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Abstract. There has been great progress in human 3D mesh recov-
ery and great interest in learning about the world from consumer video
data. Unfortunately current methods for 3D human mesh recovery work
rather poorly on consumer video data, since on the Internet, unusual
camera viewpoints and aggressive truncations are the norm rather than
a rarity. We study this problem and make a number of contributions
to address it: (i) we propose a simple but highly effective self-training
framework that adapts human 3D mesh recovery systems to consumer
videos and demonstrate its application to two recent systems; (ii) we
introduce evaluation protocols and keypoint annotations for 13K frames
across four consumer video datasets for studying this task, including eval-
uations on out-of-image keypoints; and (iii) we show that our method
substantially improves PCK and human-subject judgments compared to
baselines, both on test videos from the dataset it was trained on, as well
as on three other datasets without further adaptation.
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1 Introduction

Consider the images in Fig. 1: what are these people doing? Are they standing
or sitting? While a human can readily recognize what is going on in the images,
having a similar understanding is a severe challenge to current human 3D pose
estimation systems. Unfortunately, in the world of Internet video, frames like
these are the rule rather than rarities since consumer videos are recorded not
with the goal of providing clean demonstrations of people performing poses, but
are instead meant to show something interesting to people who already know
how to parse 3D poses. Accordingly, while videos from consumer sharing sites
may be a useful source of data for learning how the world works [2, 14, 59, 62],
most consumer videos depict a confusing jumble of limbs and torsos flashing
across the screen. The goal of this paper is to make sense of this jumble.

Current work in human pose estimation is usually not up to the challenge of
the jumble of Internet footage. Recent work in human pose estimation [3, 9, 24,
35, 38] is typically trained and evaluated on 2D and 3D pose datasets [4, 19, 21,
30, 37] that show full human poses from level cameras often in athletic settings
Fig. 2 (left). Unfortunately, Internet footage tends to be like Fig. 2 (right), and
frequently only part of the body is visible to best show off how to perform a
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Fig. 1: We present a simple but highly effective framework for adapting human pose
estimation methods to highly truncated settings that requires no additional pose an-
notation. We evaluate the approach on HMR [24] and CMR [26] by annotating four
Internet video test sets: VLOG [14] (top-left, top-middle), Cross-Task [62] (top-right,
bottom-left), YouCookII [59] (bottom-middle), and Instructions [2] (bottom-right).

task or highlight something of interest. For instance, on VLOG [14], all human
joints are visible in only 4% of image frames. Meanwhile, all leg keypoints are
not visible 63% of the time, and head keypoints such as eyes are not visible in
about 45% of frames. Accordingly, when standard approaches are tested on this
sort of data, they tend to fail catastrophically, which we show empirically.

We propose a simple but surprisingly effective approach in Section 3 that we
apply to multiple forms of human mesh recovery. The key insight is to combine
both cropping and self-training on confident video frames: cropping introduces
the model to truncation, video matches context to truncations. After pre-training
on a cropped version of a standard dataset, we identify reliable predictions on
a large unlabeled video dataset, and promote these instances to the training
set and repeat. Unlike standard self-training, we add crops, which lets confident
full-body predictions (identified via [5]) provide a training signal for challenging
crops. This approach requires no extra annotations and takes < 30k iterations
of additional training (with total time < 8 hours on a single RTX2080 Ti GPU).

We demonstrate the effectiveness of our approach on two human 3D mesh
recovery techniques – HMR [24] and CMR [26] – and evaluate on four consumer-
video datasets – VLOG [14], Instructions [2], YouCookII [59], and Cross-Task
[62]. To lay the groundwork for future work, we annotate keypoints on 13k
frames across these datasets and provide a framework for evaluation in and out
of images. In addition to keypoints, we evaluate using human-study experiments.
Our experiments in Section 4 demonstrate the effectiveness of our method com-
pared to off-the-shelf mesh recovery and training on crops from a standard image
dataset (MPII). Our approach improves PCK both in-image and out-of-image
across methods and datasets: e.g., after training on VLOG, our approach leads
to a 20.7% improvement on YouCookII over off-the-shelf HMR and a 10.9%
improvement over HMR trained on crops (with gains of 36.4% and 19.1% on
out-of-image keypoints) Perceptual judgments by annotators show similar gains:
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Fig. 2: Partially Visible Humans. Consumer video, seen in datasets like VLOG [14],
Instructions [62], or YouCook2 [59], is considerably different from canonical human pose
datasets. Most critically, only part of a person is typically visible within an image,
making pose estimation challenging. In fact, all keypoints are only visible in 4% of
VLOG test set images, while all leg joints are not visible 61% of the time. Four of the
most common configurations of visible body parts are listed above.

e.g., on Cross-Task, our proposed method improves the chance of a CMR output
being rated as correct by 25.6% compared to off-the-shelf performance.

2 Related Work

Human Pose Estimation In the Wild: Human pose estimation has improved
substantially in recent years due in part to improved methods for 2D [9, 17, 38,
51, 56] and 3D [1, 28, 35, 43, 45, 60] pose, which typically utilize deep networks
as opposed to classic approaches such as deformable part models [7, 10, 12, 58].
Performance of such pose models also relies critically on datasets [4, 18, 19, 21,
30, 34, 37, 48]. By utilizing annotated people in-the-wild, methods have moved
toward understanding realistic, challenging settings, and become more robust to
occlusion, setting, challenging pose, and scale variation [3, 36, 37, 40, 41, 61].

However, these in-the-wild datasets still rarely encounter close, varied camera
angles common in consumer Internet video, which can result in people being only
partially within an image. Furthermore, images that do contain truncated people
are sometimes filtered out [24]. As a result, the state-of-the-art on common
benchmarks performs poorly in consumer videos. In this work, we utilize the
unlabeled video dataset VLOG to improve in this setting.

3D Human Mesh Estimation: A 3D mesh is a rich representation of pose,
which is employed for the method presented in this paper. Compared to key-
points, a mesh represents a clear understanding of a person’s body invariant to
global orientation and scale. A number of recent methods [6, 24, 27, 42, 52, 55]
build this mesh by learning to predict parametric human body models such as



4 C. Rockwell and D. F. Fouhey

SMPL [31] or the closely-related Adam [23]. To increase training breadth, some
of these methods train on 2D keypoints [24, 42] and utilize a shape prior.

The HMR [24] model trains an adversarial prior with a variety of 2D keypoint
datasets to demonstrate good performance in-the-wild, making it a strong can-
didate to extend to more challenging viewpoints. CMR [26] also produces strong
results using a similar in-the-wild training methodology. We therefore apply our
method to both models, rapidly improving performance on Internet video.

Understanding Partially-Observed People: Much of the prior work study-
ing global understanding of partially-observed people comes from ego-centric ac-
tion recognition [11, 29, 33, 47, 49]. Methods often use observations of the same
human body-parts between images, typically hands [11, 29, 33], to classify global
activity. In contrast, our goal is to predict pose, from varied viewpoints.

Some recent work explores ego-centric pose estimation. Recent setups use
cameras mounted in a variety of clever ways, such as chest [20, 46], bike helmet
[44], VR goggles [50], and hat [57]. However, these methods rely on camera always
being in the same spot relative to the human to make predictions. On the other
hand, our method attains global understanding of the body by training on entire
people to reason about unseen joints as it encounters less visible images.

Prior work also focuses on pose estimation specifically in cases of occlusion
[15, 16]. While this setting requires inference of non-visible joints, it does not
face the same scale variation occurring in consumer video, which can contain
people much larger than the image. Some recent work directly addresses trun-
cation. Vosoughi and Amer predict truncated 3D keypoints on random crops of
Human3.6M [54]. In concurrence with our work, Exemplar Fine-Tuning [22] uses
upper-body cropping to improve performance in Internet video [34]. Neverthe-
less, consumer Internet video (Fig. 2) faces more extreme truncation. We show
cropping alone is not sufficient for this setting; rather cropping and self-training
on confident video frames provides the best results.

3 Approach

Our goal is the ability to reconstruct a full human-body 3D mesh from an image
of part or all of a person in consumer video data. We demonstrate how to do
this using a simple but effective self-training approach that we apply to two
3D human mesh recovery models, HMR [24] and CMR [26]. Both systems can
predict a mesh by regressing SMPL [31] parameters from which a human mesh
can be generated, but work poorly on this consumer video data.

Our method, shown in Fig. 3, adapts each method to this challenging setting
of partial visibility by sequentially self-training on confident mesh and keypoint
predictions. Starting with a model trained on crops from a labeled dataset, the
system makes predictions on video data. We then identify confident predictions
using the equivariance technique of Bahat and Shakhnarovich [5]. Finally, using
the confident examples as pseudo-ground-truth, the model is trained to map
crops of the confident images to the full-body inferences, and the process of
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Fig. 3: Our method adapts human pose models to truncated settings by self-training
on cropped images. After pre-training using an annotated pose dataset, the method
applies small translations to an unlabeled video dataset and selects predictions with
consistent pose predictions across translations as pseudo-ground-truth. Repeating the
process increases the training set to include more truncated people.

identifying confident images and folding them into a training set is continued.
Our only assumption is that we can identify frames containing a single person
(needed for training HMR/CMR). In this paper, we annotate this for simplicity
but assume this can be automated via an off-the-shelf detection system.

3.1 Base Models

Our base models [24, 26] use SMPL [31], which is a differentiable, generative
model of human 3D meshes. SMPL maps parameters Θ to output a triangu-
lated mesh Y with N = 6980 vertices. Θ consists of parameters [θ,β,R, t, s]:
joint rotations θ ∈ R69, shape parameters β ∈ R10, global rotation R, global
translation t, and global scale s. We abstract each base model as a function f
mapping an image I to a SMPL parameter Θ. As described in [24], the SMPL
parameters can be used to yield a set of 2D projected keypoints x.

Our training process closely builds off the original methods: we minimize a
sum of losses on a combination of projected 2D keypoints x̂, predicted vertices
Ŷ, and SMPL parameters Θ̂. The most important distinctions are, we assume
we have access to SMPL parameters Θ for each image, and we train on all
annotated keypoints, even if they are outside the image. We describe salient
differences between the models and original training below.

HMR [24]: Kanazawa et al. use MoSh [32, 53] for their ground truth SMPL loss.
However, this data is not available in most images, and thus the model relies pri-
marily on keypoint loss. Instead, we train directly on predicted SMPL rotations,
available in all images; we find L1 loss works best. To encourage our network
to adapt to poses of new datasets, we do not use a discriminator loss. We also
supervise (t, s), though experiments indicated this did not impact performance
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(less than 1% difference on keypoint results). The loss for a single datapoint is:

L =
∥∥∥[θ,R,β, t, s]− [θ̂, R̂, β̂, t̂, ŝ]

∥∥∥
1

+ ‖x− x̂‖1 (1)

CMR [26]: CMR additionally regresses predicted mesh, and has intermediate
losses after the Graph CNN. We do not change their loss, other than by always
using 3D supervision and out-of-image keypoints. It is distinct from our HMR
loss as it uses L2 loss on keypoints and SMPL parameters, and converts θ and
R to rotation matrices for training [39], although they note conversion does not
change quantitative results. The loss for a single datapoint is:

L =
∥∥∥[θ,R]− [θ̂, R̂]

∥∥∥2
2

+ λ
∥∥∥β − β̂

∥∥∥2
2

+ ‖x− x̂‖22 +
∥∥∥Y − Ŷ

∥∥∥
1

(2)

such that λ = 0.1, each norm is reduced by its number of elements, and keypoint
and mesh losses are also applied after the Graph CNN. While Kolotouros et al.
train the Graph CNN before the MLP, we find the pretrained model trains well
with both losses simultaneously.

3.2 Iterative Adaptation to Partial Visibility

Our approach follows a standard self-training approach to semi-supervised learn-
ing. In self-training, one begins with an initial model f0 : X → Y as well as
a collection of unlabeled data U = {u : u ∈ X}. Here, the inputs are im-
ages, outputs SMPL parameters, and model either CMR or HMR. The key idea
is to use the inferences of each round’s model fi to produce labeled data for
training the next round’s model fi+1. More specifically, at each iteration t, the
model ft is applied to each element of U , and a confident prediction subset
C ⊆ U is identified. Then, predictions of model f on elements are treated as new
ground-truth for training the next round model fi+1. In standard self-training,
the new training set is the original unlabeled inputs and model outputs, or
{(c, fi(c)) : c ∈ C}. In our case, this would never learn to handle more cropped
people, and the training set is thus augmented with transformations of the
confident samples, or {(t(c), t(fi(c))) : c ∈ C, t ∈ T} for some set of crops T . The
new model fi+1 is retrained and the process is repeated until convergence. We
now describe more concretely what we mean by each bolded point.
Initial Model: We begin by training the pretrained HMR and CMR models
on MPII (Fig. 3, left) such that we apply cropping transformations to images
and keypoints. SMPL predictions from full images are used for supervision, and
are typically very accurate considering past training on this set. This training
scheme is the same as that used for self-training (Fig. 3, right), except we use
MPII ground truth keypoints instead of pseudo-ground truths.
Identifying Confident Predictions: In order to apply self-training, we need
to be able to find confident outputs of each of our SMPL-regressing models.
Unfortunately, it is difficult to extract confidence from regression models because
there is no natural and automatically-produced confidence measure unlike in
classification where measures like entropy provide a starting point.
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We therefore turn to an empirical result of Bahat and Shakhnarovich [5]
that invariance to image transformations is often indicative of confidence in
neural networks. Put simply, confident predictions of networks tend to be more
invariant to small transformations (e.g., a shift) than non-confident predictions.
We apply this technique in our setting by examining changes of parameters after
applying small translational jitter: we apply the model f to copies of the image
with the center jittered 10 and 20 pixels and look at joint rotation parameters
θ. We compute the variance of each joint rotation parameter across the jittered
samples, then average the variances across joints. For HMR, we define confident
samples as ones with a variance below 0.005 (chosen empirically). For CMR, for
simplicity, we ensure that we have the same acceptance rate as HMR of 12%;
this results in a similar variance threshold of 0.004.
Applying Transformations: The set of inputs and confident pseudo-label out-
puts that can be used for self-training is not enough. We therefore apply a family
of crops that mimic empirical frequencies found in consumer video data. Specif-
ically, crops consist of 23% most of body visible, 29% legs not visible, 10% head
not visible, and 22% only hands or arms visible. Examples of these categories
are shown in Fig. 2. Although proportions were chosen empirically from VLOG,
other consumer Internet video datasets considered [2, 59, 62] exhibit similar vis-
ibility patterns, and we empirically show that our results generalize.
Retraining: Finally, given the set of samples of crops of confident images and
corresponding full bodies, we retrain each model.

3.3 Implementation Details

Our cropping procedure and architecture is detailed in supplemental for both
HMR [24] and CMR [26]; we initialize both with weights pretrained on in-the-
wild data. On MPII, we continue using the same learning rate and optimizer
used by each model (1e-5 for HMR, 3e-4 for CMR, both use Adam [25]) until
validation loss converges. Training converges within 20k iterations in both cases.

Next, we identify confident predictions as detailed above on VLOG. We use
the subset of the hand-contact state dataset containing single humans, which
consists of 132k frames in the train + validation set. We note we could have
used a simple classifier to filter by visible people in a totally unlabeled setting.
Our resulting confident train + validation set is 15k images. We perform the
same cropping transformations as in MPII, and continue training with the same
parameters. Validation loss converges within 10k iterations. We repeat this semi-
supervised component one additional time, and the new train + validation set
is of approximately size 40k. Training again takes less than 10k iterations.

4 Experiments

We now describe a set of experiments done to investigate the following exper-
imental questions: (1) how well do current 3D human mesh recovery systems
work on consumer internet video? (2) can we improve the performance of these
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Fig. 4: Randomly sampled positive and negative predictions by number of keypoints
visible, as identified by workers. Images with fewer keypoints visible are typically more
difficult, and our method improves most significantly in these cases (Table 2).

systems, both on an absolute basis and in comparison to alternate simple models
that do not self-train? We answer these questions by evaluating the performance
of a variety of adaptation methods applied to both HMR [24] and CMR [26]
on four independent datasets of Internet videos. After introducing the datasets
(Sec. 4.1) and experimental setup (Sec. 4.2), we describe experiments on VLOG
(Sec. 4.3), which we use for our self-training video adaptation. To test the gen-
erality of our conclusions, we then repeat the same experiments on three other
consumer datasets without any retraining (Sec. 4.4). We validate our choice of
confidence against two other methods in (Sec. 4.5).

4.1 Datasets and Annotations

We rely on four datasets of consumer video from the Internet for evaluating
our method: VLOG [14], Instructions [2], YouCookII [59], and Cross-Task [62].
Evaluation on VLOG takes place on a random 5k image subset of the test set
detailed in Sec. 3.3. For evaluation on Instructions, YouCookII, and Cross-Task,
we randomly sample test-set frames (Instructions we sample from the entire
dataset, which is used for cross-validation), which are filtered via crowd-workers
by whether there is a single person, and then randomly subsample 5k subset.
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Table 1: Joint visibility statistics across the four consumer video datasets that we use.
Across multiple consumer video datasets, fully visible people are exceptionally rare
(< 3%), in contrast to configurations like an upper torso or only pieces of someone’s
arms, or much of a body but no head. Surprisingly, the most likely to be visible joint
is actually wrists, more than 2x more likely than hips and 5x more likely than knees.

Independent Joint Statistics Joint Joint Statistics
Neck + Head + Fully Upper Only All But

Ankle Knee Hip Wrist Elbow Should. Face Visible Torso Arms Head

Average 7.0 12.9 31.9 71.9 50.8 53.9 51.1 2.8 26.2 31.8 18.8

VLOG [14] 10.5 20.0 34.0 71.5 54.5 61.0 53.3 4.0 32.0 24.0 14.0
Instructions [2] 14.0 24.5 32.5 73.5 52.0 44.7 43.3 5.0 14.0 32.0 18.0
YouCook II [59] 0.0 1.0 30.0 71.0 45.5 53.7 52.7 0.0 28.0 39.0 24.0
Cross-Task [62] 3.5 6.0 31.0 71.5 51.0 56.3 55.0 2.0 31.0 32.0 19.0

Finally, to enable automatic metrics like PCK, we obtain joint annotations
on all four datasets. We annotate keypoints for the 19 joints reprojected from
HMR, or the 17 COCO keypoints along with the neck and head top from MPII.
Annotations are crowd-gathered by workers who must pass a qualification test
and are monitored by sentinels, and is detailed in supplemental. We show statis-
tics of these joints in Table 1, which show quantitatively the lack of visible
keypoints. In stark contrast to canonical pose datasets, the head is often not
visible. Instead, the most frequently visible joints are wrists.

4.2 Experimental Setup

We evaluate our approaches as well as a set of baselines that test concrete hy-
potheses using two styles of metrics: 2D keypoint metrics, specifically PCK mea-
sured on both in-image joints as well as via out-of-image joints (via evaluation on
crops); and 3D Mesh Human Judgments, where crowd workers evaluate outputs
of the systems on an absolute or relative basis.
2D Keypoint Metrics: Our first four metrics compare predicted keypoints
with annotated ones. Our base metric is PCK @ 0.5 [4], the percent of keypoints
within a threshold of 0.5 times head segment, the most commonly reported
threshold on MPII. Our first metric, Uncropped PCK, is performance on images
where the head is visible to define PCK. We choose PCK since head segment
length is typically undistorted in our data, as opposed to alternates where iden-
tifying a stable threshold is difficult: PCP [13] is affected by our high variance
in body 3D orientation, and PCPm [4] by high inter-image scale variation.

PCK is defined only on images where the head is visible (a shortcoming we
address with human judgment experiments). In addition to being a subset, these
frames are not representative of typical visibility patterns in consumer video (as
shown in Fig. 2 and Table 1), so we evaluate on crops. We sample crops to closely
match the joint visibility statistics of each entire annotated test set (detailed in
supplemental). We can then evaluate In-Image PCK, or PCK on joints in the
cropped image. Because the original image contains precise annotations of joints
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not visible in the crop, we can also evaluate Out-of-Image PCK, or PCK on joints
outside the crop. Total PCK is PCK on both. We calculate PCK on each image
and then average over images. Not doing this gives significantly more weight to
images with many keypoints in them, and ignores images with few.
3D Mesh Human Judgments: While useful, keypoint metrics like PCK suffer
from a number of shortcomings. They can only be evaluated on a subset of
images: this ranges from 37% of images from Instructions to 50% of images in
Cross-Task. Moreover, these subsets are not necessarily representative, as argued
before. Finally, in the case of out-of-image keypoints, PCK does not distinguish
between plausible predictions that happen to be incorrect according to the fairly
exacting PCK metric, and implausible guesses. We therefore turn to human
judgments, measuring results in absolute and comparative terms.
Mesh Score/Absolute Judgment: We show workers an image and single mesh, and
ask them to classify it as largely correct or not (precise definition in supplemen-
tal), from which we can calculate Percentage of Good Meshes: the proportion
of predicted meshes workers consider good. Predictions from all methods are
aggregated and randomly ordered, so are evaluated by the same pool of workers.
Relative Judgment: As a verification, we also perform A/B testing on HMR
predictions. We follow a standard A/B paradigm and show human workers an
image and two meshes in random order and ask which matches the image better
with the option of a tie; when workers cannot agree, we report this as a tie.
Baselines: We compare our proposed model with two baselines to answer a few
scientific questions.
Base Method: We compare with the base method being used, either HMR [24]
or CMR [26], without any further training past their original pose dataset train-
ing sets. This both quantifies how well 3D pose estimation methods work on
consumer footage and identifies when our approach improves over this model.
Crops: We also compare with a model trained on MPII Crops (including losses
on out-of-image keypoints). This tests whether simply training the model on
crops is sufficient compared to also self-training on Internet video.

4.3 Results on VLOG

Our first experiments are on VLOG [14], the dataset that we train on. We begin
by showing qualitative results, comparing our method with a number of baselines
in Fig. 5. While effective on full-body cases, the initial methods perform poorly
on truncated people. Training on MPII Crops prepares the model to better
identify truncated people, but self-training on Internet video provides the model
context clues it can associate with people largely outside of images — some of
the largest improvements occur when key indicators such as sinks and tables
(Fig. 5) are present. In Fig. 6, the model identifies distinct leg and head poses
outside of images given minute difference in visible pose and appearance.
Human 3D Mesh Judgments: We then consider human 3D Mesh Judgments,
which quantitatively confirm the trends observed in the qualitative results. We
report the frequency that each method’s predictions were rated as largely correct
on the test set, broken down by the number of visible joints, in Table 2. Our
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Fig. 5: Selected comparison of results on VLOG [14]. We demonstrate sequential im-
provement between ablations on HMR (left) and CMR (right). Training on MPII Crops
prepares the model for truncation, while self-training provides context clues it can as-
sociate with full-body pose, leading to better predictions, particularly outside images.
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Fig. 6: Shots focused on hands occur often in consumer video. While the visible body
may look similar across instances, full-body pose can vary widely, meaning keypoint
detection is not sufficient for full-body reasoning. After self-training, our method learns
to differentiate activity such as standing and sitting given similar visible body.

approach always outperforms using the base method, and only is outperformed
by Crops on full or near-full keypoint visibility. These performance gains are
particularly strong in the less-visible cases compared to both the base method
and crops. For instance, by using our technique, HMR’s performance in highly
truncated configurations (1-3 Keypoints Visible) is improved by 23.7 points com-
pared to the base and 11.0 compared to using crops.

2D Keypoints: We next evaluate keypoints, reporting results for all four vari-
ants in Table 3. On cropped evaluations that match the actual distribution of
consumer video, our approach produces substantial improvement, increasing per-
formance overall for both HMR and CMR. On the uncropped images where the
head of the person is visible (which is closer to distributions seen on e.g., MPII),
our approach remains approximately the same for HMR and actually improves
by 8.6% for CMR. We note our method underperforms within cropped images
on HMR. There are two reasons for this: first, supervising on out-of-image key-
points encourages predictions outside of images, sacrificing marginal in-image
performance gains. Second, the cost of supervising on self-generated keypoints
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Table 2: Percentage of Good Meshes on VLOG, as judged by human workers.
We report results on All images and examine results by number of visible keypoints.

HMR [24] CMR [26]
By # of Visible Joints By # of Visible Joints

1-3 4-6 7-9 10-12 13-15 16-19 All 1-3 4-6 7-9 10-12 13-15 16-19 All

Base 19.2 52.7 70.1 80.1 85.2 82.1 60.6 13.6 37.9 53.4 68.0 79.0 74.8 51.1
Crops 31.9 68.7 76.9 86.8 91.0 85.9 69.4 33.7 65.8 75.7 82.5 88.4 80.9 67.5
Full 42.9 72.1 82.8 89.6 92.3 83.1 73.9 40.9 71.2 80.2 86.0 89.2 79.5 71.2

Table 3: PCK @ 0.5 on VLOG. We compute PCK on the 1.8k image VLOG test
set, in which the head is fully visible, as Uncr. Total. These images are then Cropped to
emulate the keypoint visibility statistics of the entire dataset, on which we can calculate
PCK In and Out of cropped images, and their union Total.

Method HMR [24] CMR [26]
Cropped Uncr. Cropped Uncr.

Total In Out Total Total In Out Total

Base 48.6 65.2 14.7 68.5 36.1 50.2 13.2 49.5
Crops 51.6 65.3 24.2 68.8 47.3 58.1 26.2 59.5
Ours 55.9 61.6 38.9 68.7 50.9 60.3 34.6 58.1

is reduced precision in familiar settings. Nevertheless, CMR improves enough
using semi-supervision to still increase on in-image-cropped keypoints.

4.4 Generalization Evaluations

We now test generalization to other datasets. Specifically, we take the approaches
evaluated in the previous section and apply them directly to Instructions [2],
YouCookII [59], and Cross-Task [62] with no further training. This tests whether
the additional learning is simply overfitting to VLOG. We show qualitative re-
sults of our system applied to these datasets in Fig. 7. Although the base models
also work poorly on these consumer videos, simply training on VLOG is sufficient
to produce more reasonable outputs.
3D Mesh Judgments: This is substantiated quantitatively across the full
dataset since, as shown in Table 4, HMR and CMR perform poorly out-of-
the-box. Our approach, however, can systematically improve their performance
without any additional pose annotations: gains over the best baseline range from
4.5 percentage points (CMR tested on Instructions) to 10.7 percentage points
(HMR tested on YouCookII). Our outputs are systematically preferred by hu-
mans in A/B tests (Table 5): our approach is 4.6x – 8.9x more likely to be picked
as preferable compared to the base system than the reverse, and similarly 2.4x
– 7.8x more likely to be picked as preferable to crops than the reverse.
2D Keypoints: Finally, we evaluate PCK. Our approach produces strong per-
formance gains on two out of the three datasets (YouCookII and Cross-Task),
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Fig. 7: Results on External Datasets. While our method trains on Internet Vlogs,
performance generalizes to other Internet video consisting of a variety of activities and
styles; specifically instructional videos and cooking videos.

Table 4: Percentage of Good Meshes on External Datasets, as judged by human
workers. We report results on All images and in the case of few visible keypoints.

Instructions [2] YouCook II [59] Cross-Task [62]
HMR CMR HMR CMR HMR CMR

1-6 All 1-6 All 1-6 All 1-6 All 1-6 All 1-6 All

Base 10.7 42.2 7.4 30.9 15.9 54.6 8.5 41.8 13.6 52.6 7.7 37.9
Crops 25.5 53.8 28.8 52.5 24.9 60.8 24.3 60.2 22.3 59.0 21.5 57.7
Full 37.3 60.5 35.2 57.0 43.4 71.5 39.9 68.5 37.0 68.1 31.0 63.5

while its performance is more mixed on Instructions relative to MPII Crops. We
hypothesize the relatively impressive performance of MPII Crops is due to 40% of
this dataset consisting of car mechanical fixes. These videos frequently feature
people bending down, for instance while replacing car tires. Similar activities
such as swimming are more common in MPII than VLOG. The corresponding
array of outdoor scenes also provides less context to accurately infer out-of-image
body parts. Yet, strong human judgment results (Table 4, 5) indicate training
on VLOG improves coarse prediction quality, even in this setting.

4.5 Additional Comparisons

To validate our choice of confidence, we consider two alternative criteria for se-
lecting confident images: agreement between HMR and CMR SMPL parameters,
and agreement between HMR and Openpose [8] keypoints. For fair comparison,
implementations closely match our confidence method; full details and tables are
in supplemental. Compared to both, our system does about the same or better
across datasets, but does not require running two systems. Agreement with CMR
yields cropped keypoint accuracy of 1.5-2.7% lower, and uncropped accuracy of
0.6% higher - 0.6% lower. Agreement with Openpose is stronger on uncropped
images: 0.3%-2.4% higher, but weaker on uncropped: 1.3%-3.5% lower.
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Table 5: A/B testing on All Datasets, using HMR. For each entry we report how
frequently (%) the row wins/ties/loses to the column. For example, row 2, column 6
shows that our full method is preferred 47% of the time over a method trained on MPII
Crops, and MPII Crops is preferred over the full method just 6% of the time

Method VLOG [14] Instructions [2] YouCookII [59] Cross-Task [62]
Base Crops Base Crops Base Crops Base Crops

Crops 53/28/19 - 56/28/16 - 49/35/16 - 46/39/15
Full 63/23/15 45/43/12 65/21/14 40/43/17 62/32/7 47/47/6 57/36/7 41/53/7

Table 6: PCK @ 0.5 on External Datasets. We compute PCK in test set images in
which the head is fully visible. These images are then cropped to emulate the keypoint
visibility statistics of the entire dataset, on which we can calculate PCK on predictions
outside the image.

Method Instructions [2] YouCookII [59] Cross-Task [62]
HMR [24] CMR [26] HMR [24] CMR [26] HMR [24] CMR [26]

Total Out Total Out Total Out Total Out Total Out Total Out

Base 42.0 19.6 32.8 17.1 56.0 27.7 44.0 26.9 56.1 20.3 44.1 19.8
MPII Crops 50.6 33.7 47.9 33.9 65.8 45.0 65.0 48.6 62.9 32.5 61.9 38.2
Ours 48.7 36.4 44.8 33.7 76.7 64.1 70.7 58.5 74.5 57.2 66.9 47.9

We additionally consider performance of our model to the model after only
the first iteration of VLOG training, through A/B testing (full table in supple-
mental). In all four datasets, the final method is 1.7x – 2.8x more likely to be
picked as preferable to the model after only one round than the reverse.

5 Discussion

We presented a simple but effective approach for adapting 3D mesh recovery
models to the challenging world of Internet videos. In the process, we showed
that current methods appear to work poorly on Internet videos, presenting a
new opportunity. Interestingly, while CMR outperforms HMR on Human3.6M,
the opposite is true on this new data, suggesting that performance gains on
standard pose estimation datasets do not always translate into performance gains
on Internet videos. Thanks to the new annotations across the four video datasets,
however, we can quantify this. These keypoint metrics are validated as a measure
for prediction quality given general agreement with human judgement metrics in
extensive testing. We see getting systems to work on consumer videos, including
both the visible and out-of-image parts, as an interesting and impactful challenge
and believe our simple method provides a strong baseline for work in this area.
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