&

Swansea University ‘C ronfa

Prifysgol Abertawe Setting Research Free

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:
IEEE Transactions on Industrial Informatics

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa51997

Paper:

Khan, A., Li, S. & Luo, X. (2019). Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An
RNN based Metaheuristic Approach. IEEE Transactions on Industrial Informatics, 1-1.
http://dx.doi.org/10.1109/T11.2019.2941916

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/


http://cronfa.swan.ac.uk/Record/cronfa51997
http://dx.doi.org/10.1109/TII.2019.2941916
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

Obstacle Avoidance and Tracking Control of
Redundant Robotic Manipulator: An RNN based
Metaheuristic Approach

Ameer Hamza Khan, Student Member, IEEE, Shuai Li, Senior Member, IEEE,
and Xin Luo, Senior Member, IEEE

Abstract—This paper presents a metaheuristic-based control
framework, called Beetle Antennae Olfactory Recurrent Neural
Network (BAORNN), for simultaneous tracking control and
obstacle avoidance of a redundant manipulator. The ability
to avoid obstacles while tracking a predefined reference path
is critical for any industrial manipulator. The formulated
control framework unifies the tracking control and obstacle
avoidance into a single constrained optimization problem by
introducing a penalty term into the objective function, which
actively rewards the optimizer for avoiding the obstacles.
One of the significant features of the proposed framework
is the way that the penalty term is formulated following
a straightforward principle: maximize the minimum distance
between manipulator and obstacle. The distance calculations
are based on GJK (Gilbert-Johnson-Keerthi) algorithm, which
calculates the distance between manipulator and obstacle by
directly using their 3D-geometries. Which also implies that our
algorithm works for arbitrarily shaped manipulator and obstacle.
Theoretical treatment proves the stability and convergence, and
simulations results using LBR IIWA 7-DOF manipulator are
presented to analyze the performance of the proposed framework.

Index Terms—Obstacle Avoidance, Tracking Control, RNN,
Metaheuristic Optimization.

I. INTRODUCTION

For a redundant robotic manipulator, the problem of
tracking control and obstacle avoidance aims at computing
an optimal control action to steer the end-effector along
a required reference trajectory, while avoiding obstacles
present in the environment. With the advances in robotics,
the robotic manipulators have found increased research
attention from academia as well as from industry [1]-[4].
Industries are interested in using the manipulators to automate
the common tasks, e.g., moving, assembling, packing, and
transporting the products. Accurate tracking control, along
with obstacle avoidance, is a critical requirement for the
industrial manipulators [5], [6]. To fulfill those requirements,
redundant manipulators [7] are particularly desirable because
the extra degree of freedoms (DOFs) provided by redundant
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joints helps in achieving secondary design objectives, such as
obstacle avoidance [8]—[10]. It is well-known in the literature
that the tracking control and obstacle avoidance in itself are
challenging problems [11]. Unifying these two problems into
single framework present an intricate technical challenge.

Several aspects of industrial manipulators have been
extensively studied in the academic literature. Apart
from tracking control algorithms, particular emphasis
has also been placed on designing optimal task-space
trajectories for the manipulator as well as analyzing the
repeatability of the controller to repeatedly track the
generated trajectory have been of great interest [12], [13].
For example, one of the traditional control algorithm, called
Jacobian-matrix-pseudo-inverse (JMPI), was shown to have
poor repeatability [14]. Jerzy et al. [15] proposed a systematic
procedure to measure the pose repeatability of an industrial
manipulator and discussed the concerning factors additional
to the control algorithm, e.g., mechanical and thermal
strain. Similarly, several algorithms have been proposed to
increase the repeatability of the manipulator during long-term
operation [16]. Other approaches to improve the repeatability
of the manipulator involves the learning algorithm to estimate
the kinematic model of the manipulator in real-time [17].
The learning algorithm continually adapts to variation in
the system model and compensate for them in real-time.
Similarly, visual Servoing based approaches have also been
proposed to use computer vision algorithms in improving the
control of industrial manipulators [18].

Kinematic tracking control of a redundant robotic
manipulators is a well-studied problem in robotic literature [7],
[10], [19]. For example, consider an industrial manipulator,
assigned to move an object from one point to another by
following a specified trajectory in the cartesian task-space. For
a redundant manipulator, corresponding to a given trajectory
in cartesian space, infinite numbers of trajectories exist
in joint-space. Traditionally, Jacobian-matrix-pseudo-inverse
(JMPI) [20] is to used resolve the redundancy. However, JMPI
can only be used to solve equality constraint and therefore,
does not respect the joint-angle limits. Additionally, it cannot
accommodate obstacle avoidance, which usually modeled as
inequality constraints [11], [21]. Furthermore, the calculation
of pseudo-inverse of Jacobian is a computationally extensive
task. Modern approaches to redundancy resolution model
the kinematic control as a constrained optimization problem
[8]-[10]. These optimization-centric approaches are capable



of solving additional inequality constraint simultaneously with
the tracking control problem. For example, Wei et al. [22] and
Wang et al. [23] used it for tracking control of manipulators
with flexible joints. Li et al. [19] proposed a dual Recurrent
Neural Network (RNN) for solving the tracking-control
optimization problem for multiple manipulators in real-time.
Adaptive control techniques have also been proposed in
literature [24]-[27] which estimate the system model in
real-time to increases the robustness of the tracking controller.
Obstacle avoidance is also an essential goal, along with the
tracking control of the robotic manipulator [11]. The industrial
robots often need to operate in a complex environment
and interact with other robots and objects present in the
surrounding. A traditional method for obstacle avoidance uses
the concept of “artificial force field”, like one proposed by
Khatib [28] in which the goal position act as attractive
pole whereas obstacles act as repulsive poles. However,
their proposed algorithm is formulated in cartesian space
and needs further computation for calculating the necessary
control actions in the joint-space. Similarly, Flacco et al. [29]
proposed an algorithm based on the robot-obstacle distance
information obtained using a depth sensor. Guo and Zhang
[21] proposed an approach at joint-acceleration level approach
by minimizing the joint-acceleration norm. Zhang et al. [11]
proposed a tracking control and obstacle avoidance algorithm,
however, there proposed algorithm treats the obstacle as a
point object and does not account for 3D-geometry of the
manipulator and the obstacle. The traditional methods mostly
incorporate obstacle avoidance as inequality constraint in the
optimization problem. These constraints do not actively reward
the optimizer for avoiding obstacles and only act passively.
Our proposed problem formulation tries to overcome this
issue by using a penalty term in the objective function. To
summarize, the problems being addressed in this paper are

1) Formulating a tracking controller for a redundant
manipulator to compute the necessary control actions
in joint-space to track a specified task-space trajectory.

2) While tracking the reference trajectory, the controller
should satisfy the joint-angle limits.

3) The objects present in the surrounding of the
manipulator are considered obstacles, and their collision
with the manipulator should be avoided.

In this paper, we take advantage of the fact that
optimization-centric approach allows any arbitrary goal to be
achieved by adequately formulating the objective function [8],
[9]. We incorporate the obstacle avoidance problem into the
tracking control framework by adding a penalty term in the
objective function along with an inequality constraint. The
penalty term approach used in our paper actively reward
the optimizer for avoiding the obstacle, which is in contrast
with the traditional obstacle avoidance approaches, which
simply add an inequality constraint [11]. With this, the
obstacle avoidance and tracking control problem essentially
reduces to solving the formulated optimization problem in
real-time. Our formulated objective function has two goals:
1) Tracking control, i.e., minimize the Euclidean distance
between reference trajectory and the end-effector’s trajectory,

2) Maximize the distance between the links of the manipulator
and the obstacles. We used the Gilbert-Johnson-Keerthi (GJK)
algorithm [30], to calculate the distance between manipulator’s
links and the obstacle by directly using their 3D-geometries.

To solve the optimization problem in real-time, we take
a metaheuristic approach; called Beetle Antennae Olfactory
Recurrent Neural Network (BAORNN). We leverage the
metaheuristic optimization algorithms, which are well-known
[31], [32] for their ability to efficiently solve the complex
nonlinear non-convex optimization problem. Our proposed
algorithm is based on a nature-inspired metaheuristic
optimization algorithm; Beetle Antennae Olfactory (BAO)
algorithm [33], [34], inspired by the food searching behavior
of beetles. Although recently introduced, BAO has shown
practical applications in several real-world scenarios [35],
[36] and therefore, the reason for our choice for solving
the formulated optimization problem. Specifically, The
formulation of the BAO algorithm allows the use of the
“virtual robots”, which virtually anticipate the consequences
of joint-actions and only move the real robot when accuracy
and collision-safety are guaranteed. We modeled the BAO
algorithm as a Recurrent Neural Network (RNN) which
enables fast prototyping and will be able to leverage the
hardware acceleration, distributed processing, and software
optimizations, offered by modern computing frameworks when
implemented in an industrial setting.

It should be further noted that the tracking controller
presented in this paper is designed on position-level as opposed
to velocity-level as done by the most traditional works on
tracking control of redundant manipulators [11], [17], [19].
This approach is advantageous because it does not require that
initial position of end-effector to lie on the reference trajectory,
whereas the velocity-level controllers explicitly require
moving the end-effector to the initial point on the reference
trajectory. Additionally, the velocity-level controllers require
the computation of Jacobian pseudo-inverse at each time-step,
resulting in high computation cost. Position-level control,
however, altogether avoid the mathematical manipulation
of the Jacobian matrix, thereby significantly reducing the
computation cost. Additionally, It is also worth noting that
unlike the traditional obstacle avoidance algorithms, the
proposed algorithm does not make an assumption about the
shape of the obstacle, neither consider it as a point object
[11]. The proposed algorithm directly use the 3D-model of
the manipulator to calculate the distance of its link from the
obstacle. As such, it works for any arbitrary manipulator and
obstacle shape, which makes it realistic for an actual industrial
setup. Although the algorithm requires 3D-geometry of the
obstacle, with modern depth mapping sensors, this can be
easily achieved. The main highlights of this paper are:

1) We propose an optimization framework for unifying
the tracking control and obstacle avoidance problems
by using the penalty term approach. It fulfills two
objectives: 1) Minimize the tracking error, ii) Maximize
the manipulator-obstacle distance.

2) We formulate the tracking control problem on
position-level as compared to velocity-level as done in
most traditional works. The position-level control avoids



the manipulation and pseudo-inversion of the Jacobian
matrix, consequently reducing the computation cost.

3) Using the GJK algorithm, to efficiently measure the
distance between a manipulator and an arbitrarily-shaped
obstacle by directly using their 3D-geometries, without
making any assumption about their shapes.

4) We propose a metaheuristic based recurrent neural
network, BAORNN, to efficiently solve the formulated
optimization problem so that the manipulator can be
controlled in real-time.

5) Extensive numerical analysis using a simulated model
of KUKA LBR IIWA-14, a popular 7-DOF industrial
robotic arm, are performed to demonstrate the
performance of the proposed algorithm.

The remainder of this paper is organized as follows: Section

II presents the problem formulation of the tracking control and
obstacle avoidance. In Section III, firstly, the GJK algorithm is
described briefly, and then the details of BAORNN algorithm
are laid down. Theoretically, analysis is presented to prove the
global convergence of the algorithm. Section IV outlines the
simulation methodology, present the results, and discuss their
implications. Section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we will mathematically formulate the
tracking control and obstacle avoidance problem and unify
them into one optimization framework.

A. Tracking Control

Consider the task of moving a payload using robotic
manipulator along a specified trajectory, say a circular path.
Tracking control deals with the calculation of the joint-space
trajectory, which will move the end-effector in the specified
circular path. For a given robotic manipulator, the position
of its end-effector is a function of its joint-angles. For
example, consider a m-DOF robotic manipulator operating
in a n-dimensional task-space (n = 3 for position control).
The forward kinematic mapping is a surjective function of the
joint-space coordinates

x(t) = f(6(1)), (D

where x(t) € R"™ and 6(t) € R™ are the task-space
and joint-space coordinates respectively. Note that m >
n for a redundant manipulator. The forward kinematic
mapping f(.) is a nonlinear vector-valued function, which
is trivial to formulate using the mechanical design and
Denavit—Hartenberg (DH) parameters for a given manipulator.
However, the task for a manipulator is usually specified in
the cartesian task-space instead of the joint space. Therefore,
we are more interested in the inverse mapping, i.e., mapping
from the task-space to the joint-space. Using 1, an inverse
kinematics model can be defined

0(t) = f~H(x(t)), )

where f~!(.) denotes the inverse kinematic mapping.
Now consider a reference trajectory x,(t) for end-effector
position in cartesian task-space. To trace this trajectory, the

corresponding angles 6,.(t) in joint-space must satisfy the
following equation,

X, (t) = f(6:(1)). 3)

Our goal is to solve the above equation for the value of 6,.(t).
If a closed-form expression for f~!(.) exist, we can trivially
solve this equation using 6,.(t) = f~1(x,(t)). However, for a
redundant manipulator, the forward kinematic mapping f(.) is
surjective-only and not one-to-one, i.e., there exist an infinite
solutions 6,.(t) in the joint-space, which are mapped to the
same reference trajectory x..(t).

To resolve the redundancy, i.e., calculate an optimal
joint-space trajectory out of infinitely many possible
trajectories; we model the tracking control as following
optimization problem

tmin g (%, (). 0(1), @

where g4.(.) is the tracking objective function and defined as

gir(Xr, 0) = [[xr — f(O)]]2. )

where x,. is the current point on the reference trajectory and
0 are the current joint-angles.

Remark 1. In the formulation of tracking control objective
function, only the kinematic model of the manipulator
is considered. The tracking control algorithm based on
kinematic models are intensively studied for the control of the
manipulator as shown by recent works [17], [37]. Apart from
the academic research, kinematic control is also widely used
in commercial robotic systems such as ping-pong manipulator
[38], ABB IRB 360 [39], Adept Quattro 650HS [40], DOBOT,
and UR 10 manipulator.

B. Obstacle Avoidance

The solution to optimization problem (4) does not guarantee
that the manipulator does not collide with an obstacle.
Our obstacle avoidance strategy is based on the principle:
maximizing the minimum distance the links of the manipulator
and the obstacle. To incorporate this principle into our control
framework, we formulate an additional objective function
which penalizes the angles in joint-space which bring the robot
close to the obstacle. The obstacle avoidance optimization
problem is defined as

1;1(151 901(0,0(t)), (6)

where gor(.) is called the obstacle avoidance objective
function; which is a function of O € R"©*3, the 3D-geometry
of the obstacle, i.e., cartesian coordinates of all its vertices, and
0, the joint-angles of the manipulator. Here np is the number
of vertices in the 3D model of the obstacle. High value of
no results in a fine-grained 3D-mesh. The objective function
go1(.) is defined as

1
[minie{l,Q,...,m} {dl (Oa 0)}]6 ’

where 6 are the current joint-angles, m is the total number
of links in the manipulator and d;(O,#) is the distance of

901(0,0) = (N



it" link from the obstacle O. The reciprocal relation ensures
that decreasing the value of objective function increases the
distance between links and obstacle. /3 is a hyper-parameter,
and from simulation analysis, we found that 3 = 1 provides
the best performance. The value of the distance is calculated
using the GJK algorithm (refer to Section III-C for further
details)

here again ¢ € {1,2,...,m}. Since GJK algorithm requires
3D-geometry of the two objects, so we defined a function
M, (0) € R™*3 which returns the vertices of i‘" link. Similar
to ne, n; is the number of vertices in the 3D-geometry i'"
link. It must be noted that the location of vertices change
when manipulator moves, i.e., it is a function of joint-angles
6. The initial geometry, M;(0), is a given information for a
manipulator based on its mechanical model. The subequent
values of M (@) are calculated using

Mi(0) = Ri(6)M;(0) + Ti(6)

where R;(6) and T;(8) are the rotation and translation matrix
for the #*" link. These matrices can be calculates using the
forward kinematic model of manipulator.

C. Joint-Angle Limits

A solution to optimization problem of (4) or (6) does not
guarantee that the solution will lie within the mechanical limit
of the joint. To guarantee the solution does not violate the
joint-angle limits, the following constraint must be satisfied

0~ <0(t) <ot ©)

where 8~ and 6% denote the lower and upper limits on the
joints-angles respectively, the value of these limits depend on
the mechanical construction of the manipulator and the type
of actuator used to move the joints.

D. Unified Tracking Control and Obstacle Avoidance

Above, we formulated three seperate component of the
problem: tracking control (4), obstacle avoidance (6) and
joint-angle limits (9). These can be unified into the following
optimization problem

min (O, % (), 8(t))

st. 07 <0(t) <ot (10)
where g¢(.) is the unified objective function defined as
g(O7X7'79) = gt’r‘(x7'79) +AgOI(Oa0)a (11)

where A is a constant parameter which controls the
trade-off between tracking performance and maximizing the
manipulator-obstacle distance. A value of A = 0 turns off the
obstacle avoidance completely. The value of A greatly affect
obstacle avoidance performance. Its effect is discussed in detail
in Section IV.

Remark 2. The obstacle avoidance objective function
9o1(0,0) acts as a penalty term in the unified objective

function above. When the manipulator is moved far from the
obstacle, the value of the penalty term becomes small, and the
algorithm rewards the optimizer by reducing the overall value
of the objective function.

Although the penalty term approach actively reward the
optimizer to avoid the obstacle, but consider a circumstance
where the position of obstacle makes it impossible to track the
reference trajectory; to avoid the collision in such a condition,
we add inequality constraint to (10),

Ien(.ltr)l 9(0,x,(t),0(t))

st. 07 <0(t) <ot

d,(@,a(t)) > dpin for i € {1,2, ,m} (12)

The second constraint puts a hard lower-bound, d,,;,, on
obstacle-manipulator distance.

Based on the above formulation, the complete form of the
optimization problem can be written as

min ||, () - F(O(D)[]2 + A !

o(t) [minieg1,2,....my31di(O, (1)) }]7

st. 07 <0(t) <ot

dl((’),B(t)) > dyin fori e {1,2, ,m} (13)

The solution to this optimization problem gives the joint-space
trajectory 6,.(t). Now we will formulate the BAORNN
algorithm in Section III to solve this optimization problem
in real-time.

III. CONTROL SYSTEM DESIGN

In this section, we will first formulate the BAORNN
algorithm. Then we will briefly describe the GJK algorithm
used for calculating the distance between the manipulator and
the obstacle.

A. BAORNN Algorithm

After the problem formulation in Section II, the tracking
control and obstacle avoidance finally boils down to solving
the optimization problem (13) in real-time while the
manipulator is operating. BAORNN algorithm mimics the
behavior of a beetle; which uses its pair of antennae and
olfactory sense to probe an unknown environment in search
of food (i.e., search for the region with maximum smell). At
each step, beetle measure magnitude of smell at both antennae
before deciding the direction of its next step. Especially, note
the intermediary action; i.e., instead of randomly moving in
any directions, the beetle stops after each step, uses just the
olfactory sense to develop better intuition about goal direction
and only then makes a calculated decision to take the next
step. This overall behavior especially the intermediary action
inspired us to incorporate the concept of “virtual manipulators”
(analogous to antennae’s olfactory sense) into our control
framework and develop a heuristic mechanism to control the
manipulator.

Suppose, at time-step k, the manipulator starts at 6y in
joint-space. The algorithm generates a normalized normally
distributed random direction vector b € R™ analogous to the
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Fig. 1: (a) The topology of the RNN for the BAORNN algorithm. The diagram illustrates the working of the algorithm

formulated in Section III-A. (b) Illustration of GJK algorithm.

Algorithm 1: BAORNN algorithm - Tracking control
& Obstacle avoidance
Input: kinematic model f(.) and 3D-geometry matrix
M;(0) (i € {1,2,..m}) of the manipulator,
3D-geometery of the obstacle O, reference
trajectory x,.(t) € R™, an objective function
9(0,x,0). Additionally, the values of
hyper-parameters: 3, A, ¢; and cs.
Output: An optimal trajectory 6,.(t) in joint-space.
6, + Initial joint coordinates
k <= 0 kstop < maximum number of time-steps
allowed

while k < kg;0p do
Generate a normalized random direction vectors,

b € R™ in the joint-space.

Use the generated random vector to calculate the
location of left and right antennae, 01, and 0
respectively, using (15).

Project the location of these antennae on the
constrained set {2 using the projection function
Pq as defined in (16) to . Calculate the value of
objective function at both location using " Virtual
manipulators” as defined in (17).

Calculate he updated location in joint-space using
(18).

Check if the updated location improves the value
of objective function using (20).

Move the manipulator to 6541 and update the
value of gg41.

k+—k+1

end

antenna of the beetle. Using direction vector B, the location
of end-point of the antennae can be calculated as

01 = 0, + M\b,  Orr = 0), — \ib, (14)

where \j is a hyper-parameter representing the length of the
antenna, @y, and @ denotes the location of left and right
antennae respectively at time-step k. However, these vectors

might not satisfy the constraint of the problem (13). Therefore
we project these vectors onto the constrained set

20,x = Pa(Brx),

where X € {L, R}, Pq(.) is the projection function which
restrict the input inside the constrained set (2. The set € is
mathematically defined as,

Q={0cR™O~ <0 <0 ANdi(0,0) > dpnin}.

15)

There are several way to project a vector 6 on a set ),
here we define a computationally straightforward projection
function

max{0~, min{0;x, 0" if d; > dmin
P"(a’”‘):{ek { 0 if d; < dog
(16)

where again X € {L, R}, d; is same as defined in (8). The
projected antennae locations ©9,.;, and 0,5, is then used to
evaluate the value of objective function

grex 29(07 Xr (t)aﬂ ekX)u

where grx (X € {L, R}) is the value of objective function at
antenna locations.

We then use the calculated values of the objective function
at antennae locations, gix, to move in a direction, inside
joint-space, where the value of the objective function is
decreasing by using the following update rule

20, = Po(8), — k(Mg )sign(grr — grr)b),

where 6, 11 1s the updat_e;d location in joint-space projected
on set €2, sign(gr, — gr)b term ensure that the next step is
taken in direction of the antennae with small objective function
value. Jx(\g), is a hyper-parameter and denotes the step-size,
i.e., euclidean distance between 6, and @}, locations. The
step-size is a function of antennae length Ay; there relationship
will also be discussed later. After calculating QO; 11, the value
of objective function is re-evaluated

a7

(18)

Gr1 = 9(0,%:(1),7 0}14), (19)



the value of g, , is compared to the value of objective
function at previous time-step gi. If there is any improvement
(i.e., the updated value is smaller), then the robot moves to
A 41 in joint-space; otherwise, it remains at the current

location
Q
Ok+1 =
+ 0k

Similarly, the value of gx4; is assigned to use in next iteration

/ .
w1 iF Grin < gk

) (20)
if 924-1 > G-

’ if g, < gk
k1 = {g’““ Iet1 = 9 21)

9k if g;<:+1 > Gk-

After moving to Oy, the iterative procedure is repeated
for the next time-steps. The steps of the proposed BAORNN
algorithm are systematically presented in Algorithm 1.

The choice of hyper-parameter Ay and dx(\x), where
k denotes time-step, affects the speed of convergence.
By empirical analysis, we found that the following rules
for the selection of hyper-parameters provide a reasonable

convergence rate
/
Ak = c11/ 95,

5k()\k) = Cg)\k

(22)
(23)

where ¢; and co are constant design parameters. The above
relation regulate step-size such that the algorithm takes large
steps when the end-effector is far from the goal position and
make the steps extremely small when reached near the goal.
The small step-size is necessary to prevent the overshooting
of end-effector near goal position. For ¢; and ¢y, we propose
the following rules for fast convergence.

c1 o< Ty
Cco € [1,3}

where T is the sampling time of the control loop.

The proposed BAORNN is formulated as RNN, as shown
in Fig. la. The formulated RNN has a two-layered topology
with a temporal-feedback connection from the second layer
to the first layer. RNN architecture has a total of 3m + 6
neurons. The block "Random” represents a random vector
generator and provide normally distributed unit direction
vector b for the BAORNN algorithm. The neurons, shown as
circles, use projection Pq(.) as their activation function. The
neurons shown as curved rectangular boxes represent “virtual
manipulators”, and their activation function is given by f(.).
Similarly, the neurons represented by curved boxes (in cyan)
represent the objective function evaluation, and their activation
function is given by g(.).

By parsing the RNN architecture shown in Fig. la,
it can be shown that the algorithm has a complexity
of O(m), ie., the computational complexity is just a
linear function of the number of joints. The algorithm
involves elementary floating-point operations, which can be
executed very efficiently on embedded processors since
modern embedded processors have dedicated hardware unit
for floating-point calculations.

B. Theoritical Analysis

Theorem 1. For the tracking control and obstacle avoidance
of a redundant manipulator, starting from an initial joint-space
angles Oy, the joint-space trajectory 0,.(t) generated by
BAORNN algorithm is stable, i.e.,

Jk+1 S 9k, vV ok Z 0) (24)

the values of objective function are monotonically decreasing.
Proof. See Lemma 1 of [34]. O

Theorem 2. For the tracking control and obstacle avoidance
of a redundant manipulator, starting from an initial joint-space
angles 0, the end-effector trajectory f(0,(t)) is convergent
to the reference trajectory x,.(t), ie.,

f(0(t) = x,(t), as (25)
Proof. See Theorem 1 of [34]. O

t — o0.

C. GJK-Distance Algorithm

GJK algorithm is an efficient algorithm to calculate the
minimum distance between two arbitrarily shaped convex
3D-polygons. Although, in our case, the 3D-geometry of a
manipulator link or the obstacle might be non-convex shape,
however, the collision avoidance between convex-hulls of both
objects is a sufficient condition for real collision avoidance.

Consider two convex polygons A and B in 3D-space, their
vertices defined by matrices V4 € R"4%3 and VB ¢ R*5*3
respectively. n4 and np are the numbers of vertices of polygon
A and B respectively. Each row of these matrices represents
the location of a vertex of the corresponding polygon. The GJK
algorithm takes these matrices and calculates the minimum
distance between the closest vertices of the two polygons,

min

GIK(VA, V) = Vi = ViZ1l2
i€ {1,2,...,na} " J
je{1,2,....,np}

where the notation V;. is used to represent the it" row of a
matrix V. Fig. 1b illustrates GJK-algorithm.

D. Computational Complexity

Here we will estimate the computational complexity of the
BAORNN algorithm formulated in Section III-A. The first
step in the algorithm is the generation of is a random vector
b with m elements; the operation requires m floating-point
operations. Next, we calculate 6,7, and 0yp, each requiring
m multiplication and m additions, totalling 4m floating-point
operations. Next step requires the projection of two vectors
using the projection function fq(.), which require a total of
4m comparisons. Then we use (17) to calculate the value of
objective function at both antennae location. The evaluation
of objective function is the most computationally intensive
step of the algorithm since it requires the calculation of
Euclidean distance as well as GJK-distance, as given in
(11). The calculation of Euclidean distance require a total
of 3m — 1 floating-point operations (m subtractions, m
squaring operations and m — 1 additions). The calculation
of GJK-distance depends on the number of vertices in the



3D models of two objects and require a total of ng +
np operations, as shown by [41]. Where ny and np are
the numbers of vertices in the 3D model of both objects,
respectively. For the case of manipulator and obstacle distance,
using the notation of Section II-B, the total number of
operation comes out to be no > .-, n;. Although this number
is large, these operations are only required in the first iterations
of the algorithm, the later iterations of GJK-algorithm are
near-constant time, as pointed out by [41], [42]. Therefore,
the total number of operations required by GJK-algorithm are
effectively m. It means that a total of 4m + 2 operations
are required for evaluating the objective function; some
additional operations are required for the scalar addition and
multiplication as given in (11). Since objective function is
evaluated twice in (17), therefore this step require a total
of 8m + 4 operations. The next step, as given in (18),
requires a total of 2m + 1 floating-point operations. Similarly,
the subsequent step is again objective function evaluation
requiring 4m + 2 operations. The final step of the algorithm,
as given in (20) and (21), require a total of 2m comparisons.
Adding the floating-point operations required for each step as
calculated above; the final count comes out to be (m + 4m +
dm+ 8m+4)+ (2m+1) + (dm+2) +2m) = 25m + 7.

The above analysis shows that the BAORNN algorithm
have a complexity of O(m), where m are the total number
of links of the manipulator. This show that the complexity
of the BAORNN algorithm is only linearly related to the
number of links of manipulator. For m = 7, as in the case
of IIWA14 manipulator, the required number of operations
per iterations are of the order of 182. Modern embedded
processors can efficiently perform floating-point operations of
this order withing few hundred of microseconds.

IV. SIMULATION RESULTS & DISCUSSION

In this section, simulation methodology, for evaluating the
performance of the proposed algorithm, is presented along
with the obtained results and discussion. Simulated model of
KUKA LBR ITWA-14 manipulator is used as a testbench. The
IIWA-14 has 7-DOF. 3D-model of the manipulator is shown
in Fig. 2.

A. Simulation Methodology

We used the model of IIWA-14 provided by MATLAB
Robotic System Toolbox [43]. The model provides an excellent
representation of a real-world industrial manipulator and
therefore act as a desirable simulation testbed. To test the
obstacle avoidance performance, we placed an arbitrarily
shaped obstacle in front of the manipulator. The simulation
setup, including manipulator and obstacle, is shown in Fig. 2.

We used two reference trajectories [19] in our simulations:
a rectangular and a circular trajectory as shown in Fig. 3.
The four corners of the rectangular paths used in simulation
are: [0.2 0.6 0.8]7, [-0.1 0.6 0.8], [-0.1 0.6 0.2], and
[0.2 0.6 0.2]. The total time for tracking the rectangular
trajectory is 50 seconds. For generating the circulat trajectory
we used following parameteric equation

x%rele (1) = C + 7 cos(2mt /T)A + rsin(2nt/T)B.  (26)
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Fig. 2: 3D model of KUKA LBR IIWA-14 7-DOF manipulator
with the obstacle used in simulations. The obstacle is placed
in front of the operational region of the robot.

where C is a position vector to center of the circle, A and B
are two perpendicular unit vectors defining the plane of the
circle in 3D space, r is the radius of the circle. 7' denotes the
total time duration. Following values were used in simulation:
C = [00 0605, A =[100,and B = [00 1].
These values represent a circlular path in = — 2z plane at
y = 0.6. The two trajectories mentioned above were chosen
for developing simulation results in this paper. Without the loss
of generality, the proposed algorithm works for an arbitrarily
shaped reference-trajectory, provided that all the points on the
trajectory are reachable by the end-effector without violating
the mechanical limits of the manipulator’s joints.

To systematically study the effect of the proposed
algorithm, we first conducted a simulation without any
obstacle-avoidance, i.e., setting A = 0 in (13) and ignoring
the 2"? constraint. Then we performed simulations with
different values of A and its effect on the obstacle avoidance
performance is discussed in details.

B. Trajectory tracking results

The first set of the simulation consists of analyzing the
response of the manipulator without obstacle avoidance as
described in Section IV-A. The results for rectangular and
circular trajectories are both shown in Fig. 3. It can be
seen that several angles in joint-space resulted in a collision
with the obstacle. It is because the algorithm calculated
a joint-space trajectory which minimized the tracking error
without considering the obstacle in its path.

Next we simulated the response of the system with different
values of A as defined in (11). Fig. 4 shows the result for
rectangular reference trajectory. The initial configuration of
the manipulator’s joint is assumed to be home configuration,
i.e., all joint-angles are zero at the beginning. Fig. 4a to Fig.
4e summarizes the manipulator’s response for A = 0.002.
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Fig. 3: Performance of tracking controller after switching-off
the obstacle avoidance term, i.e., A = 0 as defined in (11).
The links collide with obstacle for both trajectories.

Fig. 4a shows the motion of each links of the manipulator
along with the reference trajectory (shown in blue). The
initial portion of the manipulator’s trajectory lies away from
the reference trajectory because the manipulator starts from
home configuration and algorithm takes some time to find
an optimal joint-space trajectory which takes the end-effector
near the reference trajectory while avoiding the obstacle.
Once the end-effector reaches near the reference trajectory,
it accurately follows it for the rest of the path. Top view of
the manipulator’s trajectory is also shown as inset graphic,
which confirms that the manipulator does not collide with an
obstacle at any point. Fig. 4b shows the cartesian coordinates
of end-effector motion and Fig. 4c shows the joint-space
coordinates of the manipulator trajectory. It is worth pointing
out that the unsmooth response shown by these trajectories is
typical of metaheuristic algorithms because of the stochastic
nature; however, the resultant gain in computational efficiency
is much greater. Fig. 4d shows the position tracking error
which is defined as e(t) = x,.(t) — f(0.(t)). Att = 0, it
shows a huge tracking error of ~ [0.5 — 0.5 0.7]7; again,
this is the result of starting from the home configuration,
which requires some time for reaching the reference trajectory.
However, after some time, he tracking error converges as
the end-effector finally converges to the reference trajectory.
It also proves that the global convergence performance of
the proposed algorithm, i.e., the tracking error converges to
zero and does not rise again, except for some small ripples
caused by the stochastic nature of the algorithm. Similarly,
Fig. 4e shows the minimum distance of any link of the
manipulator from the obstacle as defined in (7). A high value
is desirable because it reduces the risk of collision in case
of uncertainty in obstacle position or error in the manipulator
model. We set d,,;, = 0.02, which acts as a lower limit for
the minimum manipulator-obstacle distance. We repeated the
same set of simulations with A = 0.0002. Fig. 4f to Fig. 4j
summarizes the manipulator’s response. The major difference
between these two situations is the quality of the obstacle
avoidance performance. Fig. 4j shows that the minimum

manipulator-obstacle distance is smaller as compared to Fig.
4e, i.e., the links of manipulator were closer to the obstacle
as compared to the latter case, increases the risk of collision.
The same conclusion can be drawn from the inset graphics
of Fig. 4f and Fig. 4f which shows that the links are much
closer to obstacle in second case as compared to the first case.
We had to reduce the value of d,;;, to 0.002 to successfully
simulate a complete rectangular trajectory without colliding
with an obstacle.

The simulation results for the circular reference trajectory
are shown in Fig. 5. These results show a similar trend. For a
small value of A, the manipulator-obstacle distance decrease,
and we had to reduce d,,;, to complete the simulation.
However, for a higher value of A, the algorithm shows an
excellent performance in avoiding the obstacle. It should,
however, be noted that increasing the value too much will
significantly decrease the tracking performance because the
algorithm will aggressively try to avoid the obstacle.

V. CONCLUSION

In this paper, we proposed a framework to simultaneously
address the problem of tracking control and obstacle avoidance
in real-time. The proposed framework unifies the two goals
into a single constrained optimization problem. The penalty
term approach significantly improves the performance of the
proposed algorithm by actively rewarding the optimizer for
avoiding the obstacle. This approach results in a joint-space
trajectory which maximizes the distance manipulator-obstacle
distance. To solve the formulated optimization problem, in
real-time, we proposed an RNN based on a metaheuristic
optimization algorithm, called Beetle Antennae Olfactory. A
key feature of the proposed framework is that it does not make
assumptions about a specific shape of the obstacle. It directly
uses the 3D-geometries of the manipulator and obstacle for
formulating the penalty term using GJK-algorithm. Potential
application of such an approach includes the operation
of a manipulator in a dynamic environment where the
shape of the obstacle is time-varying. The application of
the GJK-algorithm to measure manipulator-obstacle distance
allows the controller to work for an arbitrarily-shaped obstacle.
Similarly, the proposed algorithm is also particularly useful
for surgical-robots where it is critical to maintaining a safe
distance, between the links of the manipulator and the patient,
to ensure safety. The theoretical treatment is also presented
in the paper to prove the stability and convergence of the
proposed algorithm. Simulations using a KUKA LBR 7-DOF
industrial manipulator are presented to prove the performance
of the proposed algorithm.

VI. FUTURE WORK

Potential further directions to improve the capability
and performance of the proposed algorithm includes;
extending the formulation of the optimization problem to
incorporate multiple obstacles while keeping the calculation
of manipulator-manipulator distance computationally efficient.
Another exciting application of the proposed algorithm
is to enhance the safety of surgical-robots by actively
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Fig. 4: Simulation results for rectangular trajectory tracking for different values of A as defined in (11). (a-e) shows result for
A = 0.002. (a) The trajectory of each manipulator link along with reference trajectory. (b) Profile of task-space trajectory of
the end-effector. (c) Profile of joint-space trajectory of the manipulator. (d) Profile of the position tracking error. (¢) Minimum
GJK-distance of the manipulator from obstacle as defined in (7). (f-j) Shows similar results for A = 0.0002. It must be noted
that the minimum manipulator-obstacle distance for A = 0.002 is much better (i.e., larger) as compared to A = 0.0002. (k)
Simulation model of the LBR ITWA-14 robot while tracking the reference trajectory for A = 0.002.

ensuring that the link of manipulator does not touch the
patient. An advanced version of the proposed algorithm
will incorporate multiple mobile-manipulators operating in
a dynamic environment with several obstacles of different
shapes. Such an algorithm will require decentralized control
algorithm and collaboration between manipulators to ensure
efficient operation.
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