
Provably Secure Key Exchange: An Engineering Approach

Yiu Shing Terry Tin Colin Boyd Juanma Gonzalez Nieto

Information Security Research Centre
Queensland University of Technology,

PO Box 2434, Brisbane, QLD 4001, Australia
Emails: {ttin,boyd,juanma}@isrc.qut.edu.au

Abstract

We promote an engineering approach to design of provably se-
cure key exchange protocols. Using the model of Canetti and
Krawczyk we present a systematic method to arrive at efficient
and practical protocols with proven security and illustrate its
use with existing building blocks. We further show a dual ap-
proach which allows protocols with known features to be ‘re-
verse engineered’, thereby allowing easier security proofs and
providing new building blocks for future designs.

Keywords: Provable security, key exchange, secure
protocols.

1 Introduction

Protocols for key exchange provide the basis for se-
cure communications and so it is important that they
are designed correctly. However, despite their rela-
tive simplicity as measured by the number and size
of messages, experience has shown that informal ap-
proaches to protocol design frequently result in flawed
outcomes. Moreover, the modern approach to cryp-
tography demands more than an absence of known
attacks; a proof that security is equivalent to some
well understood problem is increasingly regarded as
essential.

Proofs for key exchange protocols were first pro-
vided by Bellare & Rogaway (1993). Initially this
only covered a two-party example, but later the same
authors Bellare & Rogaway (1995) provided a proof
in the three party (server based) scenario, and this
was subsequently extended to a variety of other set-
tings. A feature of all these proofs is that they are
rather long and difficult to read for the non-specialist.
Perhaps more of a problem is that a small change in
the protocol may make the proof invalid and so it is
very difficult to re-use proofs or design protocols in
an incremental way.

Bellare, Canetti & Krawczyk (1998) introduced
the idea of a modular approach to provably secure
protocols. However, there were certain problems
with their original security definitions and Canetti &
Krawczyk (2001) re-used much of the earlier model
with a new definition of security. The approach relies
on proving protocols secure in an ideal world model,
and then using a secure transformation to move them
into a real world model. Although there are a few
examples in these papers, they are mainly concerned
with explaining the formal models and proving that
the necessary building blocks are secure. One of the
aims of this paper is to make the approach of Canetti

Copyright c©2003, Australian Computer Society, Inc. This paper
is appeared at the Australasian Information Security Workshop
(AISW2003), Adelaide, Australia. Conferences in Research and
Practice in Information Technology, Vol. 21. C. Johnson, P.
Montague and C. Steketee, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

and Krawczyk more accessible by giving more and de-
tailed examples and explaining how it can be used in
a systematic way. Because it is possible to use the
approach without a detailed knowledge of the formal
models and proofs, we believe that it is suitable for
applications by practitioners.

The main contributions of this paper are the fol-
lowing.

• Detailed examples of use of Canetti-Krawczyk
approach to design of practical and secure pro-
tocols.

• A new method of using the Canetti-Krawczyk
model by inverting protocols with desirable prop-
erties, to allow a simplified proof.

• A new proven secure protocol in the ideal model
which can be used as a new building block for
protocol design.

The remainder of this paper is structured as fol-
lows. In section 2 we cover the background material
on the Canetti-Krawczyk model. Section 3 gives a
detailed example of use of the model with existing
building blocks. Section 4 explains how to use an
existing protocol to extract a simple protocol in the
ideal world including an example which leads to a
new proven secure protocol in the ideal world. Sec-
tion 5 describes other existing building blocks which
can be used for other protocol designs. The appendix
contains a more formal description of the Canetti-
Krawzyk model and the proof of security for our new
protocol.

2 Background

This section provides a high level description of the
modular approach to the design of AKE protocols
Bellare et al. (1998) and Canetti & Krawczyk (2001).
More details on some elements of the model appear
in Appendix A.1.

2.1 Canetti-Krawczyk Approach to Protocol
Construction

The model defines protocol principals who may run
multiple sessions of the protocol. A powerful adver-
sary attempts to break the protocol by interacting
with the principals. In addition to controlling all the
communications the adversary is able to corrupt any
principal and chooses its long-term key (this models
insider attacks). The adversary may also reveal any
accepted session keys. The adversary must be effi-
cient in the sense of being a probabilistic polynomial
time algorithm.

Definition 1 (Informal) An AKE protocol is called
SK-secure if the following hold.



1. If two uncorrupted parties complete matching
sessions, then they both accept the same key.

2. Suppose a session key is agreed between two un-
corrupted parties and has not been revealed by
the adversary. Then the adversary cannot dis-
tinguish the key from a random string with prob-
ability significantly more than 1/2.

Two adversarial models are defined. The first can
be considered as an ideal world in which messages
are authenticated magically. The second can be con-
sidered as the real world in which we want our real
protocols to be proven secure. However, in order to
modularise the process protocols are first proven se-
cure in the ideal world and then translated into the
real world.

The authenticated-links adversarial model
This model is also known as the AM. In this
model the adversary is able to invoke protocol
runs, masquerade as protocol principals, and
find used session keys. Although the adversary
is quite powerful it is unable to fabricate or
replay messages which appear to come from
uncorrupted parties.

The unauthenticated-links adversarial model
This model is also known as the UM. In this
model the adversary can do everything that
it can do in the AM, but can also replay
and fabricate messages using anything it can
calculate.

2.2 Authenticators

An MT-authenticator (message transmission authen-
ticator) is an important mechanism in the modulari-
sation of the process. It is used to obtain SK-secure
protocols in the UM by emulating individual mes-
sages of AM SK-secure protocols in the UM and thus
transforming AM SK-secure protocols to SK-secure
protocols in the UM. The following gives an informal
definition:

Definition 2 (Informal) An authenticator is a
protocol translator that takes an SK-secure protocol in
the AM to a SK-secure protocol in the UM. An MT-
authenticator is a protocol translator that is applied
to each separate message sent in the AM.

PSfrag replacements

Secure Protocols

Secure Protocols
π

π0

AM

UM

Authenticator C

Figure 1: Applying authenticator in Canetti-
Krawczyk model

Figure 1 illustrates how an authenticator provides
a connection between a protocol π in the AM and a
protocol π0 in the UM. Each flow of the protocol in
the AM will become a multi-flow sub-protocol in the
UM. The resultant secure protocol can be simply a

concatenation of all sub-protocols. However such a
simple approach generates an inefficient protocol and
is of limited interest to us despite its proven security.
Fortunately we can collapse flows of the sub-protocols
with only one assumption: the proof does not rely
on the sequence of the internal flows of a particular
MT-authenticator. The process is straightforward. It
simply combines flows which are sent to the same di-
rection.

2.3 Optimisation

Suppose that a 3-move MT-authenticator is applied
to a 2-move protocol in the AM, then the resultant
protocol in the UM is the concatenation of 2 sub-
protocols which are denoted as λI and λR respec-
tively. Let message m be any message and mI and
mR be the first and second protocol message of the
2-move protocol in the AM respectively. The mes-
sage m is formed to include at least a session identi-
fier (ID) together with other information complying
to the protocol specification. Each flow (λIi and λRi

where i ∈ {1, 2, 3}) of λI and λR contains a message
m ∈ {mI ,mR}. Figures 2 and 3 show the direction
of messages sent in the sub-protocols.

A B
λI1−→
λI2←−
λI3−→

Figure 2: Sub-protocol One (λI)

A B
λR1←−−
λR2−−→
λR3←−−

Figure 3: Sub-protocol Two (λR)

The final protocol λIR is illustrated in Figure 4.
The first message of λIR is a combination of λI1 to-
gether with λR2. The second message of λIR is formed
by λI2 together with λR3. The third message of λIR is
copied from λI3. The missing message λR1 is implied
in the second message of λIR so that can be ignored.
As all messages of λI and λR include either mI or
mR, the missing message λR1 = mR is implied in λR2

and λR3 and is sent to A in the second message of
λIR by B.

A B
λI1, λR2
−−−−−→
λI2, λR3
←−−−−−

λI3−→

Figure 4: Final Protocol (λIR)

Remark. Sub-protocols cannot be collapsed using
the “mechanism” described above without any analy-
sis as the process is critical to security. It is important
to understand the type of message flows of any MT-
authenticator. In particular, the elements for forming



the message flows such as nonce, identity and secret
data. The final protocol must satisfy the format re-
quirements of the MT-authenticators, otherwise it is
likely to be insecure even if the assumption stands.
More precisely, it can be done via the following steps:

1. Apply the mechanism without analysis:
This step involves mechanical work which sim-
ply collapses message flows to generate a 3-move
protocol from 2 3-move sub-protocols;

2. Identify redundant and replaceable elements of
message flows:
This step is critical and requires understanding
and analysis of the authenticator. If A chooses x
at random, it can be used as a nonce generated
by A and as a challenge to B. Some information
is not required and can be marked as redundant
and removed later;

3. Substitute elements of message flows:
This step replaces redundant elements which are
often the nonces in the protocol used for fresh-
ness. It is likely that some elements will become
redundant although they were necessary in the
previous step;

4. Remove redundant elements of message flows to
finalise the protocol:
This step simply removes the redundant elements
marked in the previous two steps;

5. Inspect the final protocol against the format re-
quirements of the MT-authenticator:
This step is a verification process which checks
the correctness of the final protocol.

2.4 Model Summary

We can now summarise the Canetti-Krawczyk ap-
proach in the following three steps.

1. Design a basic protocol and prove that it is SK-
secure in the AM.

2. Design an MT-authenticator and prove that it is
a valid authenticator.

3. Apply the MT-authenticator to the basic proto-
col to produce a protocol that is automatically
secure in the UM.

4. As necessary, re-order and re-use message com-
ponents to optimise the resulting protocol.

3 Usage of MT-authenticator

In this section we discuss the importance of the ses-
sion identifier in m and then demonstrate the us-
age of MT-authenticators in the development of prov-
ably secure protocols in detail. In particular, we ap-
ply the signature based MT-authenticator of Bellare
et al. (1998) to the protocol named ENC of Canetti &
Krawczyk (2001) which is proven secure in the AM.

3.1 Importance of Session Identifier

Although the session identifier may not be explicitly
visible in a MT-authenticator, it is included as part
of the message m. We stress that the session iden-
tifier is fundamentally critical to the security of the
model. Its duty is to assist two parties to maintain a
particular session among all concurrent sessions. The
value of the session identifier must be unique to the
parties where communications take place.

The choice of the session identifier can be deter-
mined by initiators or responders solely, however this

approach allows replay of messages. A countermea-
sure is that each party keeps track of all the mes-
sages received in the past as well as maintains proto-
col states across sessions in order to accept only new
messages. Clearly, impracticality is indicated.

A secure yet practical implementation for unique-
ness of the session identifier is to enforce contributions
from both parties. Each party then knows that the
session identifier is fresh and unique as their individ-
ual inputs form part of it. For generality we do not
specify how it is achieved. In other words whether it
is a hash or simply a concatenation of the inputs does
not matter.

3.2 A Signature Based MT-authenticator

The signature based MT-authenticator is shown in
Figure 5: it is assumed that each party has its pri-
vate key and knows the authentic public keys of other
parties. The signature scheme in use is assumed to
be secure against chosen message attacks. Let m be
any message, NB be a nonce chosen by B and SigA(·)
be the signature of some arbitrary values generated
by A. Although the message m is shown in every
flow, it may actually occur in the first flow or even
in the last flow only. If more than one copy of the
message m exists in the authenticated version, some
copies can be eliminated but a unique session identi-
fier must be used to assure that the communication
takes place in the same session. The security proof
of the authenticator will fail if any of the three ele-
ments signed for generating the signature in the last
message is omitted.

A B
m−→

m,NB
←−−−−

m,SigA(m,NB , B)
−−−−−−−−−−−−−→

Figure 5: Signature Based MT-authenticator

The protocol ENC is provably secure in the AM
with the assumption that the encryption scheme is
secure against chosen ciphertext attack and that the
hash function acts as a pseudorandom function. Its
security proof is presented by Canetti & Krawczyk
(2001). Each party A possesses a pair (PKA,SKA)
of encryption and decryption keys where PKA is
public and all parties have the public keys of other
parties. The pseudorandom function is denoted by
{fa}a∈{0,1}b where b denotes the security parameter.

A B
a ∈R {0, 1}

b

c = EPKB
(a) A, s, c

−−−→
a′ = DSKB

(c)
K = fa(A,B, s) K ′ = fa′(A′, B, s)

Figure 6: The Protocol ENC

3.3 The Authenticated Protocol ENCUM

Since the protocol ENC is a single message proto-
col in the AM, applying the signature based MT-
authenticator to the protocol is straightforward and
no collapsing needs to be done. Simply substitute
m in the authenticator by the message (A, s, c), then
the protocol is authenticated and is provably secure in



the UM. This is related to step 1 of the optimisation
process and requires no analysis.

We then need to follow steps 2 to 5 of the optimi-
sation process to obtain the resultant protocol. The
only replaceable element of the protocol is s. The
only erasable element is A in the third message as we
have already presented the identity of A in the first
message. We now replace the session id s with inputs
from both parties and is replaced by (c,NB) where c
and NB denote contributions from A and B respec-
tively. Furthermore, we remove the identity of A in
the third message and finally, we inspect the correct-
ness of the protocol against the format requirements
of the signature based MT-authenticator. The au-
thenticated and simplified protocol ENCUM is shown
in Figure 7 which is an optimised version of the result
after applying the MT-authenticator to the protocol
ENC.

4 Extraction of SK-secure Protocol

Up until now, we have demonstrated the modular
approach for developing protocols with provable se-
curity by applying MT-authenticators to SK-secure
protocols in the AM to obtain SK-secure protocols in
the UM. One way to be more productive (in terms
of number of SK-secure protocols in the UM) is by
increasing the number of SK-secure protocols in the
AM in our collection.

On the one hand, we can design our own protocols
which are SK-secure in the AM from scratch. On
the other hand, we can extract SK-secure protocols
in the AM from some existing protocols which are
preferably proven secure in the real world. One of
the major advantages of the latter method is that we
actually know the outcome protocol in the UM. It is
ideal in scenarios where a protocol is found to be well
suited for some task, then one can extract the SK-
secure protocol in the AM by ‘reverse engineering’ the
authenticator, and put it in the collection of building
blocks for new provably secure protocols in the UM.

We demonstrate the extraction methodology by
providing an example where we gain a new proto-
col which is SK-secure in the AM from the protocol
named 3PKDUM which was proven secure by Bellare
& Rogaway (1995). For the sake of simplicity, the
message routing of the first two messages has been
modified from A → B → S to A → S ← B as
illustrated in Figure 8. Bellare & Rogaway (1995)
suggested that “protocols for alternative connectivity
model ought differ only in their message routing”, but
not their security.

The protocol involves three parties (see Bellare &
Rogaway (1993) for a two-party protocol), a trusted
server S and two players A and B. It is a key distribu-
tion protocol where the session key is generated by the
server S using a session key generator Sn with input
1k where k denotes the security parameter. Party A
shares a pair of symmetric keys (SKAS ,MKAS ) [resp.
(SKBS ,MKBS ) for party B] with the server S for en-
cryption and message authentication. These keys are
generated by a long term key generator LKG(1k, r)
which returns a uniformly distributed 2k-bit string
value where r is a random number. Let w be the
length in bits where random numbers rA and rB are
chosen. Note that rA and rB are used to provide
semantic security (Bellare & Rogaway 1995) and we
preserve them here so that our result matches exactly
as Figure 8.

4.1 Extraction Mechanism

The first step towards extraction of AM protocols
out of existing protocols is to understand the pro-

tocol properly in terms of service provision. More
precisely, we want to identify the part of the protocol
which is responsible for confidentiality as well as the
part which provides authentication. We recall that
the model (Canetti & Krawczyk 2001) separates the
treatment for confidentiality and authentication.

After identifying the type of services provided by
the protocol, we also need to be familiar with the ways
that how those services are carried out, namely using
a secure encryption scheme for session key protection.
This step intends to be more directive in identifying
the type of authenticators that may be used for em-
ulating AM SK-secure protocols in the UM.

The last step is to remove unnecessary elements
of the protocol such as random nonces and elements
providing authentication which is not dealt with in
the AM.

As an example, we identify that the protocol
3PKDUM provides both confidentiality and authen-
tication services. In the flows from the server S to A
and B, ESKAS

(·) and ESKBS
(·) provide confidentiality

services while MACMKAS
(·) and MACMKBS

(·) provide
authentication services. The former aims to protect
secrecy of the session key σ and prevent leakage of
session key information to the adversary and the lat-
ter intends to provide assurance of party identity as
well as message authentication.

We then notice that the protocol uses symmetric
key encryption scheme which requires a long term se-
cret key to be distributed securely before the protocol
execution. The MAC function serves as an ordinary
keyed MAC. The use of the MAC function suggests
the use of a MAC based authenticator. We describe
such an authenticator of Canetti & Krawczyk (2001)
in Figure 9.

A B
NB←−

m,MACAB (B,NB ,m)
−−−−−−−−−−−−−−−−→

Figure 9: MAC Based MT-authenticator

The removal of redundant elements is easy and
straightforward. Almost at all times, random nonces
can be safely deleted as random nonces are likely to
be part of the authenticators. We then remove oper-
ations related to MAC as authentication is assumed
in the AM.

4.2 New SK-secure Protocol in the AM

Following the approach described above, we extract a
protocol which is a candidate to be SK-secure in the
AM and is illustrated in Figure 10. Without proving
its security, we verify the correctness of the protocol
structure by applying the MAC based authenticator
to the protocol 3PKD. The resultant protocol should
be similar to protocol 3PKDUM. If it is not the case,
the protocol may need to be fine tuned, or it may
serve just as well as the original depending on the
requirements.

We note that the resultant protocol after apply-
ing the MAC based authenticator to protocol 3PKD
needs to be adjusted so that the message routing
matches to the one in protocol 3PKDUM. The part-
ner identity is added to get the identical result com-
paring with 3PKDUM in the flows from S to A and
B.

Once the structure is confirmed, we need to prove
that it is SK-secure in the AM. This critical step
requires knowledge regarding the operation of the
Canetti-Krawczyk model. However, even though this



A B
a ∈R {0, 1}

b

c = EPKB
(a) A, c

−−→
c,NB
←−−−

c,NB ,SigA(A, c,NB , B)
−−−−−−−−−−−−−−−−−→

a′ = DSKB
(c)

K = fa(A,B, s) K ′ = fa′(A′, B, s)

Figure 7: The Authenticated Protocol ENCUM

A S B
NA−→

NB←−
σ(session key) = Sn(1k)

rA, rB ∈R {0, 1}
w

µA = ESKAS
(σ, rA)

µB = ESKBS
(σ, rB)

νA = MACMKAS
(A,B,NA, µA)

νB = MACMKBS
(A,B,NB , µB)

µA, νA
←−−−−

µB , νB
−−−−→

verify νA verify νB

σ′ = DSKAS
(µA) σ′′ = DSKBS

(µB)

Figure 8: The Protocol 3PKDUM

step may not be straightforward for many practition-
ers, two important factors make the effort more at-
tractive. Firstly, the effort involved is greatly reduced
in comparison with the full proof in the UM, such as
the one that was carried out by Bellare and Rogaway.
Secondly, once proven secure in the AM the proto-
col may be re-used with other authenticators, thereby
helping to build up the library of proven secure pro-
tocols.

The security of the protocol 3PKD can be reduced
to the security of the encryption scheme which is used
to protect the session key. Formally, we state it in
Theorem 1. The proof of the theorem appears in Ap-
pendix A.2.

Theorem 1 If the long and short term keys (SKi , σ)
are uniformly distributed, the symmetric encryption
scheme (LKG,E,D) is semantically secure and the
server S leaks no information regarding the keys SKi ,
then the protocol 3PKD is SK-secure in the authenti-
cated links model (AM).

5 Additional Building Blocks

As a practical solution for secure protocol design and
development using the Canetti-Krawczyk model, one
needs as many building blocks as possible. We col-
lect a SK-secure protocol in the AM and a proven
secure authenticator and present them here as addi-
tional building blocks to be used in practical circum-
stances. These building blocks are not used through-
out this paper, but they are as useful as those that are
used. More importantly, one does not need to know
the proof technique for building secure protocols as
all building blocks presented here have already been
proven secure.

5.1 A SK-secure Protocol in the AM

The well-known Diffie-Hellman (DH) protocol, Fig-
ure 11, is SK-secure in the AM under the decision
Diffie-Hellman (DDH) assumption (Boneh 1998). We
use the common notation for the description of the

protocol as follows: Z
∗
p denotes the multiplicative

group of integers modulo a prime p, G denotes a cyclic
subgroup of prime order q and a generator g. All
arithmetic is performed in Z

∗
p unless indicated other-

wise.

Pi Pj

x ∈R Zq y ∈R Zq

Pi, s, g
x

−−−−−→
Pj , s, g

y

←−−−−−
K ′ = (gy)x K = (gx)y

Figure 11: The Protocol DH

This protocol features some desirable properties
such as forward secrecy and has been extended to
be SK-secure in the UM (Canetti & Krawczyk 2001)
using the signature based authenticator. An impor-
tant consideration when choosing an appropriate SK-
secure protocol in the AM as a building block is to
consider the demands of additional protocol proper-
ties apart from security.

5.2 An Encryption Based MT-authenticator

The encryption based authenticator of Bellare et al.
(1998) uses public key encryption and a MAC scheme.
A fundamental assumption is that the MAC is secure
and the public key encryption scheme is semantically
secure against chosen ciphertext attack (Cramer &
Shoup 1998, Rackoff & Simon 1991). The authenti-
cator is presented in Figure 12.

We may use this authenticator in the same way
as the two other MT-authenticators in this paper,
namely the signature (Figure 5) and MAC based MT-
authenticator (Figure 9). When choosing which au-
thenticator should be used, one needs to understand
the assumptions being made behind the security and
the type of services that need to be provided.



A S B
σ(session key) = Sn(1k)

rA, rB ∈R {0, 1}
w

µA = ESKAS
(σ, rA)

µB = ESKBS
(σ, rB)

µA, B
←−−−

µB , A
−−−→

σ′ = DSKAS
(µA) σ′′ = DSKBS

(µB)

Figure 10: The Protocol 3PKD

A B
m−→

m,EPKA
(NB)

←−−−−−−−−−
m,MACNB

(m,B)
−−−−−−−−−−−−−→

Figure 12: Encryption Based MT-authenticator

5.3 Mixed Use of MT-authenticators

In order to extend the usage of authenticators, we ar-
gue that it is valid to use more than one authenticator
in the same protocol. For example, we may apply the
signature based MT-authenticator to the first mes-
sage of the protocol DH while using the encryption
based MT-authenticator to emulate the second mes-
sage in the UM. Of course to do this the protocol in
the AM must consist of at least two message flows.

The proofs of the MT-authenticators are focused
on the emulation of an AM message in the UM. More
precisely, a SK-secure protocol in the AM is formed
by one or more messages which are individually con-
verted to messages in the UM. Such an approach pre-
serves the possibility of applying different treatments
to messages of protocols.

The steps for applying different MT-
authenticators to a SK-secure protocol in the
AM are the same as those for using a single MT-
authenticator. This technique facilitates an increase
in the number of protocols which are SK-secure in
the UM.

6 Conclusion

We have demonstrated the usefulness of a formal
modular approach for secure protocol design in a
practical way without the need to understand the de-
tailed proof technique. The idea is to collect SK-
secure protocols in the AM and MT-authenticators,
then apply the MT-authenticators to the SK-secure
protocols in the AM to obtain SK-secure protocols in
the UM. We note that it is possible to apply differ-
ent MT-authenticators to different message flows of
SK-secure protocols in the AM.

We have also demonstrated the technique for ex-
traction of SK-secure protocols in the AM from a pro-
tocol, in particular a three-party key distribution pro-
tocol. The number of SK-secure protocols in the AM
may be greatly increased as there are a large number
of protocols which have been published. Of course,
this technique demands the ability to prove the SK-
security of the newly extracted protocol.

In conclusion, three SK-secure protocols in the AM
have been demonstrated, one of which is new and
proven to be SK-secure in the AM. Three authenti-
cators have been collected, one of which is used for
generating a new SK-secure protocol in the UM.

References

Bellare, M., Boldyreva, A. & Micali, S. (2000),
Public-key encryption in a multi-user setting:
Security proofs and improvements, in B. Pre-
neel, ed., ‘Advances in Cryptology – Eurocrypt
2000’, Vol. 1807 of LNCS, Springer-Verlag. Full
verision at http://www-cse.ucsd.edu/users/
mihir/papers/key-distribution.html.

Bellare, M., Canetti, R. & Krawczyk, H. (1998), A
modular approach to the design and analysis of
authentication and key exchange protocols, in
‘Proceedings of the 30th Annual Symposium on
the Theory of Computing, ACM’.

Bellare, M. & Rogaway, P. (1993), Entity authen-
tication and key distribution, in ‘Advances in
Cryptology - Crypto ’93 Proceedings’, Springer-
Verlag. Full version.

Bellare, M. & Rogaway, P. (1995), Provably secure
session key distribution - the three party case,
in ‘Proceedings of the 27th ACM Symposium on
the Theory of Computing’.

Boneh, D. (1998), The decision Diffie-Hellman prob-
lem, in ‘Proceedings of the Third Algorithmic
Number Theory Symposium’, Vol. LNCS 1423,
Springer-Verlag, pp. 48–63.

Canetti, R. & Krawczyk, H. (2001), Analysis of key-
exchange protocols and their use for building
secure channels, in ‘Proceedings of Eurocrypt’,
Vol. LNCS 2045.

Cramer, R. & Shoup, V. (1998), ‘A practical public
key cryptosystem provably secure against adap-
tive chosen ciphertext attack’, in ‘Advances in
Cryptology - Crypto 98, LNCS 1462’, pp. 13–25.

Rackoff, C. & Simon, D. (1991), Non-interactive zero-
knowledge proof of knowledge and chosen cipher-
text attack, in ‘Advances in Cryptology - Crypto
91 Proceedings, LNCS’, Vol. 576.

A Security Proof

A.1 Model Description

Before we prove Theorem 1, we describe in more de-
tail some elements of Canetti & Krawczyk’s (2001)
model, which are needed to understand the proof.

The execution of a key-exchange (KE) protocol is
modelled as a collection of n programs each running
at a different party. Each program can fork multiple
sub-processes to handle multiple session of a proto-
col run. All communications between parties occur
through the adversary A, which has different capabil-
ities depending on which of the two adversarial mod-
els (AM or UM) we are considering. In what follows
we only concern ourselves with AM-adversaries. Fur-
thermore, we do not consider forward secrecy, since it
is not needed in our proof.



A KE protocol π can be activated at each party
Pi in two ways:

1. By means of an establish–session(Pi,Pj ,s, role) re-
quest, where Pj is other party with whom the key
is to be established, s is a session-id string which
uniquely identifies a session , and role can be ei-
ther initiator or responder.

2. By means of an incoming message m with a spec-
ified sender Pj

We say that two sessions are matching, if in an
execution of the protocol, party Pi has a session with
input (Pi, Pj , s, role) and party Pj has a session with
input (Pj , Pi, s

′, role ′) and s = s′.
In addition to the activation of parties, the adver-

sary can performed the following actions:

1. A may issue a session–key query, which returns
the session key (if any) accepted during a given
session.

2. A may issue a session–state query, which returns
all the internal state information associated to a
particular session.

3. A may issue a test–session query. To respond
to this query, a random bit b ∈R {0, 1} is se-
lected. If b = 0 then the session key is returned.
Otherwise, a random key chosen from the prob-
ability distribution of keys generated by the pro-
tocol is outputted. This query can only be is-
sued to a session that has not been exposed, i.e
that has not been the subject of a session–state
or session–key queries, and whose involved parties
have not been corrupted.

Once the adversary performs a test–session query,
the adversary is not allowed to expose the test-session.
Eventually A outputs a bit b′ and halts.

Definition 3 A KE protocol π is called SK-secure
without perfect forward secrecy in the AM if the
following two properties are satisfied for any AM-
adversary A.

1. Protocol π satisfies the property that if two uncor-
rupted parties complete matching sessions then
they both output the same key; and

2. the probability that A guesses correctly the bit b
is no more than 1

2
plus a negligible fraction in the

security parameter.

A.2 Proof of Theorem 1

Since the protocol 3PKD is a key transport protocol,
it is easy to see that both parties A and B are in pos-
session of the same session key upon the completion
of the protocol execution and satisfies the first condi-
tion of SK-security. This proof mainly concentrates
on proving that the second condition of SK-security
can be achieved.

In order to prove the satisfaction of the second
condition, we will define a couple of algorithms. Let
A be an adversary against the protocol 3PKD and X
an experimental machine simulating the execution of
the protocol.

We assume that the advantage of the adversary A
in distinguishing between a session key and a random
value is with a non-negligible probability ε and show
that if A breaks the SK-security of the protocol, then
the X can break the semantic security of the encryp-
tion scheme (LKG , E,D) with non-negligible proba-
bility, thus reaching contradiction.

In addition to the assistance of the algorithms de-
scribed above, we need the following result to capture
the fact that an adversary can get extra information
by observation of α and β where the same session
key is encrypted using different long term keys. This
is a special case of a more general result of Bellare,
Boldyreva & Micali (2000).

Lemma 1 (Bellare et al. 2000) If (LKG , E,D) is a
secure encryption scheme, then any multiple eaves-
dropper has negligible advantage.

The inputs to X include strings σ0, σ1, one of
which is the session key chosen according to Sn
while the other is a random value of the same
length of the session key. X also takes inputs α =
ESKAS

(σx, rA), β = ESKBS
(σx, rB) and has access to

the encryption oracles ESKAS
(·) and ESKBS

(·).
We note that the keys SKAS ,SKBS are generated

by the server S using LKG , x ∈R {0, 1} and rA, rB ∈R

{0, 1}w.
We then proceed as follows:

1. Machine X sets up a virtual scenario for the run
of protocol 3PKD and activates A against the
virtual run. The adversary A has full control of
the communication channels and is responsible
to schedule all operations. The scheduled oper-
ations are perform by X that works on behalf
of all virtual players (including S) in the virtual
scenario for the run of protocol 3PKD;

2. At setup stage, X chooses randomly a pair of
players (A,B) ∈R {1, ..., n} where n denotes the
maximum number of players that can be invoked
and picks u ∈R {1, ..., l} where l denotes the max-
imum number of sessions. We assume that the
chosen session is (A,B, S, u). That is, the in-
volved players are parties A, B and the server
S which is used for session key generation and
distribution amongst all parties;

3. When A invokes a new party Pi ∈ {1, ..., n} \
{A,B}, then X selects at random a shared en-
cryption key SKi between the party and the
server by using the long term key generator LKG .
If the new party is A (resp. B), its long term en-
cryption key is SKAS (resp. SKBS ). Note that
neither X norA knows the keys, but X has access
to the encryption oracles ESKAS

(·) and ESKBS
(·);

4. Whenever A activates parties Pi and Pj , X gen-
erates µi and µj according to the protocol spec-
ification except for the case where Pi = A,
Pj = B and the session s = u. Then X gen-
erates a session key σ using Sn, picks two ran-
dom nonces ri and rj , computes µi = ESKi

(σ, ri)
and µj = ESKj

(σ, rj) and sends µi, µj to Pi and
PJ respectively. We note that if the participants
are different from A or B, then X knows their
long-term secret keys and hence can compute the
encryptions directly. Otherwise, X has to query
the encryption oracles ESKAS

(·) and ESKBS
(·);

5. If A decides to activate A and B at session u,
then X sends the test encryptions α and β to A
and B, respectively;

6. During the experiment, all attacks against the
session (Pi, Pj , S, s) 6= (A,B, S, u) and its partic-
ipants are answered by X using its knowledge of
keys. If a session reveal is scheduled against the
session u, a corruption against A or B, or a dif-
ferent test session (Pi, Pj , S, s) 6= (A,B, S, u) is
chosen, X aborts the run of A and outputs a bit
x′ ∈R {0, 1};



7. If A queries the test session u, X flips a coin for
the value of x′ ∈R {0, 1}. If x′ = 0, X returns
σ0, otherwise σ1;

8. If A halts and outputs a bit x′, then X halts and
outputs a bit x′ too;

9. Now, we calculate the overall probability with
which X can succeed against the virtual protocol
run in distinguishing a session key from a random
nonce. Firstly, the probability is 1/2 in the case
where A is aborted. Secondly, the probability
that A selects the correct test session is 1/[ln(n−
1)]. Thirdly, the probability that A breaks the
SK-security of the protocol is non-negligible (by
assumption) over 1/2, thus the overall advantage
of X for breaking the semantic security of the
encryption scheme is 1/2+ ε/[ln(n− 1)] which is
non-negligible.


