tive.” Ecology 82 (5): 1205–18. https://doi.org/10.1890/0012-9658(2001)082%5B1205:
LCAGTP%5D2.0.CO;2.

Zeller, Katherine A, Kevin McGarigal, and Andrew R Whiteley. 2012. “Estimating landscape
resistance to movement: a review.” Landscape Ecology 27 (6): 777–97. https://doi.org/10.100
7/s10980-012-9737-0.

47

https://doi.org/10.1016/s0169-2046(02)00242-6
http://www.jstor.org/stable/3548048
http://www.jstor.org/stable/3548048
https://doi.org/10.1007/s10980-010-9467-0
https://doi.org/10.1007/s10021-007-9038-7
https://doi.org/10.1007/s10021-007-9038-7
https://doi.org/10.1007/s10980-013-9873-1
https://doi.org/10.1007/s10980-013-9873-1
https://doi.org/10.1111/j.1600-0587.2012.00081.x
https://doi.org/10.1111/j.1600-0587.2012.00081.x
https://doi.org/10.1016/j.biocon.2010.09.002
https://doi.org/10.1111/j.1365-294X.2012.05677.x
https://doi.org/10.1111/j.1365-294X.2012.05677.x
https://doi.org/10.1007/s10980-006-0013-z
https://doi.org/10.1007/s10980-006-0013-z
https://doi.org/10.1890/0012-9658(2001)082%5B1205:LCAGTP%5D2.0.CO;2
https://doi.org/10.1890/0012-9658(2001)082%5B1205:LCAGTP%5D2.0.CO;2
https://doi.org/10.1007/s10980-012-9737-0
https://doi.org/10.1007/s10980-012-9737-0

	Visual table of contents
	Introduction
	Modelling with grainscape
	Model 1: The minimum planar graph
	Step 1: Preparing the resistance surface
	Step 2: Extracting the MPG
	Step 3: Quick visualization of the MPG
	Step 4: Reporting on the MPG
	Step 5: Thresholding the MPG
	Step 6: Visualizing a thresholded graph
	Step 7: Next steps

	Model 2: Patch grains of connectivity
	Step 1: Begin with a MPG
	Step 2: Exploring the Voronoi tessellation
	Step 3: Building GOC models
	Step 4: Visualizing a GOC model

	Landscape networks with 1D and 2D nodes
	Modelling
	Planar network with one-dimensional nodes on a Euclidean surface
	Planar network with one-dimensional nodes on a non-Euclidean resistance surface
	Planar network with two-dimensional nodes on a non-Euclidean resistance surface (minimum planar graph)

	Visualization
	Centroid representation of nodes
	Perimeter representation of links
	Spatially-explicit representation of links
	Characteristics of nodes (weights)
	Characteristics of links (weights)
	Link thresholding by plotting
	Link thresholding to show components

	Analysis
	Network metrics to assess node importance
	Shortest-path distance between nodes

	Scaling landscape networks
	Modeling
	Scaling resistance surfaces (lattice grains of connectivity)
	Scaling networks with two-dimensional nodes (patch grains of connectivity)

	Visualization
	Characteristics of grains of connectivity

	Analysis
	Corridor analyses at multiple scales

	Modeling

	References

