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Correction to “Extended State Observer-Based
Integral Sliding Mode Control for an Underwater
Robot with Unknown Disturbances and Uncertain

Nonlinearities”
Rongxin Cui, Member, IEEE, Lepeng Chen, Chenguang Yang, Senior Member, IEEE, and Mou

Chen, Member, IEEE

The purpose of this note is to correct the matching con-
dition and stability proof in [1]. While the main results are
unchanged, there should be some consequent modifications,
which are shown in detail as follows:

Firstly, we define that (A.i) represents the ith equation in
the original paper. (A.14) should be modified as

−G3Ḣd/w
2
0 −G2Hun/w0 = P−1Θρt (1)

where ρt = [ρ>t1, ρ
>
t2, ρ

>
t3]> ∈ R18×1, ρt1, ρt2, ρt3 ∈ R6×1,

and the time-varying matrix Θ can be defined as

Θ =

I6×6 −r2 −r3
06×6 r1 06×6
06×6 06×6 r1

 (2)

where r1 = diag(ε11, · · · , ε16), r2 = diag(ε21, · · · , ε26),
r3 = diag(ε31, · · · , ε36), ε1 = [ε11, · · · , ε16]>, ε2 =
[ε21, · · · , ε26]>, ε3 = [ε31, · · · , ε36]> are scaled estimation
errors. Due to the added term Θ, (A.23) can be corrected as

V̇1 =− w0ε
>(A>ε P + PAε)ε+ 2ε>PQ−1f̃

+ 2ε>PP−1Θρt − 2ε>P$
(3)

Substituting (A.18) into (3), we have

V̇1 =− w0ε
>ε+ 2ε>PQ−1f̃

+ 2ε>Θρt − 2ε>P$

≤− w0‖ε‖2 + 2‖ε‖‖P‖‖Q−1f̃‖
+ 2ε>Θρt − 2ε>P$

≤ [−w0 + c2(ζ1 + ζ2)/w0] ‖ε‖2

+ 2ε>Θρt − 2ε>P$

(4)
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Furthermore, (A.25) should be updated as follows:

V̇1 ≤− β‖ε‖2 + 2ε>Θρt − 2ε>P$ (5)

Since ε>Θ = [ε>1 , 01×6, 01×6], (5) can be rewritten as

V̇1 ≤− β‖ε‖2 + 2ε>1 ρt1 − 2ε>P$

=− β‖ε‖2 + 2(Cε)>ρt1 − 2ε>P$
(6)

where ρt1 is bounded and satisfies ‖ρt1‖ ≤ ρ2 ∈ R+, and
which is the same as (A.25), therefore the result is unchanged.

Secondly, (A.29) should be corrected as

ṡ(t) = Kpė(t) +Kie(t) +Kd
˙̂
ė(t) (7)

Based on the observer that presented in (A.10), we have

˙̂
ė =

˙̂
η̇ − η̈r =− η̈r − Cη(η, ν̂)ˆ̇η −Dη(η, ν̂)ˆ̇η

−Gη +MηLU + Ĥd − 3w2
0x̃1 − w0$2

(8)

Using ė = ˆ̇e− w0ε2 and (8), (A.31) can be rewritten as

ṡ+Kss =Kp
ˆ̇e+Kie+Kss− w0Kpε2 +Kd(−η̈r

− Cη(η, ν̂)ˆ̇η −Dη(η, ν̂)ˆ̇η −Gη +MηLU

+ Ĥd − 3w2
0x̃1 − w0$2)

(9)

where $ = [$>1 , $
>
2 , $

>
3 ]> ∈ R18×1, $i ∈ R6×1, i =

1, 2, 3. (A.32) should be updated as

Ueq =− (KdMηL)−1(Kp
ˆ̇e+Kie+Kss)

+ (MηL)−1[η̈r + Cη(η, ν̂)ˆ̇η + w0$2

+Dη(η, ν̂)ˆ̇η +Gη − Ĥd + 3w2
0x̃1]

(10)

(A.34) should be written as

Usw = −(KdMηL)−1Kswsgn(s) (11)

Then, (A.36) can be described as

U = Ueq + Usw (12)

Compared with Ueq in the original controller, the term
(MηL)−1(w0$2 + 3w2

0x̃1) are added, which will converge
to zero. Then, the main experimental results are unchanged.

Theorem 1: Consider system (A.6) satisfying Assumptions
1, under the designed ESO (A.10), the tracking error and
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external disturbance estimation error will converge to zero
under the control law (11), and the parameters β, w0, Kd,
Ks, and Ksw satisfy following conditions: β > w0λmax(Kp),
λmin(Ks) > w0λmax(Kp)/2 and λmin(Ksw) > 0.

Proof: Let us define a Lyapunov function candidate

V =
1

2
V1 +

1

2
s>s+

1

2γ2
ρ̃22 (13)

where V1 is defined in (A.21). Based on Lemma 1, we have

V̇ ≤− β

2
(ε>1 ε1 + ε>2 ε2 + ε>3 ε3) + ε>C>ρt1

− ε>P$ + s>ṡ+
1

γ2
ρ̃2 ˙̂ρ2

(14)

Substituting (A.13) and (A.15) into (14), we have

V̇ ≤− βε>ε/2 + s>ṡ+ ‖Ỹ ‖ρ2 − ε>P$ + ‖Ỹ ‖ρ̃2
=− βε>ε/2 + s>ṡ+ ‖Ỹ ‖ρ̂2

− ‖Ỹ ‖
2ρ̂2 − c1‖Ỹ ‖2ḣ1ρ̂22/‖Ỹ ‖
‖Ỹ ‖ − c1ḣ1ρ̂2

=− βε>ε/2 + s>ṡ

(15)

Substituting (12) into (9), we have

ṡ =−Kss− w0Kpε2 −Kswsgn(s) (16)

Substituting (16) into (15), we see that the derivative of V
can be described as

V̇ ≤− β

2
ε>ε− s>Kss− w0s

>Kpε2 − s>Kswsgn(s)

(17)

Since −w0s
>Kpε2 ≤ w0λmax(Kp)(ε

>ε + s>s)/2, we
have

V̇ ≤− β

2
ε>ε− s>Kss− λmin(Ksw)‖s‖

+ w0λmax(Kp)(ε
>ε+ s>s)/2

≤− ξ>Λξ − λmin(Ksw)‖s‖

(18)

where ξ = [ε>, s>]>, Λ =

[
Λ1 018×6

06×18 Λ2

]
,

Λ1 =
(
β
2 −

w0λmax(Kp)
2

)
I18×18, Λ2 =(

λmin(Ks)− w0λmax(Kp)
2

)
I6×6.

Because the parameters β, w0, Ks and Ksw satisfy related
conditions mentioned in Theorem 1, we know that β >
w0λmax(Kp), λmin(Ks) > w0λmax(Kp)/2, λmin(Ksw) > 0,
therefore λmin(Λ) > 0.

Inequation (17) implies that V̇ < 0 for ξ 6= 0, and the
signals s, ε and ρ̃2 are bounded. Based on (18), we have V̇ ≤
−ξ>Λξ. Then, we have lim

t→∞

∫ t
0
(ξ>Λξ)dτ ≤ V (0)− V (∞).

Because V (0) and V (∞) are bounded, s and ε are square
integrable. According to (16) and the boundedness of s, we
can conclude that ṡ is bounded.

From (A.12), we know that ‖f̃‖ = ‖ϕ̃‖. Further, we have f̃
is bounded according to (1). The boundedness of Ḣd and Hun

implies that ρt(t) is bounded from (1). Because ε, ρ̂2 and
ḣ(t) are bounded, from (A.13), we can obtain $ is bounded.
Then, ε̇ is bounded from (A.16). The boundedness of ṡ and

ε̇ implies that ξ̇ is bounded. According to Lemma 2, we have
lim
t→∞

ξ(t) = 0, i.e., lim
t→∞

s(t) = 0 and lim
t→∞

ε(t) = 0.
Defining that

z(t) = s(t)−w0Kdε2(t)+Kpe(0)+Kd
ˆ̇e(0)+Kde(0) (19)

where z(t) = [z1(t), · · · , z6(t)]> ∈ R6×1.
Substituting ˆ̇e = ˆ̇η − η̇r = ˆ̇e− w0ε2 into (A.27), we have

Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kdė(t) +Kde(0) = z(t) (20)

Because Kp, Ki and Kd are positive definite diagonal
matrices, we have

zi(t) =Kpiei(t) +Kii

∫ t

0

ei(τ)dτ +Kdiėi(t) +Kdiei(0)

(21)

where zi(t) is the ith element of z(t), and i = 1, . . . , 6.
Then, take Laplace transformation of (21), we have

ei(p)

zi(p)
=

p

Kdip2 +Kpip+Kii
(22)

where p is the Laplace transformation operator, ei(p) and
zi(p) are the Laplace transformations of ei(t) and zi(t),
respectively.

Using the final value theorem, we have

e(∞) = lim
p→0

p2zi(p)

Kdip2 +Kpip+Kii
(23)

Since the initial error e(0) and ˆ̇e(0) are bounded, and ε2(t)
is bounded, from (19), zi(t) is bounded. zi(t) can converge
to Kpe(0)+Kd

ˆ̇e(0)+Kde(0) as time goes to infinity. Then,
we have |zi(t)| ≤ zimax < ∞. The Laplace transformation
of zi(t) satisfies

|zi(p)| =
∣∣∣∣∫ ∞

0

e−pτzi(τ)dτ

∣∣∣∣ ≤ ∫ ∞
0

|e−pτzi(τ)|dτ

≤ zimax

∫ ∞
0

|e−pτ |dt ≤ zimax

p

(24)

Then, we have

lim
p→0
|p2zi(p)| = 0 (25)

Hence, it can be induced from (25) that lim
p→0

p2zi(p) = 0,

and then we have

ei(∞) = lim
p→0

p2zi(p)

Kdip2 +Kpip+Kii
= 0 (26)

The system given by (21) and (22) is stable if the pa-
rameters Kdi, Kpi and Kii are chosen as positive constants
to satisfy Hurwitz stability criterion. According to (23) and
(26), we have lim

t→∞
e(t) = 0. This completes the proof.
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