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Admittance Control of a Robotic Exoskeleton for

Physical Human Robot Interaction
Bo Huang, Zhijun Li and Chenguang Yang

Abstract—In this paper, an admittance control scheme is
proposed for physical human-robot interaction with human
subject’s intention motion as well as dynamic uncertainties of
the robotic exoskeleton. Human subject’s intention motion is
represented by the reference trajectory when the exoskeleton
manipulator is complying with the external interaction force.
Online estimation of the stiffness is employed to deal with the
variable impedance property of the exoskeleton manipulator. An
admittance control approach is firstly presented based on the
measurable force in order to generate a differentiable reference
trajectory in interaction tasks. Then a stability criterion can
be obtained due to the proposed control method. The designed

controller includes linearly parameterization and estimation for
the unknown items of the dynamics. Bounded and convergent
error is shown in the tracking process while the robustness of
the variable stiffness control method is guaranteed. The control
approach is then verified on a robotic exoskeleton interacting
with human via experiments. The results show that the presented
approach can make for an effective pHRI performance.

Index Terms—Admittance control, Variable stiffness, Human-
Robot Interaction, Robotic exoskeleton.

I. INTRODUCTION

Physical Human-Robot Interaction (pHRI) has become a

feasible project since humanoid robots get developed in a

great extent, as well as the development of control theories

and researches about sensors that concerned in tactile sensing

in this field. As the progress in application of robots goes,

the interaction has been focused much more in physical ways,

both in industry and service use. Such kind of applications

in collaborative performance with robots have obtained sat-

isfactory effects in both industrial and family domains. A

kind of exoskeleton robot is developed, especially used in

medical rehabilitation, and witnesses that such interaction

systems between humans and robots can be more efficient. In

order to better deal with the coordinating performance between

human and robot, this paper propose a method on handling

the interaction force and make the robotic limbs executed

according to the human movements.

Admittance control accepts a force as input and reacts

outputs as the robot motions. The appropriate choice of the

mass, damper and spring coefficients can make the admittance

control conform to the required effect. Hogan initiated the

concept and method about impedance control [1], [2], which

rapidly became a widely used control form for cooperative

external force. Such method can solve the instability issues

generated by force control performed on the end effector of the

manipulator. But if impedance control is to be performed, the

model of the robots and the interaction dynamics are required

[3], [4]. As the dual form of the above approach, admittance

control has also been widely used in the applications of pHRI.

In [5], admittance control with virtual force is presented to

make the robot perform accurately in dancing state, which

is an extreme application in pHRI. In [6], the motions and

movement of robots are generated by the external human

force. The admittance control scheme makes a framework that

contain an outer-loop and an inner-loop, where the robot is

able to track the output of the admittance model caused by

the outer-loop. However, the control method does not contain

a specific performance task model or a human dynamic model.

In [7], an omni-directional type cane robot is described in a

transfer function but the virtual spring and damper coefficient

are both constant and the authors neglected the stiff coefficient

in the admittance controller. In [8], admittance control is

presented in pHRI. The robotic model is described as a spring-

mass-damper system with the three coefficient being constants.

Recently, pHRI is implemented in the controlling of ex-

oskeletons and robots with tactile sensing devices to achieve

compliance between humans and robots by different forms of

admittance control [9]. In [9], safety in admittance control is

emphasized in the process of pHRI and small impedance is

shown in the control method while the required acceleration is

limited. However, the method can make compliant tasks, with

no trajectory tracking purpose.

The adaptation or learning process is being studied when

humans learn to contact a robotic equipment, where the

process includes two parts. The first one contains the learning

process of a robotic model to make the compensation for

the robot dynamics. In [10], the optimal parameters of the

impedance are obtained from a natural algorithm in robot

interaction tasks. In [11], an interaction between robots and

unknown steady environments is performed by a proposed

adaptive impedance learning. The second part contains the

learning process of a control loop which validates the effect

of the cooperative tasks that relate to a human-robot model.

In [12], variable impedance control is performed in the task

of minimizing an objective function, using an algorithm of

reinforcement learning which a path integral in it. The tasks

of pHRI are dealt in this way using adaptive impedance

control approaches. These researches show that controllers for

such specific tasks should be closed in the outer-loop which

contains human factors as well as a desired model for the

performance.

Additionally, reference learning should also be taken into

consideration in order to acquire the ideal learning perfor-

mance, besides the impedance learning process mentioned

above [13]. In the researches of the autonomously controlled

robots, track planning has been widely studied without physi-
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cal interaction with external environment [14], [15]. In [16], an

approach of adaptive control is presented in order to track the

desired trajectory of the robotic joints. Although the effect of

the tracking performance is guaranteed as the control purpose,

the interaction force is seen as an item of external disturbance

and the compliance between the external force and robot is not

taken into consideration. The field of pHRI has also involved

the using of reference learning, where the movement of human

is obtained for the update of the robot’s trajectory and then

the interaction would be compliant according to the motions

of human’s and the robot’s. In [17], reference learning is used

in the collaborative tasks between humans and robots where

human characteristics of motions are taken into consideration.

The intended movement of human is estimated by the robot

and is used to control the manipulator while admittance control

is to yield compliance with the interaction force. In [18], a

method is proposed to reshape the reference trajectory but

it is only to get controlled for a robotic system where the

impedance model is given while constraint conditions are

satisfied meanwhile.

In the typical case of a cooperative task considering both

human and robot, impedance control is used to make compli-

ance to the human’s interaction force. So the robot is able to

keep steps with the movement of human in this way. However,

if the human trends to change his intention of movement, the

interaction force will be treated as a load from outside so

the previous trajectory will not be reference any more. To

get a solution to this issue, researches on the adaptation of

the robot’s trajectory will be taken studied in order to obtain

the regulation with the force being zero, and robot’s reference

trajectory will be updated in this process. Consequently, the

energy of the human in interaction tends to be reduced so that

the task of pHRI can realize the ideal efficiency.

Based on above discussions, a control framework is pro-

posed in this paper to accomplish the adaptive admittance

control scheme with time-varying stiffness parameter. The

proposed approach can deal with human’s motion intention

so that it can perform more accurately in the actually physical

interaction. This control approach is able to apply to humans

of different skill levels and variant force powers without prior

offline model tuning, and the robustness is guaranteed when

changing the dynamics of robots. The control scheme consists

of an inner loop and an outer loop. The former is to linearize

the dynamics of the robot in a feedback way, while the the

latter is to tune the interaction model considering the intention

of humans. The interaction model is shown in Fig. 1 and the

overall control framework is shown in Fig. 2. The contributions

of this paper are as follows:

(1) The reference trajectory of the robotic exoskeleton

would be reshaped according to the human-robot interaction

force and the set desired trajectory.

(2) The stiffness coefficient in the impedance model can be

obtained through the stiffness observer.

(3) An adaptive controller is developed in order to approx-

imate the uncertain nonlinear robotic dynamics.

��������
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Fig. 1. Human-robot interaction task model

II. PRELIMINARIES AND PROBLEM FORMULATION

The dynamics of an n-link robotic exoskeleton interacting

with an external force (the interaction model is shown in Fig.

1) can be described as follow:

M(q)q̈ + C(q, q̇)q̇ +G(q) + fdis(t) = τ + τe(t) (1)

where q ∈ R
n is the position coordinates of the robotic joints,

τ ∈ R
n is the applied torque as the input item and τe ∈ R

n

is the torque in interaction tasks with the environment (or

human), M(q) ∈ R
n×n is an inertia matrix of symmetric

positive definite, while G(q) ∈ R
n is the force of gravity,

and C(q, q̇) ∈ R
n×n is considered as the centripetal and

Coriolis torques, fdis(t) ∈ R
n is considered as the external

disturbance to the robot system. The terms M(q), C(q, q̇),
and G(q) include uncertain dynamic parameters.

The following properties are shown:

Property 1: [23] The matrix Ṁ(q) − 2C(q, q̇) is skew-

symmetric.

Property 2: [24] Its inverse M−1(q) exists, and is also

positive definite and bounded, i.e. ‖M−1(q)‖ < αM−1 , where

αM−1 is a positive constant.

Property 3: [25] The exoskeleton dynamics (1) is linear in

a set of physical parameters W = [w1, . . . , wm]T ∈ Rm for

any differentiable vector ζ ∈ R
n, then we have

M(q)ζ̇ + C(q, q̇)ζ +G(q) = Y (q, q̇, ζ, ζ̇)W (2)

where Y (q, q̇, ζ, ζ̇) ∈ Rn×m is called the dynamic regressor

matrix.

We transform the joint space into task space and the relation

yields

x = Ω(q), ẋ = J(q)q̇ (3)

According to (1), we let x1 = [q1, q2, q3...., qn]
T , x2 =

[q̇1, q̇2, q̇3...., q̇n]
T , and Fx = J−T τe, where x1 is the actual

trajectory, x2 is the actual velocity and Fx is the interaction

force. The purpose of the control is to make the joint variable

x1 keep tacking the reference path xr while there exists

an interaction force. In addition, the closed loop signals are

required to be bounded and converged as well as preventing

the position constraints |x1,i(t)| < kci , i = 1, 2, ..., n, from

being violated ∀t > 0.
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The following assumptions are proposed in order to make

an easier design for the proof of the theorems.

Assumption 1: Positive constants kdi
, i = 1, 2, ..., n are

exist, such that |xri(t)| ≤ kdi
< kci , i = 1, ..., n, ∀t ≥ 0.

Assumption 2: A positive constant Fxm exists, so we have

‖Fx(t)‖ ≤ Fxm, ∀t ≥ 0, where Fxm denotes the maximum of

the interaction force.

III. ADAPTIVE ADMITTANCE CONTROL DESIGN

The generation of compliant motion is involved in the

approach of admittance control. Admittance control accepts

a force as input and produces robot motion as output. In this

section, the first part is to shape a reference trajectory for

the tracking task, which can represent the human subject’s

intention motions, so that the manipulator can get its behavior

when the interaction force exists. The second part is the design

of the motion control in order to get tracking of the reference

trajectory shaped in the first part. The reference trajectory is

generated in a constrained range, and then adaptive control

scheme is proposed based on a backstepping approach for

tracking.

A. Reference Trajectory Shaping

The method of shaping the reference trajectory is presented

in this part. While interacting with human, the manipulator

will track a new trajectory that deviates from the desired

trajectory, which is due to human’s intention. We assume that

the process of adapting to the desired trajectory is to minimize

the following cost function:

Φ =

∫ T

0

‖Fx‖R + ‖x(δ)− xd(δ)‖G dδ (4)

where ‖ · ‖R and ‖ · ‖G are norms of the matrix while R and

G are weights. Then there is a balance between human force

and the error of the reshaped trajectory.

An impedance model for the exoskeleton is used to solve

the cost function (4):

M(ẍ− ẍd) +D(ẋ − ẋd) +K(x− xd) = Fx (5)

where x is the position of the exoskeleton joint, xd is its

desired position, M is the inertia matrix, D is the damping

matrix and K is the stiffness matrix, Fx is the interaction

force. The external force for interaction and the error in the

tasks can also be regulated using the above model, and xd is

the initial desired trajectory. x and Fx solved form (5) will

minimize Φ in the cost function.

The above equation can be equivalently written as :

w = (ẍ− ẍd) +KD(ẋ− ẋd) +KP (x− xd)−KFFx (6)

where w, x, xd and their first and second derivatives are

functions of the time t and KD = M−1D, KP = M−1k,

KF = M−1.

In order to reshape the reference trajectory, the parameters

in the impedance model are needed to obtain first. The work

in [19] has proposed a real-time method for measuring the

variable stiffness parameter.

Let ÿ = ẍ− ẍd, ẏ = ẋ− ẋd and y = x−xd. We consider a

mass-damper-spring system f = ÿ+KDẏ+KPy, where f is

the applied force. Now we consider a force function h(y, u),
taking the place of the spring item and we can obtain:

f = ÿ +KDẏ + h(y, u) (7)

The stiffness to be obtained is:

∂f

∂y
=

∂h(y, u)

∂y
= σ(y, u) (8)

Take the differential form of (7) with respect to time:

ḟ =
...
y +KDÿ + σẏ + huu̇ (9)

where hu = ∂h(y,u)
∂u

. The estimate of ġ is shown:

˙̂
f =

...
y +KDÿ + σ̂ẏ (10)

where σ̂ is the estimate of stiffness and the update law is given:

˙̂σ = α
˙̃
fsgn(ẏ) (11)

with
˙̃
f =

˙̂
f − ḟ , α > 0 and:

sgn(t) =

{

t
‖t‖ , ‖t‖ 6= 0

0, ‖t‖ = 0
(12)

It is shown in [19] that the estimate stiffness σ̂ is convergent

to the actual stiffness with an uniformly ultimately bounded

error.

In this paper, we employ an adaptive approach to obtain the

human’s intention reference trajectory [20]:

xr(t+∆t) = xr(t)− Lz(t) (13)

where t denotes the current time in the adaption process and

∆t denotes the constant time interval during the adaption. At

the initial time t0, the trajectory is initialized as the desired

trajectory, i.e. xr(t0) = xd(t0). L is a constant matrix that

would make the reference trajectory convergent and the item

z(t) is defined as follow:

z = (ẋ− ẋd) + Λ(x− xd)− fe (14)

Where z, ẋ and ẋd are functions of the time t, z is the

combination of the position error and velocity error with Λ
being the weight of the two items while performing tracking,

and fe is the filtered force, defined below (18). Then we have:

ż = (ẍ− ẍd) + Λ̇(x− xd) + Λ(ẋ− ẋd)− ḟe (15)

such that

w = ż + Γz = (ẍ− ẍd) + (Λ + Γ)(ẋ− ẋd)

+(Λ̇ + ΓΛ)(x− xd)− (ḟe + Γfe)(16)

Compared to (6), we have coefficients as the following form:

KD = Γ+ Λ, KP = Λ̇ + ΓΛ (17)

ḟe + Γfe = KFFx (18)

The coefficient KP is got by the stiffness observer updated

by (11), and the coefficient KD is obtained by the relation

between the stiffness and the damper, KD =
√
2 ∗KP . The
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inertia coefficient is set to be an identity matrix in this paper.

In summary, we have the following theorem for the adaption

of the reference trajectory.

Theorem 1: Considering the human-robot interaction dy-

namics (1) that satisfies Assumption (1) and Assumption (2),

using the impedance model (5) and the trajectory adaptation

algorithm (13) under the control proposed later in (27), the

objective (6) can be minimized to 0.

The proof can be found in Appendix A.

In the next section, we will propose an adaptive control with

regressors to approximate the unknown dynamics parameters

and to track the reference trajectory.

B. Control Design

In this part, we assume that full state information q and q̇ are

available. According to (1), if we let x1 = [q1, q2, q3...., qn]
T ,

x2 = [q̇1, q̇2, q̇3...., q̇n]
T , then the dynamics of the interaction

task can be shown in the following form:

ẋ1 = x2 (19)

ẋ2 = M−1[τ + τe − fdis −G− Cx2] (20)

Now that discrete points of the reference trajectory are got

according to (13), a continuous trajectory is needed to be fitted

online. Here Bezier curve is employed. The definition of a

parametric Bezier curve can be expressed as follow:

Q(u) =

p
∑

i=0

AiJp,i(u), 0 ≤ u ≤ 1 (21)

where u is a normalized parameter, p is the degree of the curve

and Ai is the ith control point of the Bezier curve. The ith

Bezier function Jp,i(u) =
p Ciu

i(1− u)p−i, and ui(1− u)p−i

is the blending function, pCi =
p!

(p−i)!i! . Here a three degree

Bezier curve defined by 4 control points is used to achieve the

continuous trajectory:

xp(u) =

3
∑

i=0

AiJp,i(u)

= A0(1− u)3 + 3A1u(1− u)2

+3A2u
2(1− u) +A3u

3

= a0 + a1u+ a2u
2 + a3u

3 (22)

where A0, A1, A2, A3 are control points and a0, a1, a2,

a3 are the corresponding coefficients. According to [21], the

radius of curvature varies smoothly in this Bezier curve for

its high order differential is existing. So that we can get the

continuous reference trajectory x∗
r = xp(u). The error z1 and

z2 are defined as follow:

z1 = x1 − x∗
r (23)

z2 = x2 − α1 (24)

where the item α1 is the virtual control to z1 and its definition

can be found in Appendix B. Considering an n-DOF robotic

manipulator, α1 ∈ R
n, z1 ∈ R

n and z2 ∈ R
n.

ż1 = ẋ1 − ẋ∗
r = z2 + α1 − ẋr (25)

Once if the parameters of the dynamics are all known, a

control method is expressed in the following form:

τ = −z1 −K2z2 + fdis +G+ Cα1 +Mα̇1 − τe (26)

Nevertheless, there is no easy ways to get the precise

information of disturbance fdis as well as the terms of the

robotic dynamics including G, C, M . To get a solution,

Property 3 is applied in order to make an approximation of

the unknown dynamics. Moreover, the external disturbance is

estimated by an observer. Such that:

τ = −z1 −K2z2 + Y (Z)Ŵ + f̂ − τe (27)

with K2 ∈ R
n×n and λmin(K2) > 0, and f̂ is the high-order

disturbance observer, and the disturbance observer is given as

the following form:
{

f̂ = ẑ +Kdx2

˙̂z = −Kdẑ +Kd

(

Yd(Zd)Ŵd −Kdx2

) (28)

where Yd(Zd) ∈ Rn×m is the dynamic regressor matrix, the

definition of Z and Zd are given in Appendix B, and KT
d =

Kd > 0. W ∈ Rm and Wd ∈ Rm are physical parameters

and their updating laws are designed as:

˙̂
Wi = −Γi

(

Yi(Z)z2i + θiŴi

)

(i = 1, 2, . . . , n) (29)

˙̂
Wdi = −Γdi

(

Ydi(Z)f̂i + θdiŴdi

)

(i = 1, 2, . . . , n) (30)

where θi and θdi are small positive real numbers, Γi > 0, and

Γdi > 0. The linear characteristic of the regressor is also used

for estimating the parameters in the disturbance observer.

Y (Z)W ∗ = G(x1) + C(x1, x2)α1 +Mα̇1 − ǫ (31)

Yd(Zd)W
∗
d = τ + τe − C(x1, x2)x2 −G(x1)− ǫd (32)

where W ∗ and W ∗
d are optimal estimations and ǫ and ǫd are es-

timate errors of the dynamics. ǫ and ǫd satisfy maxZ∈ΩZ
|ǫ| <

ǫ∗ and maxZd∈ΩZ
|ǫd| < ǫ∗d respectively [24].

Theorem 2: Consider the the robotic dynamics (19) and (20),

using (27), together with (28), and the adaptive laws (29) and

(30), and the overall control scheme is shown in Fig. 2, the

control signals of the closed-loop system, z1 z2, W̃ , and W̃d

are semiglobally bounded. Furthermore, the error signals z1,

z2, W̃ , and W̃d will be kept in the compact sets Ωz1, Ωz2,

ΩW̃ , and ΩW̃d
respectively, defined as follow:

Ωz1 : =
{

z1 ∈ R
n| ‖z1i‖ ≤

√

D1

}

(33)

Ωz2 : =

{

z2 ∈ R
n| ‖z2i‖ ≤

√

D1

λmin(M)

}

(34)

ΩW̃ : =

{

W̃ ∈ R
n| ‖W̃i‖ ≤

√

D1

λmin(Γ−1)

}

(35)

ΩW̃d
: =

{

W̃d ∈ R
n| ‖W̃di‖ ≤

√

D1

λmin(Γ
−1
d )

}

(36)

where D1 = 2(V ∗
2 (0) +

B1

κ1
) with κ1 and B1 given in (70)

and (71), where both are positive definite.

The proof can be found in Appendix B and the overall



5

control framework is shown in Fig. 2.
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Fig. 2. Block diagram of the control scheme

IV. EXPERIMENTS

Experiments of the proposed adaptive control schemes are

designed to verify the effectiveness in this section. Experi-

ments are done on the robotic exoskeleton located in our key

lab of Autonomous System and Network Control. Two DC

motors are equipped for the experimental robot system as

actuators and the selection of the actuators is on the basis

of our actual needed torque in experiments and the external

force in the tasks. The motor driver is chosen as Elmo SOL-

WHI5/60E01 and the maximum baud rate of the CAN bus is

1Mbit/s. The loop frequency of the control loop is 25Hz and

the maximum sampling rate of the sensors is 5MHz.

Fig. 3 presents the experimental platform, which contains

the robotic system with a force sensor, a unit of the execu-

tive drivers and an industrial personal computer (IPC). The

executive drivers are used to generate a driving torque for the

actuators and gather the motion information in the tasks from

the force sensor and encoders of actuators, while the IPC is

used to execute the programs that involve the control on the

experiment platform.

We examine the control performance for the control

schemes proposed in this paper. The gains of the controller

are given: K1 = diag[24.5, 30.6], K2 = diag[3.3, 2.1],
Kd = diag[1.2, 1.8]. The gain matrix Γi and Γd,i are defined

as Γ1 = 0.01I , Γ2 = 0.01I , Γd,1 = 0.04I , and Γd,2 = 0.04I .

Small positive constants θi and θd,i are chosen as θ1 = 0.5,

θ2 = 0.5, θd,1 = 0.1 and θd,2 = 0.1.

Three experiment subjects participated in the experiment.

Table 1 shows the relevant information of the three subjects.

During the task of the experiment, the subject holds the end-

effector and moves according to his own intention back and

forth in an appropriate range, which can be expressed by the

shaped reference trajectory. An interaction force is generated

and is measured by the force sensor equipped at the end

of the robotic exoskeleton. With the adaptive control method

proposed in this paper, the interaction force will decrease and

the errors of tracking the reference trajectory are convergent.

Table 1: Information of the experimenters

Fig. 3. The experimental interaction system model

Experimenter Age Weight Force in the Experiment

Subject. 1 24 54.5 kg Shown in Fig. 7

Subject. 2 23 56.5 kg Shown in Fig. 11

Subject. 3 22 62.1 kg Shown in Fig. 15

The results are shown in Figs. 4 - 15. Figs. 4, 8 and 12 show

the tracking situation of the shoulder joint (q1) and the elbow

joint (q2) of the 3 subjects. The tracking error demonstrated

in Figs. 5, 9 and 13 shows convergence and bounded in the

experiment tasks.

Figs. 6, 10 and 14 show the output of the stiffness observer

proposed in Section III-A which is updated by (11). Values of

the interaction force are collected by the force sensor at the

end point of the elbow joint and is shown in Figs. 7, 11 and

15. Under the adaptive admittance control schemes proposed

in this paper, the interaction force is gradually reduced syn-

chronously with the adaption of the stiffness estimated by the

observer. The reducing of the interaction force can demonstrate

that the robotic exoskeleton is showing compliance to the

human behaviour during the interaction task. In summary, from

these results we can see that our proposed control approach

is effective in the actual physical interaction between human

and robot.

V. CONCLUSION

As is shown in this paper, the framework of the adaptive

admittance control is proposed, which includes the estimate

of the movement of human intention. The inner-loop is to

linearize the dynamics of the robot in a feedback way, while

the outer-loop is to tune the interaction model considering the

intention of humans. The use of the regressor can linearize

the unknown dynamics of the robot in the inner-loop such

that the the effect of the work performed in the outer-loop can

be ensured. Three groups of experiments are displayed in the

last section, with experimenters of different ages and levels of

interaction forces. The results show the virtue of the proposed

admittance control in dealing the tasks of physical interaction

between humans and robots, and the control approach, without

prior offline model tuning, can also be robust when the

dynamics of robots change. Tests about even more interaction

tasks will be done in our future work, as well as models
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with new forms of estimation of human intentions and more

complex performances in task space.

APPENDIX A

PROOF OF THEOREM 1

Lemma 1: [26] Considering that signals g(t), α(t), and h(t)
satisfying the following condition:

g(t) ≤ α(t) +

∫ t

0

h(δ)g(δ)dδ, (37)
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then we have:

g(t) ≤ α(t) +

∫ t

0

α(δ)h(δ)e
∫

t

δ
h(s)dsdδ. (38)

Combining the control law (27), and z1 (23), z2 (24), we

can change the control τ into the following form:

τ = −K(x− xr)−K2(ẋ− ẋr) + Y (Z)Ŵ + f̂ − τe (39)

where K = K2Γ is the stiffness coefficient and the control is

function of time t. We define:

sr(t) = Kxr(t) +K2ẋr(t) (40)

s(t) = Kx(t) +K2ẋ(t) (41)

where ẋr(t) = 1
∆t

(xr(t) − xr(t − ∆t)), then from (13) and

(16), we have:

sr(t+∆t) = Kxr(t+∆t) +K2ẋr(t+∆t)

= sr(t)−K2Lw(t) (42)

By defining x = xe as the equilibrium trajectory that

satisfies the following equation:

(ẍe − ẍd) +KD(ẋe − ẋd) +KP (xe − xd) = KFFe (43)

Then we have w = 0 and Fe is the external force when

x = xe. The actual trajectory is initialized at the initial time:

x(t0) = xd(t0). Substituting control (39) into the interaction

dynamics, we can get:

M(x)ẍ + Cẋ+G+ fdis = −s+ sr + Y Ŵ + f̂ (44)

With the equilibrium trajectory xe, we can also define the

equilibrium reference trajectory xre that satisfies:

M(xe)ẍe + Cẋe +G+ fdis = −se + sre + Y Ŵ + f̂ (45)

where se = Kxe +K2ẋe and sre = Kxre +K2ẋre deriving

from (40), and w = 0 when x = xre.

Considering that N(x, ẋ) = Cẋ+G+ fdis − Y Ŵ − f̂ + s,

so (44) and (45) can be written as follow:

M(x)ẍ +N(x, ẋ) = sr (46)

M(xe)ẍe +N(xe, ẋe) = sre (47)

Defining ∆M = M(x) − M(xe), ∆N = N(x, ẋ) −
N(xe, ẋe), ∆x = x − xe, ∆sr = sr − sre, ∆F = Fx − Fe.

Combining (46), (47), (43) and (16), we have:

∆ẍ = M−1(x)(∆sr −∆N −∆Mẍe) (48)

w = ∆ẍ+KD∆ẋ+KP∆x−KF∆F (49)

where ∆ẍ and w are functions about the time t. From (43),

(49), and the definition that ∆sr(t+∆t) = sr(t+∆t)−sr(t),
∆sr(t) = sr(t)− sr(t−∆t), we have:

∆sr(t+∆t) = −K2L(∆ẍ+KD∆ẋ

+KP∆x−KF∆F ) (50)

We consider nL, nM1, nK , nD, nP , nF , n2 as the ‖ ·
‖∞ norm of L, M−1, K2, KD, KP , KF , ẍe respectively

in the compact set of finite time. The function N(x, ẋ) is

continuously derivable so it satisfies the Lipschitz condition

[27]. We have Lipschitz coefficients ln, lm, lf of N(x, ẋ),
M(x) and Fx. From (48) and (50), take norm of both sides

and there is a constant u0 that yields

‖∆ẍ‖ ≤ nM1‖∆sr‖+ u0‖[∆x,∆ẋ]‖ (51)

‖∆sr(t+∆t)‖ ≤ ‖K2LM
−1‖‖∆sr(t)‖

+‖K2L‖
(

‖M−1‖‖∆N‖
+‖M−1ẍe‖‖∆M‖+ ‖KD‖‖∆ẋ‖
+‖KP‖‖∆x‖+ ‖KF‖‖∆F‖

)

≤ q‖∆sr(t)‖ + u1‖[∆x,∆ẋ]‖ (52)

Note that q = ‖K2LM
−1‖ < 1 and u1 = nKnL(nM1ln +

nM1n2lm+nD +nP +nF lf ). Using integral and the consid-

eration of ∆x(0) = 0, then we have:

‖[∆x(t),∆ẋ(t)]‖ ≤
∫ t

0

(

(u0 + 1)‖[∆x(δ),∆ẋ(δ)]‖

+nM1‖∆sr(δ)‖
)

dδ (53)

From Lemma 1, multiply both sides by e−αt, such that

e−αt‖[∆x,∆ẋ]‖ ≤ nM1

∫ t

0

e−αδ‖∆sr‖e(u0+1−α)(t−δ)dδ (54)

As is shown in [28], ∀M(t), ‖M(t)‖α =
sup(e−αt‖M(t)‖), then the following inequation holds

that ‖M(t)‖α ≤ ‖M(t)‖∞ ≤ eαt‖M(t)‖α. So the above

inequation (54) can be changed as:

‖[∆x,∆ẋ]‖α ≤ nM1‖∆sr‖α
∫ t

0

e(u0+1−α)(t−δ)dδ

≤ q1‖∆sr‖α (55)

Note that q1 = ‖nM1(1−e(u0+1−α)T )
α−u0−1 ‖, where T is the finite

time interval. Combining (51), we have:

‖∆ẍ‖α ≤ q2‖∆sr‖α (56)

where q2 = nM1 + u0q1. From (49), we have:

‖w‖α ≤ ‖∆ẍ‖α + u2‖[∆x,∆ẋ‖α
≤ q3‖∆sr‖α (57)

where u2 = nD + nP + nF lF , q3 = q2 + u2q1. Combining

(52) and (55), we have:

‖∆sr(t+∆t)‖α ≤ q‖∆sr(t)‖α + u1q1‖∆sr(t)‖α
≤ q4‖∆sr(t)‖α (58)

where q4 = q + u1nM1(1−e(u0+1−α)T )
α−u0−1 . Here if we make α

large enough, then we get q4 < 1, ‖∆sr‖α → 0, such that

‖∆sr‖ → 0. Then from (57), w → 0 is guaranteed.

APPENDIX B

PROOF OF THEOREM 2

Lemma 2: [22] If a Lyapunov function V (x) exists in

the consideration of initially bounded, which is positive def-

inite and C1 continuous, and satisfies κ1 (‖x‖) ≤ V (x) ≤
κ2 (‖x‖), such that V̇ (x) ≤ −κV (x) + c, where κ1, κ2
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: R
n → R are class K functions, while both κ and c are

positive constants, then the solution to the Lyapunov function,

x(t), is uniformly bounded.

Consider Lyapunov function candidate V1 = 1
2z

T
1 z1. Time

derivative of V1 is

V̇1 = zT1 ż1 = zT1 (z2 + α1 − ẋ∗
r) (59)

If we let α1 = ẋ∗
r − K1z1 with K1 ∈ R

n×n and

λmin(K1) > 0, the above Lyapunov function can be changed

in the following form:

V̇1 = −zT1 K1z1 + zT1 z2 (60)

then, we can get:

ż2 = ẋ2 − α̇1

= M−1[τ + τe(t)− fdis −G− Cx2]− α̇1 (61)

where α̇1 = −K1ż1 + ẍ∗
r . We consider a Lyapunov function

V2 = V1 +
1
2z

T
2 Mz2, so the time derivative form of V2 will

be

V̇2 = V̇1 + zT2 Mż2 +
1

2
zT2 Ṁz2

= −zT1 K1z1 + zT1 z2 + zT2
(

τ + τe − fdis

−G− Cx2 −Mα̇1 +
1

2
Ṁz2

)

(62)

Applying Property 1, we have

V̇2 = −zT1 K1z1 + zT1 z2 + zT2
(

τ + τe − fdis

−G− Cα1 −Mα̇1

)

(63)

Substituting control (27) into (63)

V̇2 = −zT1 K1z1 − zT2 K2z2 − zT2 ǫ

−zT2 fdis + zT2 f̂ + zT2 Y (Z)W̃

(64)

where Z = [xT
1 , x

T
2 , α

T
1 , α̇

T
1 ] and Zd = [τT , xT

1 , x
T
2 ]. Given

W̃ = Ŵ − W ∗ and W̃d = Ŵd − W ∗
d . By considering the

effect of W̃ to the stability of the control system, the following

Lyapunov candidate is suggested

V ∗
2 = V2 +

1

2

n
∑

i=1

W̃T
i Γ−1

i W̃i +
1

2
f̂T f̂

+
1

2

n
∑

k=1

W̃T
dkΓ

−1
dk W̃dk (65)

Derivative of V ∗
2 about time and substitute (64) into it

V̇ ∗
2 =

n
∑

i=1

(

z2,iYi(Z)W̃i + W̃T
i Γ−1

i
˙̃
Wi

)

+

n
∑

k=1

W̃T
dkΓ

−1
dk

˙̃
Wdk − zT1 K1z1 − zT2 K2z2

−zT2 ǫ− zT2 fdis + f̂T ˙̂
f + zT2 f̂ (66)

Consider the disturbance observer (28), the disturbance

observer error is defined as ef = f̂ − fdis, and we have

ėf =
˙̂
f − ḟdis = −Kaef − ḟdis −KdYd(Zd)W̃d (67)

where Ka = min{Kid,KidαM−1}. With the disturbance

observer error signals (67), and the updating laws (29) - (30),

we have:

V̇ ∗
2 = −zT1 K1z1 − zT2 K2z2 − zT2 ǫ+ zT2 f̂ − zT2 fdis

−
n
∑

i=1

θiW̃
T
i Ŵi −

n
∑

k=1

θdkW̃
T
dkŴdk

−f̂Kaef (68)

Since −W̃T
i Ŵi = −W̃T

i (W ∗
i + W̃i) = −W̃T

i W̃i −
W̃T

i W ∗
i and −W̃T

i W ∗
i ≤ 1

2 (W̃
T
i W̃i + W ∗T

i W ∗
i ), we have

−W̃T
i Ŵi≤− 1

2W̃
T
i W̃i +

1
2W

∗T
i W ∗

i . Similarly, −W̃T
diŴdi ≤

− 1
2W̃

T
diW̃di + 1

2W
∗T
di W ∗

di. And zT2 ǫ ≤ zT2 z2 + 1
2ǫ

T ǫ ≤
zT2 z2+

1
2 ||ǫ∗||2, −zT2 fdis ≤ 1

2z
T
2 z2+

1
2 ||f∗

M ||2. Substitute these

inequalities and ef = f̂ − fdis into (68)

V̇ ∗
2 ≤ −zT1 K1z1 − zT2 (K2 − 2In×n)z2

−
n
∑

i=1

1

2
θiW̃

T
i W̃i −

n
∑

k=1

1

2
θdkW̃

T
dkW̃dk

+
1

2
||ǫ∗||2 + 1

2
||f∗

M ||2 +
n
∑

i=1

1

2
θiW

∗T
i W ∗

i

+

n
∑

k=1

1

2
θdkW

∗T
dk W ∗

dk

−f̂(Ka − I)f̂ +
1

2
‖Ka‖2‖f∗

M‖2

≤ −κ1V
∗
2 +B1 (69)

where

κ1 = min
(

2λmin(K1), 2λmin(Ka − I),

2λmin(K2 − 2In×n)

λmax(M)
, min
i=1,2,...,n

{ θi

λmax(Γ
−1
i )

}

,

min
k=1,2,...,n

{ θdk

λmax(Γ
−1
dk )

})

(70)

B1 =
1

2
||ǫ∗||2 +

n
∑

i=1

1

2
θiW

∗T
i W ∗

i +
1 + ‖Ka‖2

2
||f∗

M ||2

+

n
∑

k=1

1

2
θdkW

∗T
dk W ∗

dk (71)

To ensure κ1 > 0, the design parameters θi > 0, θdk > 0,

K1 = KT
1 > 0 and K2 − 2In×n =

(

K2 − 2In×n

)T

> 0 and

Ka − In×n = (Ka − In×n)
T > 0. Integrating (69) over [0, t],

we can get

V̇ ∗
2 ≤ (V ∗

2 (0)−
B1

κ1
)e−κ1t +

B1

κ1

≤ V ∗
2 (0) +

B1

κ1
(72)

According to the Lemma 2, the system stability is guaran-

teed.
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