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1 Abstract7

The current trend in land-surface and carbon modelling development is largely dichotomous: simple algo-8

rithms which minimise the number of biophysical parameters and meteorological drivers versus complex9

ecophysiologically based models which do not. Understanding the sensitivity of both types of approach to10

current uncertainties in Leaf Area Index (LAI) and meteorological forcing is an important step in producing11

accurate model predictions of land-atmosphere carbon exchange. We force two quite disparate models (the12

Moderate Resolution Imaging Spectroradiometer (MODIS) Light-Use Efficiency (LUE) algorithm and the13

ecophysiological model JULES-SF) with two LAI forcings (satellite and site-normalised) and two meteorolo-14

gies (tower-based and reanalysis). Simulations are conducted for 67 sites and 10 vegetation classes. The15

sensitivity of modelled Gross Primary Productivity (GPP) to both LAI and meteorological forcing, thus de-16

rived, is compared with model bias against observed carbon fluxes. Our most novel findings are as follows:17

uncertainty in model formulation (LUE versus ecophysiological) is at least as important (20% change in18

simulated GPP) as that pertaining to LAI and meteorological forcing (10-20% change). However, all these19

uncertainties are modest compared to both model bias (≤30%) and inconsistencies between observational20

datasets used for model calibration (45%). The ecophysiological model is more sensitive to meteorology (20%21

change in simulated GPP) than the LUE algorithm (10%) owing to the former’s reliance on precipitation22

and shortwave radiation to calculate, respectively, the internal balances of water and energy.23

Keywords24

carbon cycle, process-based models, Moderate Resolution Imaging Spectroradiometer (MODIS), FLUXNET,25

Light-Use Efficiency (LUE), Leaf Area Index (LAI)26
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2 Introduction27

Accurate model predictions of current ecosystem gross productivity are essential for our understanding of28

ecology, the carbon cycle and how environmental change is likely to have an impact on future photosynthesis29

(Running et al 1999; Friend et al 2007). Understanding the sensitivity of land-surface and carbon models30

to current uncertainties in meteorology and LAI forcing is an important step in producing accurate model31

predictions (IPCC 2007). Further, this sensitivity is likely to vary for models of fundamentally different32

structure and complexity. Although, in principle, more complex ecophysiological models confer greater33

flexibility to modelling vegetation under different and changing environmental conditions, they also impose34

greater demands in terms of process parameterisation and meteorological forcing compared to simple algo-35

rithms such as LUE (Abramowitz et al 2008; McCallum et al 2009; note that frequently used acronyms and36

algebraic quantities are listed in Tab. 1).37

38

For the LUE algorithm used to calculate global daily GPP from MODIS reflectance observations, estimates39

vary by 15-25% according to the source of the reanalysis meteorology used to drive the model (Zhao et40

al 2006). Similarly, simulated GPP for 15 Ameriflux sites decreases by on average 28% when tower-based41

(ground) meteorological forcing replaces the standard reanalysis meteorology used to drive the MODIS LUE42

algorithm (Heinsch et al 2006). Heinsch et al conjecture that errors in meteorology are likely to be more43

important than those associated with landcover classification or LAI phenology.44

45

Since Heinsch et al, the MODIS algorithm has been recalibrated. Furthermore, the fraction of Photosyn-46

thetically Active Radiation (fPAR) used to force the model, along with the corresponding LAI product,47

have been updated (Zhao & Running 2010). Using this new collection 5 release, Fang et al (2012) find, for48

83 sites, a root mean square discrepancy between MODIS and ground-based LAI which is somewhat greater49

than that documented by Heinsch et al (1.1 m2 m−2 versus 0.5-1.0 m2 m−2). This suggests that errors in50

LAI forcing might be more important than previously surmised. Indeed, Puma et al (2013) assert that LAI51

phenology rather than meteorology is the primary influence on simulated GPP, although this conclusion is52

based on interannual variability rather than driver uncertainty. Thus, an open question exists concerning the53

relative importance of LAI and meteorology. Moreover, it is possible that differences in model formulation54

and process complexity may be more significant than uncertainties arising from forcing (Knorr & Heimann55

2001). For example, Cramer et al (2001) estimate a ±20% uncertainty in simulated global Net Primary56
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Productivity (NPP) owing to model formulation. Similarly, for water fluxes, model complexity, rather than57

forcing, appears to contribute greatest uncertainty (50%) to predicted zonal evapotranspiration (Vinukolla58

et al 2011; see also Dirmeyer 2011).59

60

The current trend in land-surface modelling is largely dichotomous (e.g. Fisher et al 2008; McCallum et al61

2009). Relatively simple algorithms which minimise biophysical parameters and meteorological drivers vie62

with complex ecophysiological models (sometimes referred to as process-based or mechanistic) which require63

far more parameters and meteorological drivers. We acknowledge, though, the recent emergence of a third64

group of models which is essentially statistical, such as artificial neural networks (Beer et al 2010). Complex65

ecophysiological land-surface models typically incorporate explicit processes for light interception, photo-66

synthesis, respiration and plant and soil hydrology (Alton 2013). They usually contain a Penman-Monteith67

energy balance (Monteith 1965) and require 7-9 meteorological variables rather than 1-3 variables used to68

force a LUE algorithm. Many of them contain internal (prognostic) calculations of LAI which, in contrast69

to LUE models, allow them to be used independently of satellite LAI forcing in simulations under future cli-70

mate (Richardson et al 2012). Owing to its simplicity, LUE is well suited to current global satellite datasets71

such as the MODIS fPAR product, based on multi-spectral reflectance (McCallum et al 2009). In contrast,72

some of the ecophysiological models have been developed at specific sites where intensive field measurements73

allow parameterisation and testing of the model (e.g. Baldocchi & Wilson 2001; Williams et al 1996). How-74

ever, both types of model are being calibrated at site level in order to scale (or with a view to scaling) to75

global level using grid-scale (1◦) reanalysis meteorology (e.g. Yuan et al 2007; Friend et al 2007; Alton 2013).76

77

In the current study we compare a LUE algorithm and an ecophysiological model in terms of validation78

against eddy covariance carbon fluxes and sensitivity to forcing. Several model comparisons already exist in79

the literature. However, typically they compare predicted regional and global fluxes (e.g. NPP by Cramer80

et al 2001 and evapotranspiration by Dirmeyer 2011). There has been little focus on the sensitivity at81

site level of different types of model to meteorological and LAI forcing. In particular, few studies attempt82

to contrast the extremes of model complexity i.e. the model dichotomy described above. The open-access83

availability of fluxes and tower-based meteorology within the expanding FLUXNET archive allow such a84

comparison to be made. The enterprise is aided by the recent compilation of ancillary variables such as field85

LAI for FLUXNET locations (Agarwal 2012). The continuing improvement in global reanalysis meteorology86
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(e.g. Princeton Reanalysis and Global Soil Wetness Project; Sheffield et al 2012; Dirmeyer 2011) and LAI87

satellite products (Collection 5 release from MODIS) justifies a reexamination of model sensitivity to forcing88

which can then be placed in the context of other uncertainties such as model formulation and bias in model89

calibration datasets.90

91

The overarching aim of the current study is to quantify and to compare the impact on predicted GPP of92

uncertainties from LAI and meteorological forcing for two carbon models representing opposite extremes93

in model complexity (a simple LUE algorithm versus a complex ecophysiological land-surface model). To94

some extent we build on Heinsch et al (2006) but our sample is much larger (67 sites vs 15), determining95

sensitivity to both LAI forcing and meteorology for two quite different models using the latest datasets of96

LAI and reanalysis. Our specific objectives are:97

1. to determine the sensitivity of simulated GPP to driving meteorology and LAI forcing for a large98

number of FLUXNET sites (67) which encompasses a diverse range (10) of Plant Functional Types99

(PFTs);100

2. to compare simulated GPP to estimates based on observed eddy covariance carbon fluxes and thus101

place the sensitivity from objective (1) into the context of model accuracy and bias;102

3. to compare the sensitivity from objective (1) with the impact of model formulation (LUE or ecophys-103

iological), as well as previously documented errors (e.g. uncertainties in biophysical parameters);104

4. to quantify the difference between satellite and field LAI for a large number of globally distributed105

FLUXNET sites by virtue of our LAI sensitivity test which makes use of both kinds of measurement.106

3 Material and Methods107

In summary, the methodology consists of driving two carbon models with two phenologies (satellite and108

site-normalised) and two meteorologies (tower-based and reanalysis) and comparing the simulated output109

in GPP (Fig. 1). First, we introduce the two models (§3.1). Then, in §3.2, we describe the datasets required110

both for forcing (LAI and meteorology) and for GPP validation (eddy covariance carbon fluxes). Finally,111

we set out the modelling protocol for the model simulations and sensitivity experiments (§3.3).112
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3.1 Models113

3.1.1 MODIS-GPP114

The MODIS-GPP algorithm is a simple model based on light-use efficiency i.e. the daily conversion of solar115

radiative energy to carbohydrate synthesis and carbon storage. Thus:116

GPP = 0.45 ΣSW ǫmax fPAR fV PD fTmin (1)

where ΣSW denotes the daily (24 hr) total of downwelling shortwave solar radiation. Multiplication by 0.45117

and fPAR yields that part of the solar spectrum which is being absorbed by the foliage for photosynthesis.118

Parameter ǫmax is the maximum light-use efficiency. In Eq. 1, fVPD and fTmin are stress scalars determined119

on a daily timestep. They diminish the LUE by ramp functions which vary between 0 and 1 according to120

thresholds in average daytime vapour pressure deficit and minimum air temperature. Note that ǫmax and121

the thresholds for the stress scalars are defined per PFT (Zhao & Running 2010).122

123

In the standard MODIS product based on Eq. 1 (MOD17), fPAR is supplied by the MODIS product124

MOD15A2. This fPAR is inferred by matching observed multispectral reflectances over a 8-day period with125

reflectances simulated by a 3-D radiative transfer model, for a range of conditions, and stored in a look-up126

table. For MOD17, near real-time daily inputs of ΣSW, minimum air temperature and daytime averaged127

vapour pressure deficit are supplied from a Data Assimilation Office reanalysis meteorology. Precipitation128

is not input. Therefore, no water balance nor calculation of soil moisture stress on photosynthesis is under-129

taken. The neglect of seasonal drought is recognised as a limitation of the model (Zhao & Running 2010),130

although the stress scalar for Vapour Pressure Deficit (VPD) may to some extent act a proxy for diurnal131

drought stress. The model has no memory and does not require spin-up. Notably, photosynthesis within132

MODIS-GPP depends on air temperature (Tair) rather than on a canopy temperature which is derived from133

an energy balance such as that conducted in JULES-SF.134

135

The main advantages of this LUE algorithm are: phenology depends on a readily available satellite dataset136

(MODIS product); the number of biophysical parameters is small; and the simplicity of the model allows137

rapid computation. The main disadvantage is an absence of an explicit canopy light interception which138

accounts for leaf-level light saturation, separate components of direct and diffuse sunlight and a photo-139
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synthetic capacity (maximum Rubisco-limited carboxylation rate) which declines with depth through the140

canopy (Meir et al (2002)). A further disadvantage is the neglect of soil moisture stress on photosynthesis.141

3.1.2 JULES-SF142

JULES-SF (Joint UK Land Environmental Simulator) is an enhanced version of the new UK Met.Office Sur-143

face Exchange Scheme (Cox et al 1999). Key equations for JULES-SF are given in the Appendix of Alton144

& Bodin (2010) with the exception of a subsequent reformulation of plant maintenance respiration which145

now consists of separate, additive terms for leaf, stem and root respiration according to Q10 relationships146

based, respectively, on canopy and soil temperature (Law et al 1999). In the following overview we focus on147

major differences with simple LUE models.148

149

JULES-SF, like many process-based land-surface models, is forced by more meteorological variables com-150

pared to LUE models. In addition to SW, Tair and VPD (or equivalently specific humidity), JULES-SF151

requires downwelling longwave thermal radiation (for energy balance), precipitation (for water balance),152

wind speed (to determine boundary layer heat and water conductance), and pressure (for the CO2 and wa-153

ter vapour gradient across the leaf stomata). The core energy calculation is the standard Penman-Monteith154

approach (Monteith 1965), ensuring the balance of ingoing and outgoing energy fluxes at the land-surface.155

156

JULES-SF takes account of diffuse and direct sunlight at multiple heights within the canopy including sun-157

fleck penetration (hence SF) and diffuse sky irradiance (from for example cloud and haze). It is one of158

most elaborate land-surface models which operates globally in terms of light interception (Alton et al 2007).159

Photosynthesis is calculated separately within each of 5 leaf layers according to a biochemical co-limitation160

model (Collatz et al 1991), before summing to produce a canopy total. In stark contrast to MODIS-GPP,161

the co-limitation implies a non-linear response to light, which saturates under high irradiance to a Rubisco-162

limited rate. The Rubisco limit is proportional to active leaf nitrogen, per unit area, and is fixed by a163

parameter for the top of the canopy, V0
cmax, which is probably the most important determinant of GPP and164

NEE in an ecophysiological model of this kind. In accordance with field observation, active leaf nitrogen,165

and therefore the Rubisco limit, decline exponentially from the top of the canopy downwards (e.g. Lewis et166

al (2000); Meir et al (2002)). Leaf photosynthesis is linked to transpiration through a Ball-Berry stomatal167

model (Ball et al 1987) which is sensitive to the relative humidity and temperature of the canopy. Canopy168
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temperature is derived from the Penman-Monteith energy balance.169

170

As in most ecophysiological models, a water balance is conducted, accounting for input (precipitation) and171

output (evapotranspiration and above and below ground runoff). Therefore, in contrast to LUE models,172

JULES-SF possesses memory of past forcing. The water balance allows moisture content to be calculated173

in 4 soil layers of thickness (top downwards) of 0.1, 0.25, 0.65, 2.0 m. Plant water extraction depends on a174

fine root distribution with vertical exponential scale-depths of 0.1-0.3 m, depending on PFT (Jackson et al175

1996). The soil moisture content enters the stomatal model as a stress factor. Thus, when soil moisture is176

limiting, extraction declines, the stomata close and photosynthesis decreases.177

178

The main advantages of JULES-SF compared to a LUE approach are: explicit account for light interception179

and Rubisco photosynthetic capacity at different heights within the canopy; an ecophysiological approach180

which accounts for observed non-linear behaviour such as colimited photosynthesis and seasonal lag effects181

such as soil moisture stress; and a short timestep which accounts for the diurnal cycle. The main disadvan-182

tages are: a large number of parameters, many of which poorly known at least at PFT level; a large number183

of meteorological variables including precipitation which is difficult to reconstruct accurately in reanalysis;184

and a longer computational time owing to a shorter timestep and more complex calculations (e.g. energy185

balance and photosynthesis), though this is rarely inhibitive unless decadal or ensemble simulations are186

being run.187

188

Tab.2 summarises the salient differences btw MODIS-GPP and JULES-SF.189

3.2 Datasets190

Datasets serve as input or validation and these two categories are discussed in turn below. As input, both191

models require biophysical parameter values (defined per PFT), a timeseries of meteorological forcing and192

a timeseries of LAI.193

3.2.1 Input: Biophysical Parameters194

As described above, MODIS-GPP requires maximum LUE (ǫmax) and thresholds for the stress scalars195

moderating photosynthesis according to minimum air temperature and VPD stress. To permit a model196
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comparison, we define these for the same PFTs configured in JULES-SF. In JULES-SF there are typically197

30-50 parameters per PFT although, in practice, less than 10 of them have a large influence on predicted198

carbon exchange. Many of the biophysical parameters are plant attributes which are either structural199

(e.g. rooting depth, canopy height), optical (e.g. leaf absorptance) or physiological (e.g. photosynthetic ca-200

pacity, minimum stomatal conductance). They are assigned values from average collated field measurements201

(Alton & Bodin 2010). Probably the most influential parameter on modelled carbon fluxes is the maximum202

carboxylation rate, a measure of photosynthetic capacity (V 0
cmax), which is based on the average of leaf203

measurements compiled by Wright et al (2004) and Kattge et al (2009). The primary parameters for both204

models, ǫmax and V 0
cmax, are given in Tab. 3 for each PFT.205

206

To determine the soil hydraulic properties (e.g. conductivity at saturation, Clapp-Hornberger exponent)207

required by JULES-SF, we adopt the average soil composition measured at each site in the FLUXNET208

ancillary database (Agarwal 2012). The recorded clay and silt contents are related to the soil categorisation209

in Campbell & Norman (1998).210

211

3.2.2 Input: Meteorological forcing212

According to the experiment undertaken (discussed below), meteorological forcing either consists of that213

recorded in situ, typically 5-10 m above the vegetation (tower-based), or a reanalysis meteorology recon-214

structed globally by workers at Princeton University (Sheffield et al 1996) and continually improved and215

updated (Sheffield et al 2012). The tower-based meteorology, provided by FLUXNET (Falge et al 2002),216

is initially averaged over the JULES-SF 3hr timestep which is deemed of sufficient temporal resolution to217

simulate the diurnal cycle within the ecophysiological model. To run MODIS-GPP, we compress meteoro-218

logical forcing to the one-day timestep conventionally used in Eq. 1 for the standard MODIS global GPP219

product (MOD17). For this model, we need only extract SW, specific humidity and Tair. Specific humidity220

is converted to VPD using Tair (e.g. Campbell & Norman 1998) and the daily minimum air temperature is221

extracted from Tair. The reanalysis already has a 3 hour timestep which we average to a daily interval for222

MODIS-GPP. The reanalysis timeseries is selected according to the 1◦ global grid cell containing the site223

being simulated and the corresponding year.224
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3.2.3 Input: LAI forcing225

Both models depend either directly (JULES-SF) or indirectly (via fPAR for MODIS-GPP as discussed226

below) on LAI. To create a satellite LAI timeseries, we extract from the 8-day MOD15A2 Collection 5227

LAI product a 7km×7km subset (49 pixels) centred on the site location. We mean average pixels of good228

quality (i.e. main algorithm, no significant cloud and >50% detectors working; Yang et al 2006). An ideal229

assessment of model sensitivity to uncertainty in LAI forcing requires a field-based timeseries of site LAI to230

compare against the satellite phenology. With the exceptions of a few sites, such a field-based phenology231

does not exist (Melaas et al 2013). Therefore, to assess sensitivity to LAI, two categories of simulation are232

conducted: an unnormalised satellite timeseries and one that is normalised to maximum site-recorded LAI.233

234

Site-recorded values are available from the FLUXNET ancillary archive (Agarwal 2012; site LAI database235

hereafter) and represent measurements conducted using principally LiCOR, harvesting and leaf litter col-236

lection. We reject site measurements based on leaf litter as a detailed knowledge of senescence and leaf-out237

is required to reconstitute canopy LAI. However, the site LAI database only describes the method in about238

half the cases. Therefore, we must assume that some leaf litter measurements remain in our sample. Where239

possible, we match the siteyear of the simulation to the correct year from the site LAI database and extract240

the maximum site LAI in order to compare with the corresponding measurement (by interpolation across the241

8-day interval if necessary) in the MOD15A2 timeseries (quality=1). If the siteyear precedes the available242

MODIS timeseries (<2002), a median MODIS timeseries is used, averaging years 2002-2010 (quality=2). In243

order to provide a sufficiently large sample to determine sensitivity over all PFTs, values are also adopted244

from the site LAI database where the year is incorrect/unknown (quality=2) and where the date is unknown245

(quality=3). For quality=3, we assume site LAI corresponds to the maximum annual value and we match it246

to the maximum value of the satellite timeseries. Note that there are no significant differences between the247

means of the 6 PFTs where there are sufficient site measurements to compare quality=1 against quality≤3.248

However, we check the impact of site LAI quality on our results.249

250

For MODIS-GPP, an 8-day fPAR timeseries already exists in tandem with MOD15A2 LAI and this fPAR251

timeseries is generally adopted in Eq. 1 for the standard GPP product MOD17. However, the landcover252

adopted in the MODIS fPAR algorithm is not necessarily the same as that recorded at the FLUXNET site.253

Further, if we wish to perturb the LAI timeseries in our sensitivity experiments, fPAR would have to be254
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recalculated from the original radiances. Therefore, to render the sensitivity experiment feasible, we use the255

two-stream approximation (Sellers et al 1996) to derive fPAR from 8-day LAI for both the site-normalised256

and satellite (unnormalised) timeseries. This is carried out prior to the MODIS-GPP simulations in order257

to supply fPAR in Eq. 1. The two-stream approximation takes account of upwelling and downwelling direct258

and diffuse light in a uniform leaf distribution according to LAI, solar zenith angle and the fraction of diffuse259

sky irradiance over the course of the 8-day interval. We adopt the two-stream approximation for convenience260

because it is already used in JULES-SF to calculate surface albedo. Note that the timestep of both models261

(3 hr and 1-day for JULES-SF and MODIS-GPP, respectively) is smaller than that of the LAI and fPAR262

timeseries (8-day).263

3.2.4 GPP Validation264

To validate the GPP predicted by both models, we adopt Net Ecoystem Exchange (NEE) recorded in the265

main FLUXNET database. Siteyears that are available to the general modelling community lie between266

1991-2010, though the bulk (93%) range 1997-2009 (Falge et al 2002; Yuan et al 2010). Sites are distributed267

worldwide but are biassed towards forest in North America and Europe (Fig. 2). To minimise the impact268

of incomplete energy closure (Foken 2008), we exclude fluxes recorded under low frictional velocity (<0.16269

ms−1; Goulden et al 1996; Reichstein et al 2003) or, if frictional velocity is unrecorded, where windspeed270

<2 ms−1 (Medlyn et al 2003). We recognise, however, that the effectiveness of these velocity filters may271

be site-dependent and that closure may depend on other factors such as storage terms which relate to the272

structure of the vegetation (Wilson et al 2002; Masseroni et al 2014).273

274

To compare observations with model output, several steps are required, beginning by averaging good quality275

NEE measurements into 3 hr intervals. To convert NEE to GPP, we construct an ecosystem respiration276

model (Re) for each sitemonth by best fitting a quadratic function of Tair against nocturnal 3 hr fluxes.277

GPP is then estimated at each 3 hr timestep using the corresponding Tair and sitemonth function for Re.278

Thus;279

GPP = Re(sitemonth, Tair) − NEE (2)

where negative values for NEE indicate carbon assimilation by the surface. The use of nighttime carbon280

fluxes to define ecosystem respiration has been adopted by many authors in the past (Valentini et al 2000;281
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Yuan et al 2007; Desai et al 2008) but some authors adopt an exponential function for Re in Eq. 2 (e.g. Medlyn282

et al 2003). However, we find that a quadratic fit produces a lower root mean square error. Since the timestep283

of MODIS-GPP is daily (24 hr), both the flux-derived GPP inferred from Eq. 2 and GPP simulated by284

JULES-SF are averaged to a daily rate in gCm−2d−1.285

3.3 Modelling Protocol and Experiments286

Fig. 1 provides a schematic overview of the simulations and sensitivity experiments. Simulations are con-287

ducted for all 484 siteyears within the main FLUXNET database for which tower meteorology is recorded288

and available to the general ecological modelling community. For ≃70% siteyears where site LAI is recorded,289

a sensitivity analysis is carried out by conducting 3 main simulations per model: (1)tower-based meteorology290

plus site-normalised LAI timeseries (default); (2) reanalysis meteorology plus site-normalised LAI timeseries291

(meteorology-perturbed); and (3) tower-based meteorology plus satellite (unnormalised) LAI timeseries292

(LAI-perturbed).293

294

Sensitivity is defined as:295

∆GPP =
GPP (PERTURB) − GPP (DEF )

GPP (DEF )
(3)

where GPP(PERTURB) is either LAI-perturbed (GPP(LAI PERTURB)) or meteorology-perturbed296

(GPP(MET PERTURB)). GPP(DEF) derives from the default simulation. Both GPP(PERTURB) and297

GPP(DEF) are in gCm−2d−1. For the meteorology perturbation, we also carry out 7 auxillary simulations298

to ascertain the sensitivity to individual meteorological variables. We do this by replacing only one of the299

7 tower-meteorology variables by its reanalysis counterpart.300

301

For those siteyears without site LAI, only a default simulation is conducted with tower meteorology and302

satellite LAI timeseries. This allows these siteyears, where they contain valid NEE measurements, to be303

included in GPP validation. Thus, to make maximum use of the data, our sample sizes differ somewhat304

according to validation or sensitivity analysis (the number of sites and siteyears in Tab. 3 refer to sensi-305

tivity). In our results, we check the impact of mixing normalised and unnormalised LAI timeseries on our306

GPP validation.307

308
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To run the simulations every site must be attributed to one of the 10 PFTs defined in JULES-SF and given309

in Tab. 3. To run simulations for JULES-SF (a model containing soil water balance) a complete and contin-310

uous meteorology is required. Therefore, protracted gaps in the tower-meteorology (generally before/after311

the growing season) are filled with the reanalysis. Note, however, that the sensitivity analysis and the312

validation are carried out by only averaging over the period of the siteyear for which tower meteorology313

is available. Furthermore, for validation, we only average modelled and flux-derived GPP across timesteps314

where valid NEE is available under sufficient frictional velocity. For JULES-SF, the soil moisture content315

for each siteyear is spun-up by splicing the required meteorology and LAI timeseries back-to-back over a 5316

yr period and pre-running the model over this period.317

318

We recognise that there are large differences in the LAI and meteorological sampling size (footprint) between319

the perturbed and the default simulations. Field LAI has been upscaled to the satellite footprint for com-320

parative purposes at individual sites by some authors (e.g.De Kauwe et al 2011) but such detailed ground321

sampling does not exist for the large number of sites in the present study. Further, we would argue that322

scaling mismatches of this kind constitute part of the typical error or uncertainty associated with running a323

global simulation of productivity that has been, for example, previously validated or calibrated at site-level.324

Note that the LAI and meteorological datasets differ not just in spatial scale but often in methodology. For325

example, satellite LAI derives from multispectral reflectance, which may saturate for dense canopies even at326

near-infrared wavelengths, whereas the field LAI is based on LiCor light-extinction profiles and harvesting327

measurements. Reanalysis meteorology comprises satellite and interpolated ground-based measurements328

with use of temporal disaggregation, whereas the tower-based meteorology is created from high frequency329

measurement with in situ instruments.330

331

Although there little consensus on what constitutes current uncertainties in model forcing, the present332

study follows Heinsch et al (2006) in comparing simulations based on in situ (relatively accurate) forcing333

with those based on satellite observations in order to determine model sensitivity to forcing uncertainties334

that are typical of spatial upscaling. The justification for this approach is that many models are calibrated335

or validated at site level, using in situ meteorology and possibly some estimate(s) of field LAI, to be run336

globally using satellite-based data (e.g. Yuan et al 2007; 2010).337
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4 Results & Discussion338

First we validate the models. Then we analyse model sensitivity to LAI and meteorological forcing. Valida-339

tion also includes a comparison of satellite LAI against field estimates since this defines the uncertainty in340

LAI forcing used within the sensitivity experiment. Furthermore, it provides a check on a new release of a341

widely used MODIS product.342

4.1 Validation: LAI343

MOD15A2 LAI exhibits a saturating (exponential) relationship against field-based estimates from the site344

LAI database (Fig. 3). This relationship is largely independent of the quality of field LAI used (quality=1345

or quality≤3). The bias of satellite LAI with respect to ground-based measurements is -12% for site LAI346

<3.9 m2 m−2 (median site LAI) and -25% for site LAI ≥3.9 m2 m−2. Removing C3 crops from the sample,347

reduces the bias to -11% and to -8%, respectively. Thus, this Collection 5 MOD15A2 release appears to348

remove positive bias at low LAI which characterises preceding releases (Abuelgasim et al 2006; Aragao et al349

2005; Heinsch et al 2006) and reveals an underestimation of site LAI by MODIS especially for non-woody350

PFTs. Severe underestimation of C3 crops may arise from the inclusion of surrounding vegetation with less351

vigorous growth in the satellite footprint. We recognise that field measurements sample a much smaller area352

(∼100 m) than the satellite footprint (∼1 km) but, in general, we would expect this mismatch to generate353

dispersion in Fig. 3 rather than a systematic offset or bias.354

355

Our field averages are somewhat smaller than those of a much larger field database (Asner et al 2003), but356

this only confirms a general tendency for field estimates to exceed remote sensing measurements (Tab. 4).357

This accords with Fang et al (2012) who find a tendency for both MODIS and SPOT to underestimate358

field LAI when field estimates exceed 3 m2 m−2. Note that, in Tab. 4 and many subsequent results, we359

show the median value of the PFT means (or, for sensitivity, the median value of the absolute PFT means)360

owing to the small number of PFTs being evaluated. The reader should bear in mind, however, that some361

ecosystems (e.g. North American broadleaf and needleleaf forests) are better represented numerically than362

others (Tab. 3 and Fig. 2).363
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4.2 Validation: GPP364

Despite representing extremes in process complexity, both models exhibit a similar saturating (exponential)365

response against observational (eddy covariance flux) estimates of GPP (Fig. 4). Thus, for <5.7 gCm−2d−1
366

(median observed), MODIS-GPP and JULES-SF both overestimate observational estimates by +28% and367

+37%, respectively. Above the median, the respective bias is -26% and -13%. The highest values of368

observation-derived GPP (for tropical broadleaf forest and C3 crops) are underestimated by 50-100% by369

both models. Note that our median observed (and modelled) daily GPP is quite high for a sample domi-370

nated by temperate ecosystems (equivalent to 2.1 kg m−2yr−1; c.f. Luyssaert et al 2007). This is because371

model and observation can only be compared where the tower-based meteorology is available (bias towards372

the growing season) and frictional velocity is moderately high (bias towards daytime; see §3.2.4 and §3.3).373

374

The tendency for models, regardless of their formulation, complexity and calibration, to underestimate the375

highest productivity rates inferred from eddy covariance fluxes (either GPP or maximum daytime assim-376

ilation rates, |NEE|) is evident in previous studies. For example, the ecophysiological CSIRO Biosphere377

Model underestimates peak |NEE| recorded at two FLUXNET sites (one needleleaf and one broadleaf) at378

both half-hourly and monthly (25% underestimation) timescales (Wang et al 2007). Even an ecophysiolog-379

ical model with an elaborate light canopy interception, accounting for leaf-clumping, underestimates peak380

daytime assimilation by at least 50% for a broadleaf forest (Baldocchi & Harley 1995). A purely empirical381

carbon model, regressed against multiple satellite drivers (land-surface temperature and enhanced vegetation382

index) for 42 Ameriflux sites, underestimates the highest observed 8-day assimilation rates by 50% (Xiao383

et al 2011). A calibrated LUE model also underestimates 8-day GPP at high productivity FLUXNET sites384

(Yuan et al 2007). A novel machine-learning technique (neural network model) appears to underestimate385

GPP at the most productive sites by 25% (Jung et al 2011).386

387

Given the tendency for diverse models to exhibit a similar bias against eddy covariance fluxes, we should388

consider whether observational values are systematically in error. The observational GPP values are not389

measured directly but inferred from measured NEE (Eq. 2). Several methods have been applied to separate390

respiration from photosynthesis but most of them yield estimates that vary by 5-10% (Desai et al 2008).391

Nevertheless, we check our observational GPP for 19 sites which overlap with the sample of Yuan et al392

(2007) who adopt a slightly different respiration model. The difference in mean observational GPP aver-393
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aged, respectively, across non-tropical broadleaf forest, non-mediterranean needleleaf forest and the whole394

Yuan et al sample is 6%, 10% and 1%. Thus uncertainty in partitioning of respiration and GPP cannot395

account for the observation-model discrepancies in Fig.4 which are up to 50-100%. Eddy covariance mea-396

surements at the original 30 second timestep are very noisy but averaging over the siteyear, as we do in the397

present study, reduces the random error considerably (Hollinger & Richardson 2005). Systematic errors are398

more problematic, with incomplete energy closure strongly suggesting sizeable bias in detected carbon fluxes399

(Wilson et al 2002). Growing season closure averaged across all FLUXNET siteyears is 0.77, with closure400

somewhat higher during the day compared to night. Incomplete daytime closure implies assimilation by the401

canopy is actually higher. Underestimation of ecosystem respiration, owing to incomplete closure at night,402

will also lead to underestimation of observed GPP via Eq. 2. Correction for incomplete closure, therefore,403

would likely exacerbate the pronounced model underestimation at high GPP. Furthermore, we find that404

observation-model discrepancies in Fig. 4 do not correlate with siteyear closure values.405

406

Exploring further the possibility of observational bias, we note that both JULES-SF and MODIS-GPP ap-407

pear to overestimate (rather than underestimate) annual GPP when converting NPP measured at Ecosystem408

Model-Data Intercomparison (EMDI) class A sites (Olson et al 2008) to GPP (Fig. 5). A similar qualitative409

response also characterizes the ecophysiological model LPJ (Hickler et al 2006). Thus, large systematic410

differences are apparent between observations of productivity based on eddy covariance fluxes and those411

inferred from allometric estimates of biomass change (NPP) for the same PFT. One possibility is that some412

of the most productive FLUXNET sites are recovering from disturbance, a process unaccounted for in car-413

bon models (Friend et al 2007), and that the associated high carbon assimilation is, therefore, atypical of414

the PFTs that the FLUXNET sites represent. Further, the distribution of EMDI NPP sites is more evenly415

distributed globally compared to our FLUXNET sample (Olson et al 2008). This geographical disparity416

appears to invalidate the comparison against EMDI in Fig. 5, even if it is being conducted for the same417

PFTs as those used to simulate FLUXNET sites. However, both observational datasets (EMDI NPP and418

FLUXNET) are currently being used for validation purposes (e.g. Zaehle et al 2005; Yuan et al 2007), and419

are therefore liable to introduce bias into the model calibration. Thus, systematic observational differences,420

owing to both sampling (geographical and successional) and measurement bias, impose a significant limita-421

tion on the accuracy of carbon models and constitute a major uncertainty in the modelling process.422

423
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Owing to its overall lower bias against eddy covariance fluxes, the ecophysiological model has a slightly higher424

modelling efficiency than the LUE algorithm (0.2 versus 0.1; Tab. 5). Notably, however, JULES-SF exhibits425

more scatter (Fig.4). The median root mean square error of both models is quite similar (Tab. 5). The lack426

of scatter for MODIS-GPP is striking given the simplicity of its parameterisation. For example, maximum427

LUE is defined per PFT (Tab. 3) but biophysical parameters such as Rubisco-limited photosynthetic capacity428

are known to vary by an order of magnitude for plants within the same PFT (Wright et al 2004). Despite429

the pronounced bias with the LUE algorithm, the lack of scatter suggests that there may be advantages to430

simplifying complex processes which are modelled explicitly by ecophysiological models. Within the latter,431

a greater number of biophysical parameters potentially confers more flexibility in simulating fluxes at a432

diverse range of sites. In practice, however, many of the parameters used in ecophysiological models have433

poorly constrained values which may increase the scatter. A similar conclusion is drawn when comparing434

ecophysiological land-surface models against statistical models (Abramowitz et al 2008).435

4.3 Sensitivity436

The sensitivity of both models to LAI and meteorological forcing is comparable when examining the me-437

dian response across all PFTs (10-20% change in simulated GPP; Tab. 6). However, the ecophysiological438

model is more sensitivity to meteorology (≃20% change) than the LUE algorithm (≃10%). Notably, model439

formulation i.e. ecophysiological versus LUE is at least as important (sensitivity ≃20%) as LAI forcing and440

meteorology. The large uncertainty in carbon fluxes owing to model formulation is already noted in previous441

studies, for example ∼20% for global NPP (Cramer et al 2001; Knorr & Heimann 2001). Simulating annual442

GPP for Europe using 3 ecophysiological models, Jung et al (2007) infer a greater average uncertainty owing443

to the selected model (15-35%) compared to that owing to meteorological forcing (5-20%). Similarly for en-444

ergy/water fluxes, Vinukolla et al (2011) conclude that model formulation, rather than forcing, contributes445

the greatest uncertainty to zonal latent heat exchange (≃50%; see also Dirmeyer 2011).446

447

Using the interannual variability of LAI, Puma et al (2013) determine a sensitivity to LAI phenology (10%448

change in GPP for ∆LAI=0.3-0.6 m2 m−2) which is close to that found in the current study. These authors449

identify sensitivity to LAI as more important than sensitivity to meteorology. However, their interannual450

variability in meteorology is unquantified making it difficult to assess that statement against the current451

results. Tab. 6 demonstrates that sensitivity to LAI forcing varies greatly according to PFT. In general,452
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low-LAI systems are more sensitive, when expressing per unit LAI change, owing to the tendency for GPP453

to saturate at high LAI (Fig. 6).454

455

Sensitivity to meteorological forcing also varies greatly between PFTs. In part, this is attributable to higher456

uncertainty in climate for certain regions. For tropical broadleaf trees for example, average SW and VPD457

are, respectively, 12% higher and 0.2 kPa lower in the reanalysis meteorology compared to the tower-based458

meteorology, perhaps owing to localised cloud or weather systems (Fig. 7). As a median average across459

all PFTs, the greatest sensitivity to individual meteorological drivers is SW(12%), specific humidity (9%)460

and precipitation (8%) for JULES-SF and SW(8%), Tair(8%) and specific humidity (4%) for MODIS-GPP461

(Tab.7). In percentage terms, the greatest root mean square error between tower and reanalysis drivers462

is for precipitation (42%) and VPD (33%), explaining the sensitivity of JULES-SF to the former and the463

sensitivity of both models to specific humidity. Of all the meteorological variables, precipitation is one of464

the most difficult to predict in reanalysis and is highly variable both spatially and temporally (Sheffield et al465

1996). In contrast, SW exhibits a relative low bias (3%) and a root mean square error of 14 W m−2 (9%), al-466

though regional exceptions exist such as those mentioned above for tropical broadleaf trees (12% bias; Fig. 7).467

468

The sensitivity of both models to relatively small average percentage uncertainties in SW is striking. Further,469

it is somewhat surprising that the ecophysiological model, which calculates photosynthesis as a co-limitation470

of light and Rubsico-related capacity (therefore GPP saturating at high light levels), is more sensitive to SW471

than a LUE algorithm which is directly proportional to SW. The stronger SW dependence in JULES-SF472

arises from the energy balance conducted at each timestep which is largely determined by SW. This Penman-473

Monteith balance also determines the temperature used in the calculation of photosynthesis and therefore474

accounts, at the same time, for the relatively low dependence of JULES-SF on Tair. The Penman-Monteith475

balance is missing from the LUE algorithm which explains this model’s strong dependence on Tair. Overall,476

JULES-SF is more sensitive to climate than MODIS-GPP (Tab.7), perhaps owing to the additional depen-477

dence of the ecophysiological model on precipitation which determine soil moisture stress on photosynthesis.478

Diverse methods in calculating drought stress within models, e.g. via water balance (as in JULES-SF) or479

via VPD (as in both MODIS-GPP and JULES-SF), have already been cited as contributing to the large480

range in modelled global NPP (Cramer et al 2001).481

482
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For 15 Ameriflux sites, Heinsch et al (2006) claim a greater sensitivity of MODIS-GPP to meteorology483

than that estimated here (20-25% vs 10%). Similarly, Zhao et al (2006) find that simulated global GPP484

varies by 15-25% according to the reanalysis meteorology (Data Assimilation Office, ECMWF or NCEP)485

employed to drive the MODIS LUE algorithm. However, the Princeton reanalysis that we adopt in the486

current study is a hybrid product which improves on the Data Assimilation Office reanalysis used in the487

standard MODIS global GPP product (and used in the comparisons of Heinsch et al and Zhao et al). The488

improvement in reanalysis stems from a more extensive calibration against ground measurements (Sheffield489

et al 2006; see also Dirmeyer 2011 for Global Soil Wetness Project). Thus, our reanalysis bias against tower-490

based meteorology is only 3% and 0.5 K for annual SW and daily minimum air temperature, respectively491

(Fig. 7), whereas the corresponding bias for the Data Assimilation Office reanalysis is 20% and several K.492

The improvement in reanalysis SW is particularly important given its influential role in both MODIS-GPP493

and JULES-SF. As in Heinsch et al, we find that implementation of reanalysis generally increases simulated494

GPP compared to tower-based simulations, due to either a regional overestimation of SW (forecast models495

used to reconstruct meteorology are generally too transparent) and a general underestimation of VPD (lower496

humidity stress).497

4.4 Caveats and Limitations of Current Study498

1. Our validation of the default simulation includes ≃30% siteyears where site normalisation of LAI499

phenology was not possible. Removal of these unnormalised siteyears changes the model bias against500

observed carbon fluxes in Fig. 4 by only a modest amount (3%).501

2. Using only the highest quality (=1) field LAI measurements in our sensitivity analysis (only possible for502

6 PFTs), rather than quality≤3, produces the same median sensitivities to LAI forcing and meteorology503

as Tab. 6. However, sensitivity to model formulation increases moderately from 17% to 29%. A504

similar conclusion is drawn if the mean, rather than the median, is adopted when averaging the model505

sensitivity across PFTs in Tab. 6 (with the original quality≤3 field LAI measurements).506

3. Our inferences for sensitivity depend on how we define the current uncertainties in LAI and me-507

teorological forcing. For meteorology, as discussed above, the reanalysis bias against ground-based508

observations has decreased with the release of improved datasets. For LAI sensitivity, our test entails509

a small change in LAI, at least for some PFTs e.g. ∆LAI = -0.2 m2 m−2 for non-tropical broadleaf510

forest (Tab. 6). Moreover, our perturbation only changes the amplitude and not the phase of the511
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timeseries. Some models adopt a constant (field-based) LAI across the growing season (e.g. Medlyn512

et al 2005). By adopting this approach as our perturbed LAI phenology, ∆LAI increases from 0.6513

to 0.9 in Tab. 6 (median of absolute PFT means). However, the corresponding average increase in514

simulated GPP is 10% for both models i.e. close to the change in the original sensitivity experiment515

(8-12%). The increase in GPP is quite modest for both models owing to physiological limitations on516

photosynthesis outside the growing season (e.g. low temperature). Some dynamic vegetation global517

models generate LAI internally. The intramodel variability in GPP (10-20%; Richardson et al 2012),518

owing to uncertainties in this prognostic LAI, is comparable to the sensitivity to LAI forcing derived519

in the current study.520

4. The uncertainties owing to forcing and model formulation are significant compared to the impact of521

anthropogenic greenhouse gases (∼5% global GPP; Houghton 2007). However, they are only moderate522

compared to some other sources of modelling uncertainty e.g. bias of observational datasets used to523

calibrate carbon models (Tab. 8).524

5 Summary and Conclusions525

We have driven two carbon models (a simple LUE algorithm, MODIS-GPP, and a complex ecophysiological526

land-surface model, JULES-SF) with two LAI forcings (satellite and site-normalised) and two meteorologies527

(tower-based and reanalysis) and compared the simulated output in GPP. These experiments have been con-528

ducted for 67 sites and 10 PFTs in order to determine model sensitivity to LAI and meteorological forcing.529

Output from the default simulation, using site-normalised LAI forcing and tower-based meteorology, was530

also compared with GPP inferred from observed eddy covariance carbon fluxes. Our sensitivity experiment531

for LAI forcing allowed us to compare satellite (MODIS) LAI with field-based measurements.532

533

Our conclusions are as follows:534

1. For both models, the sensitivity to LAI and meteorological forcing is 10-20% (change in simulated535

GPP), which is comparable to the sensitivity owing to model formulation i.e. LUE versus ecophysio-536

logical (20% change in GPP).537

2. Compared to the LUE algorithm, the ecophysiological model is more sensitive to meteorology (20%538

versus 10% change in GPP) owing to the reliance of JULES-SF on precipitation and SW to calculate,539
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respectively, the internal water and energy balances (important for drought stress and leaf tempera-540

ture).541

3. For MODIS-GPP, the average uncertainty owing to meteorology (10% GPP) is less than that previously542

found (15-25% GPP; Heinsch et al 2006; Zhao et al 2006) owing to the improving accuracy of reanalysis543

meteorology compared to ground-based observations. For some regions, however, we find uncertainties544

are larger (e.g. 30% GPP for tropical broadleaf trees) owing to substantial errors in SW and VPD545

reanalysis.546

4. Despite their disparity in complexity, both models underestimate flux-derived observational GPP for547

the more productive FLUXNET sites (by 10-30% for the 50% most productive sites and by 50-100% for548

tropical broadleaf trees and C3 crops). This bias, which cannot be attributed to forcing uncertainties,549

is shared with a large range of other models, possibly indicating a general inadequacy in land-surface550

and carbon modelling. However, there are also inconsistencies of a comparable magnitude between the551

observational datasets used to validate, and potentially calibrate, the models (e.g. FLUXNET versus552

Ecosystem Model-Data Intercomparison sites).553

5. Although MODIS-GPP possesses a greater bias than JULES-SF against flux-derived observational554

GPP, it produces less scatter. This suggests that, once adequately calibrated, the LUE approach may555

allow acceptable simplification of the complex process of canopy photosynthesis.556

6. Satellite measurements of growing season LAI, based on the latest (Collection 5) MODIS product557

(MOD15A2), underestimate field-based estimates by 10-25%. Underestimation is more pronounced558

for grasses and crops.559
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Table 1: An alphabetical list of acronyms and abbreviations used in the main text. Units are given where
appropriate.

Definition

fPAR fraction of Photosynthetically Active Radiation
GPP Gross Primary Productivity (gCm−2d−1)
JULES-SF Joint UK land environmental simulator
LAI Leaf Area Index (m2 m−2)
LUE Light-Use Efficiency
MODIS Moderate Resolution Imaging Spectroradiometer
NEE Net Ecosystem Exchange
NPP Net Primary Productivity
PFT Plant Functional Type
SW downwelling Short Wave radiation (W m−2)
Tair Air temperature (K)
VPD Vapour Pressure Deficit (kPa)
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Table 2: Comparison of the salient features of each model. Driving meteorology is denoted as follows:
shortwave radiation (SW), Vapour Pressure Deficit (VPD), air temperature (Tair), longwave radiation (LW),
precipitation (PPT), wind speed (WS), pressure (P) and specific humidity (Q). Driving phenology is denoted
as Leaf Area Index (LAI) and fraction of photosynthetically active radiation (fPAR). Note that fPAR is
derived from multispectral reflectance in the standard MODIS GPP product but in the present study it
is derived from LAI. The primary model parameters are top-of-canopy maximum carboxylation rate or
photosynthetic capacity (V 0

cmax) and the maximum light-use efficiency (ǫmax). N refers to leaf nitrogen.

MODIS-GPP JULES-SF

Meteorology SW, daytime VPD, minimum Tair SW, LW, PPT, Tair, WS, P, Q

Phenology fPAR (via reflectances or LAI) LAI

Primary Parameter ǫmax V 0
cmax

Photosynthesis light-use efficiency with ramp stress co-limited by SW, Rubisco (N)
functions for stress owing to concentration, enzyme kinematics (sensitive to
Tair and VPD canopy temperature), water availability in root

zone and stomatal conductance (sensitive to
relative humidity)

Canopy Structure none 1-D but accounting for sunlit-shade foliage and
declining Rubisco with decreasing height in canopy

Energy Balance none Penman-Monteith to determine surface fluxes
and canopy temp

Water Balance none full account of PPT, evapotranspiration, runoff
and changes in soil moisture

Output daily GPP 3hr carbon,water and energy fluxes including GPP
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Table 3: Key parameters adopted for each model: top-of-canopy maximum carboxylation rate or photo-
synthetic capacity (V 0

cmax; µmol m−2 s−1) for JULES-SF and maximum light-use efficiency (ǫmax; gCm−2

d−1 MJ−1) for MODIS-GPP. Parameters are assigned according to Plant Functional Types (PFT) as de-
fined in JULES-SF. The corresponding abbreviation for PFT (Desig.) is adopted in subsequent figures and
tables. Design.(UMD) defines the corresponding University of Maryland land cover classification which is
conventionally adopted with MODIS-GPP (Zhao & Running 2010). The number of sites and siteyears in
the present study is given by nsite and nsiteyr, respectively.

Plant Functional Type Desig. Desig.(UMD) nsiteyr nsite V 0
cmax ǫmax

Non-tropical Broadleaf Forest BL DBF 92 15 52 1.165
Non-Mediterranean Needleleaf Forest NL ENF 96 18 59 0.962
C3 crop Cr3 Crop 59 4 95 1.044
C4 crop Cr4 Crop 2 1 28 1.044
Tundra Shrub Tu OShrub 19 4 45 0.841
Tropical Broadleaf Forest TBL EBF 15 5 41 1.268
C3 Grass C3 Grass 54 10 76 0.860
C4 Grass C4 Grass 19 4 28 0.860
Non-Tundra Shrub SH CShrub 12 2 51 1.281
Mediterranean Needleleaf Forest MNL ENF 36 4 61 0.962
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Table 4: Comparison of satellite MOD15A2 Leaf Area Index (LAI) against measurements from the site LAI
database (Agarwal 2012). For each Plant Functional Type (PFT), the mean and Standard Deviation (SD)
are given. ∆LAI(RMS) is the Root Mean Square (RMS) difference between satellite and field measurements.
The number of measurements, n, is generally less than the number of siteyears used in the sensitivity
experiments owing to the removal of duplicates where the same site LAI is adopted across multiple siteyears.
To validate LAI, we also include values for savanna (SAV) and mixed forest (MX). The median of the PFT
means is indicated in the bottom row (median(x̄)). Where possible, comparison is made with the field
measurements compiled by Asner et al (2003).

PFT n Site LAI Satellite LAI ∆LAI(RMS) Asner et al
mean(SD) mean(SD) mean(SD)
(m2 m−2) (m2 m−2) (m2 m−2) (m2 m−2)

BL 45 4.4(1.1) 4.3(1.2) 1.3 5.1(1.6)
NL 31 4.7(2.3) 3.1(1.0) 2.7 5.7(3.0)
Cr3 34 4.7(1.1) 2.1(0.6) 2.8 3.6(2.1)
Cr4 1 5.2(–) 3.4(–) – 3.6(2.1)
Tu 5 1.4(0.2) 0.7(0.4) 0.8 1.9(1.5)
MX 12 2.7(1.3) 4.8(0.9) 2.5 –(–)
TBL 6 5.2(0.3) 6.3(0.4) 1.2 4.8(1.7)
C3 20 2.3(0.6) 1.6(0.9) 1.3 1.7(1.2)
C4 8 2.3(0.8) 1.5(0.7) 0.8 1.7(1.2)
SH 4 1.8(1.6) 2.5(2.2) 1.1 2.1(1.6)
SAV 12 1.3(0.5) 1.6(0.4) 0.6 –(–)
MNL 10 3.6(1.5) 3.6(1.6) 1.0 5.5(3.4)

median(x̄) 11 3.1(1.1) 2.8(0.9) 1.2 3.6(1.6)
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Table 5: Validation of simulated GPP from MODIS-GPP and JULES-SF against observation-based esti-
mates from eddy covariance fluxes (GPP(obs)). RMSE, SD and MEF are, respectively, the Root Mean
Square Error, Standard Deviation and Modelling Efficiency. MEF is similar to the coefficient of determi-
nation (r2) but takes account of model bias (Medlyn et al 2003). For C4 crops and tundra the sample size
is too small to derive the RMSE and MEF. The median of the PFT means is indicated in the bottom row
(median(x̄)).

PFT GPP(obs) MODIS-GPP JULES-SF
mean(SD) mean(SD) RMSE MEF mean(SD) RMSE MEF
(gCm−2d−1) (gCm−2d−1) (gCm−2d−1) (–) (gCm−2d−1) (gCm−2d−1) (–)

BL 6.5(2.0) 5.1(1.8) 1.9 0.09 6.5(2.0) 1.1 0.69
NL 4.7(2.7) 4.5(1.8) 2.1 0.43 5.1(1.9) 2.2 0.34
Cr3 9.0(4.9) 6.0(1.8) 4.6 0.10 7.5(3.4) 4.6 0.11
Cr4 8.1(–) 5.5(–) – – 10.7(–) – –
Tu 1.5(–) 2.8(–) – – 3.0(–) – –
TBL 13.1(3.6) 9.9(3.0) 3.9 -0.17 8.5(1.2) 5.4 -1.18
C3 2.9(2.3) 4.3(2.3) 2.2 0.06 3.6(3.1) 2.0 0.22
C4 3.0(2.7) 3.5(1.5) 1.6 0.63 6.5(5.0) 4.3 -1.60
SH 4.5(3.2) 7.8(2.8) 3.5 -0.24 5.0(2.4) 3.0 0.18
MNL 6.4(4.2) 5.9(2.4) 3.0 0.49 6.6(3.7) 2.5 0.64

median(x̄) 5.5(3.0) 5.3(2.0) 2.6 0.10 6.5(2.8) 2.8 0.20
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Table 6: Sensitivity of simulated GPP to uncertainty in LAI and meteorological forcing. Column 1 is the Plant Functional Type (PFT). The re-
maining columns contain mean values averaged over all siteyears comprising any given PFT, except the last row which contains the median of the
absolute PFT means (median(|x̄|)). ∆LAI is the average change in Leaf Area Index (LAI). MOD and JUL refer to results from MODIS-GPP and
JULES-SF, respectively. ∆GPP(LAI-DEF) is the difference between the LAI-perturbed simulation (GPP(LAI PERTURB)) and the default sim-
ulation (GPP(DEF)). Similarly, ∆GPP(MET-DEF) is the difference between the meteorology-perturbed simulation (GPP(MET PERTURB))
and GPP(DEF). The right most column shows the sensitivity of simulated GPP to model. Thus, GPP(MOD) is GPP(DEF) for MODIS-GPP
and ∆GPP(MOD-JUL) is the difference between GPP(MOD) and the default simulation for JULES-SF.

PFT ∆LAI GPP(DEF) ∆GPP (LAI−DEF )
∆LAI

∆GPP (LAI−DEF )
GPP (DEF )

∆GPP (MET−DEF )
GPP (DEF )

∆GPP (MOD−JUL)
GPP (MOD)

(m2m−2) (gCm−2d−1) (gCm−2d−1 [m2 m−2]−1) (%) (%) (%)
MOD JUL MOD JUL MOD JUL MOD JUL

BL -0.2 4.3 5.7 0.2 0.3 -1.0 -1.2 22.1 16.6 31.2
NL -1.3 3.4 3.9 0.1 0.1 -2.1 -4.4 11.2 35.5 14.4
Cr3 -1.3 4.2 5.7 0.8 1.1 -22.4 -23.3 2.9 8.6 34.5
Cr4 -0.7 4.1 8.0 0.8 1.5 -13.0 -12.6 7.3 20.7 98.0
Tu -0.5 1.4 1.4 1.0 1.3 -34.7 -42.2 29.5 32.4 1.3

TBL 1.2 7.3 6.7 -0.0 0.0 -0.1 0.2 21.2 26.4 -7.5
C3 -0.4 3.4 3.6 1.3 0.5 -15.1 -5.6 5.7 26.4 5.1
C4 -0.2 2.3 4.2 1.6 1.9 -16.5 -10.5 -11.1 -2.8 83.1
SH 1.0 4.3 3.5 0.5 0.4 10.7 10.6 6.5 25.1 -18.7

MNL -0.5 4.4 3.7 0.4 0.4 -5.2 -5.2 -5.1 2.0 -15.7

median(|x̄|) 0.6 4.1 4.0 0.6 0.5 11.8 8.0 9.2 22.9 17.2
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Table 7: Sensitivity of MODIS-GPP (MOD) and JULES-SF (JUL) to individual meteorological variables
mean averaged over all relevant siteyears for each Plant Functional Type (PFT). GPP(DEF) represents
Gross Primary Productivity (GPP) from the default simulation. ∆GPP(MET-DEF) is the difference in
GPP between the meteorology-perturbed simulation and the default simulation. Meteorological forcing
variables are perturbed in turn and are denoted as follows: downwelling shortwave radiation (SW), down-
welling longwave radiation (LW), precipitation (PPT), air temperature (Tair), windspeed (WS), pressure
(P), specific air humidity (Q). Although MODIS-GPP is forced by minimum air temperature and daytime
vapour pressure deficit, we show the sensitivity of both models to Tair and Q in order to permit a comparison.
The last row contains the median of the absolute PFT means (median(|x̄|)).

PFT ∆GPP (MET−DEF )
GPP (DEF ) [%]

SW LW PPT Tair WS P Q
MOD JUL MOD JUL MOD JUL MOD JUL MOD JUL MOD JUL MOD JUL

BL 8 11 0 1 0 2 -17 0 0 0 0 0 18 7
NL 5 12 0 2 0 5 0 3 0 -2 0 1 4 13
Cr3 2 13 0 1 0 -8 -6 -1 0 0 0 0 4 9
Cr4 8 11 0 1 0 -1 -8 1 0 2 0 0 3 10
Tu 25 15 0 7 0 -6 3 11 0 1 0 0 -1 1
TBL 13 15 0 -1 0 8 -16 -4 0 2 0 0 7 15
C3 1 12 0 3 0 7 -2 1 0 -1 0 0 6 9
C4 8 15 0 1 0 -11 -18 -5 0 -1 1 3 -1 -4
SH 6 12 0 3 0 13 -8 -3 0 1 0 0 4 3
MNL 13 8 0 1 0 -10 -30 -8 0 1 1 6 9 13

median(|x̄|) 8 12 0 1 0 8 8 3 0 1 0 0 4 9

Table 8: Categories of uncertainty, to the nearest 5%, for carbon fluxes (GPP and NPP) at site, regional
and global level. Categories are approximately ordered with greatest uncertainties at the top. For each
category, a range of uncertainty is given according to the cited studies. The bias introduced into the model
by calibrating against FLUXNET, rather than against Ecosystem Model-Data Intercomparison observations,
is estimated by comparing the model bias in Fig. 4 with that in Fig. 5. PFT is Plant Functional Type and
LAI is Leaf Area Index.

Category Uncertainty Studies
(%)

Bias owing to calibration observations 45 current
Model formulation (process complexity) 20-25 current; Cramer et al (2001)

Knorr & Heimann (2001)
LAI and meteorological drivers 10-20 current
Biophysical parameterisation 15 Zaehle et al (2005)
PFT classification and land cover 0-10 Quaife et al (2008); Jung et al (2007)
Spatial resolution of global simulation 5 Mueller & Lucht (2007)
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Figure Captions:835

836

Fig.1: A schematic overview of model input/output for the simulations. Sensitivity experiments are con-837

ducted separately for each siteyear within a Plant Functional Type (PFT) and are denoted by DEF (de-838

fault), LAI PERTURB (LAI perturbed) and MET PERTURB (meteorology perturbed). Gross Primary839

Productivity (GPP; gCm−2d−1) for the default experiment (GPP(DEF)) is validated against observed eddy840

covariance (EC) fluxes. ∆GPP is the difference between the perturbed simulation and DEF.841

842

Fig.2: Site locations used in the current study, based on open-access FLUXNET data. For clarity, sites are843

coarsely categorised (tree, grass/crop and shrub) although 10 PFTs are used in the simulations.844

845

Fig.3: Field-based maximum Leaf Area Index (site LAI), measured for a given siteyear, compared against846

the corresponding satellite (MOD15A2) measurement. The dashed curve shows a least-squares exponential847

fit a - c exp(-x/b) excluding the 3 outliers at x<2, y>5 (a=4.32, b=2.59 and c=4.53). To validate LAI, we848

also include siteyears for savanna (SAV) and mixed forest (MX) which are not simulated in the sensitivity849

experiment.850

851

Fig.4: Daily Gross Primary Productivity (GPP) derived from the MODIS-GPP algorithm (bottom) and852

from JULES-SF (top) compared against observationally based GPP from eddy covariance fluxes. For this853

validation exercise, both models use the default meteorological and LAI forcing. Each point represents an854

average for the siteyear. However, GPP is expressed as a daily average to reduce the impact of data gaps855

across the annual cycle. In each case, the dashed curve shows a least-squares exponential fit a - c exp(-856

x/b), with a=17.50, b=24.88 and c=15.41 for MODIS-GPP and a=10.94, b=7.35 and c=9.95 for JULES-SF.857

858

Fig.5: Modelled annual Gross Primary Productivity (GPP) for FLUXNET sites, used in the current study,859

compared against values inferred from observed NPP at Ecosystem Model-Data Intercomparison (EMDI)860

sites. Markers denote median averages for each PFT. Panels (a) and (b) refer to JULES-SF and MODIS-861

GPP, respectively, for the modelled values. EMDI sites are class A, meaning that NPP is measured both862

above and below ground (Olson et al 2008). For EMDI, we assume a net-to-gross primary productivity ratio863

of 0.45 (DeLucia et al 2007). Vertical error bars correspond to the standard error. Horizontal error bars864
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assume a range ±0.15 in the NPP-to-GPP ratio, with symbols moving to the right for a low ratio of 0.3865

corresponding to old, undisturbed sites (DeLucia et al 2007). Note that annual EMDI values can only be866

compared against modelled, rather than observation-based, values at FLUXNET sites because FLUXNET867

observations often contain gaps outside the growing season.868

869

Fig.6: Change in Gross Primary Productivity (∆GPP), simulated by MODIS-GPP, per unit change in Leaf870

Area Index (∆LAI). The change is plotted against mean LAI of PFT. The solid line represents a least-871

squares exponential fit a - c exp(-x/b), where a=-0.770, b=3.54 and c=-2.60. The response for JULES-SF872

is very similar (best fit a=-0.607, 3.18, -2.60).873

874

Fig.7: A comparison of Princeton reanalysis meteorology against tower-based meteorology. The upper panels875

represent a primary meteorological used to force JULES-SF (annual total precipitation, PPT) and to force876

both JULES-SF and MODIS-GPP (average annual shortwave radiation, SW). The bottom panels depict877

two primary meteorological variables used to force MODIS-GPP (daily minimum air temperature (Tair)878

and daytime Vapour Pressure Deficit (VPD), both annually averaged). Each marker represents one siteyear879

and is categorised according to the PFT given in the key. The solid and dashed lines represent, respectively,880

the best linear fit and y=x.881



41

Figure 1: A schematic overview of model input/output for the simulations. Sensitivity experiments are
conducted separately for each siteyear within a Plant Functional Type (PFT) and are denoted by DEF
(default), LAI PERTURB (LAI perturbed) and MET PERTURB (meteorology perturbed). Gross Primary
Productivity (GPP; gCm−2d−1) for the default experiment (GPP(DEF)) is validated against observed eddy
covariance (EC) fluxes. ∆GPP is the difference between the perturbed simulation and DEF.
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Figure 2: Site locations used in the current study, based on open-access FLUXNET data. For clarity, sites
are coarsely categorised (tree, grass/crop and shrub) although 10 PFTs are used in the simulations.
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Figure 3: Field-based maximum Leaf Area Index (site LAI), measured for a given siteyear, compared against
the corresponding satellite (MOD15A2) measurement. The dashed curve shows a least-squares exponential
fit a - c exp(-x/b) excluding the 3 outliers at x<2, y>5 (a=4.32, b=2.59 and c=4.53). To validate LAI, we
also include siteyears for savanna (SAV) and mixed forest (MX) which are not simulated in the sensitivity
experiment.
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Figure 4: Daily Gross Primary Productivity (GPP) derived from the MODIS-GPP algorithm (bottom) and
from JULES-SF (top) compared against observationally based GPP from eddy covariance fluxes. For this
validation exercise, both models use the default meteorological and LAI forcing. Each point represents an
average for the siteyear. However, GPP is expressed as a daily average to reduce the impact of data gaps
across the annual cycle. In each case, the dashed curve shows a least-squares exponential fit a - c exp(-x/b),
with a=17.50, b=24.88 and c=15.41 for MODIS-GPP and a=10.94, b=7.35 and c=9.95 for JULES-SF.
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Figure 5: Modelled annual Gross Primary Productivity (GPP) for FLUXNET sites, used in the current
study, compared against values inferred from observed NPP at Ecosystem Model-Data Intercomparison
(EMDI) sites. Markers denote median averages for each PFT. Panels (a) and (b) refer to JULES-SF and
MODIS-GPP, respectively, for the modelled values. EMDI sites are class A, meaning that NPP is measured
both above and below ground (Olson et al 2008). For EMDI, we assume a net-to-gross primary productivity
ratio of 0.45 (DeLucia et al 2007). Vertical error bars correspond to the standard error. Horizontal error
bars assume a range ±0.15 in the NPP-to-GPP ratio, with symbols moving to the right for a low ratio of 0.3
corresponding to old, undisturbed sites (DeLucia et al 2007). Note that annual EMDI values can only be
compared against modelled, rather than observation-based, values at FLUXNET sites because FLUXNET
observations often contain gaps outside the growing season.
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Figure 6: Change in Gross Primary Productivity (∆GPP), simulated by MODIS-GPP, per unit change in
Leaf Area Index (∆LAI). The change is plotted against mean LAI of PFT. The solid line represents a least-
squares exponential fit a - c exp(-x/b), where a=-0.770, b=3.54 and c=-2.60. The response for JULES-SF
is very similar (best fit a=-0.607, 3.18, -2.60).
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Figure 7: A comparison of Princeton reanalysis meteorology against tower-based meteorology. The upper
panels represent a primary meteorological used to force JULES-SF (annual total precipitation, PPT) and
to force both JULES-SF and MODIS-GPP (average annual shortwave radiation, SW). The bottom panels
depict two primary meteorological variables used to force MODIS-GPP (daily minimum air temperature
(Tair) and daytime Vapour Pressure Deficit (VPD), both annually averaged). Each marker represents one
siteyear and is categorised according to the PFT given in the key. The solid and dashed lines represent,
respectively, the best linear fit and y=x.
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