
Removing XML Data Redundancies Using Functional and
Equality-Generating Dependencies

Junhu Wang1 Rodney Topor2

1INT, Griffith University, Gold Coast, Australia
J.Wang@griffith.edu.au

2CIT, Griffith University, Brisbane, Australia
R.Topor@griffith.edu.au

Abstract

We study the design issues of data-centric XML documents
where (1) there are no mixed contents, i.e., each element may
have some subelements and attributes, or it may have a sin-
gle value in the form of a character string, but not a mixture
of strings and subelements and/or attributes, (2) the ordering
of subelements is of no significance. We provide a new defini-
tion of functional dependency (FD) for XML that generalizes
those published previously. We also define equality-generating
dependencies (EGDs) for XML, which, to our knowledge, have
not been studied before. We show how to use EGDs and FDs to
detect data redundancies in XML, and propose normal forms of
DTDs with respect to these constraints. We show that our nor-
mal forms are necessary and sufficient to ensure all conforming
XML documents have no redundancies. In passing, we define
a normal form for relational databases based on EGDs in rela-
tional systems that can help remove data redundancies across
multiple relations.

Keywords: XML tree, DTD, relation, functional de-
pendency, equality-generating dependency, data re-
dundancy, normal form, normalization.

1 Introduction

It is well known that XML documents can be regarded
as a new type of database, and such data are partic-
ularly good for information exchange on the internet.
The design of XML data has attracted much atten-
tion recently. As with any type of database, poorly
designed documents may contain too many unneces-
sary redundancies and these redundancies may cause
update anomalies. Data redundancies are usually due
to some form of dependencies among the data, such as
functional dependencies (FDs) and multi-valued de-
pendencies in relational databases. Traditional func-
tional dependencies are not suited for XML data be-
cause of the structural difference between the two
types of database. On the other hand, dependencies
naturally exist among data, no matter what format
the data is in. Therefore, attempts to define data de-
pendencies for XML and use them in the design of
XML database have been made by several groups of
researchers. For example, XML functional dependen-
cies (XFDs) have been defined in (Wu, Ling, Y.Lee,
Lee & Dobbie 2002, Lee, Ling & Low 2002, Arenas
& Libkin 2004, Vincent, Liu & Liu 2004, Hartmann
& Link 2003). However, the definitions of XFDs in
these works are all different , and they do not always
represent the same type of constraints in an XML
document. Not surprisingly there is no consensus yet

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at the 16th Australasian Database Conference,
University of Newcastle, Newcastle, Australia. Conferences in
Research and Practice in Information Technology, Vol. 39. H.
E. Williams and G. Dobbie, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

as to which definition is the ‘best’. A common prob-
lem with these definitions is the limited expressive
power. As will be seen later, none of the XFDs in (Wu
et al. 2002),(Lee et al. 2002),(Arenas & Libkin 2004),
and (Vincent et al. 2004) can express the constraint
that the student number determines the set of ad-
dresses of the student in the document shown in Fig-
ure 1, nor can they express the constraint that the

school

root

course

v1

subject
v2

students

v3

cno

'c1'

sno

's2'

student
v6

 sno

 's2'
name

'Ken' tel

'13'

address

street

'st2'

city
'GC'

student
v7

 sno

 's1'

address
name

'Mary '

street

'st1'

city
'GC'

students
 V4

address

street

'st2 '

city
'GC'

V10

V11 V12

'B+'

student
v5

 sno

 's1'

address
name

'Mary '

street

'st2'
city
'GC'

'A'

address

street

'st1 '

city
'GC'

V8 V9

grade
gradeaddress

street

'st3 '

city
'GC'

 tel

'10'

Figure 1: The Course-Subject-Student example

title, authors, and year of publication of a book can
determine the publisher in the document shown in
Figure 2. The functional dependencies in (Arenas &
Libkin 2004) and (Vincent et al. 2004) even cannot
express the constraint that the student number de-
termines the student name for all student nodes in
the entire document shown in Figure 1, because the
student nodes are located in different paths (under
both courses and subjects). The XFDs in (Hartmann

courses

root

'Norman'

publisher

text

'2004'
year

'DB'
title

'A1' 'A2'
author author

text

'2003'
yeartitle

'Web' 'A3'
author

'A1'

author publisher
'Thomson'

course coursecourse

text

'2004'
year

'DB'
title

'A2' 'A1'
author author

'Norman'

publisher

cno

'7006'
cno

'7007'
cno

'7016'

Figure 2: The Course-Text example

& Link 2003), however, cannot express the constraint
that the student number (sno) determines the student
node in each course, that is, no two different student
nodes under the same course can have the same sno.
There are also natural constraints that can not be ex-
pressed by any of the previously defined XFDs. For
example, in Figure 1 if we assume that a student may
have several phone numbers (tel), but no phone num-
ber is shared by two or more students, then any single

phone number of the student will determine the stu-
dent and hence the set of addresses of the student.
This constraint cannot be expressed by any of the
previously defined XFDs mentioned above. For a
more detailed survey of related work, see Section 7.

In this paper, we present a new definition of func-
tional dependencies for XML data that can express
all of the constraints mentioned in the above exam-
ples. Our definition not only captures some useful
constraints that can not be expressed before, but also
unifies the previous definitions of XFDs under the
same framework. We also define equality-generating
dependencies (EGDs) for XML data, which, to the
best of our knowledge, have not been studied before.
We show how to use these dependencies (FDs and
EGDs) to detect and remove potential data redun-
dancies in XML documents. In passing, we propose
a normal form for relational database schemas with
respect to EGDs in relational systems that can help
remove data redundancies across multiple relations.
We believe this is important in itself because tradi-
tional normal forms (eg, BCNF, 4NF and 5NF) only
eliminate redundancies in a single relation. Our nor-
mal form is an direct extension of BCNF.

The rest of the paper is organized as follows. Sec-
tion 2 provides preliminary definitions and notations.
Section 3 presents our new definition of functional
dependencies for XML data and shows how our FDs
can, for example, express the constraints in the above-
mentioned examples. Section 4 starts with a discus-
sion of data redundancies across relations in relational
databases, and defines a normal form of relational
database schema with respect to EGDs that prevents
such redundancies. Then it goes on to discuss similar
problems in XML data and defines EGDs for XML
documents. Section 5 considers FDs and EGDs in
the presence of DTDs. Section 6 discusses potential
data redundancies in XML documents conforming to
a DTD, which are caused by a given set of FDs or
EGDs, and proposes normal forms of DTDs that pre-
vent such problems. Section 7 compares our results
with related work. We conclude the paper with a dis-
cussion about unresolved issues and future work in
Section 8.

2 Preliminary Definitions and Notations

2.1 XML tree

In this paper we will consider XML documents where
(1) there are no mixed contents, i.e., each element
may have some subelements and attributes, or it may
have a single value in the form of a character string,
but not a mixture of strings and subelements and/or
attributes, (2) the ordering of subelements is of no
significance. It should be mentioned that most data-
centric XML documents (eg, those converted from
relational and OO databases) have these character-
istics. We call elements that only have a single value
a simple element, and elements that have subelements
and/or attributes complex elements. Simple elements
serve similar purposes to attributes, the only differ-
ence is that multiple simple elements with the same
label may appear as children of a complex element,
but each attribute of a complex element has a distinct
label.

As well known, an XML document can be rep-
resented by a tree. Figures 1 and 2 are two exam-
ple XML trees. In the figures, complex elements are
shown as rounded rectangles, attributes are shown as
filled circles, simple elements are shown as squares,
and string values are quoted.

To facilitate our discussion in subsequent sections,
we provide a formal definition of XML trees. Let E1

and E2 be disjoint sets of element names, A be a
set of attribute names, E = E1 ∪E2, and E and A
be disjoint. Element names and attribute names are
called labels.

Definition 2.1 [XML tree] An XML tree is defined
to be T = (V, lab, ele, att, val, root), where (1) V is a
set of nodes; (2) lab is a mapping from V to E ∪A
which assigns a label to each node in V ; a node v ∈ V
is called a complex element (node) if lab(v) ∈ E1, a
simple element (node) if lab(v) ∈ E2, and an attribute
(node) if lab(v) ∈ A. (3) ele and att are functions
from the set of complex elements in V : for every v ∈
V , if lab(v) ∈ E1 then ele(v) is a set of element nodes,
and att(v) is a set of attribute nodes with distinct
labels; (4) val is a function that assigns a value to each
attribute or simple element. (5) root is the unique
root node labelled with complex element name r. (6)
If v′ ∈ ele(v)∪att(v), then we call v′ a child of v. The
parent-child relationships defined by ele and att form
a tree rooted at root. ¤

As stated explicitly in the definition, ele and att
define the child nodes of a complex element node.
Child elements are also referred to as subelements,
and child attribute nodes are sometimes simply re-
ferred to as attributes. The concept of ancestors and
descendants are defined as usual: a node v is the an-
cestor of another node v′ if v is the parent of v′, or v
is the parent of an ancestor of v′; v′ is a descendent
(node) of v if v is an ancestor of v′.

Note that our definition of XML trees is differ-
ent from those, for example, in (Buneman, David-
son, Fan, Hara & Tan 2001, Fan, Schwenzer &
Wu 2001, Arenas & Libkin 2004). We have explicitly
distinguished complex and simple elements so that
the special text node under a simple element is not
required. We have also made the ordering of child el-
ements insignificant by treating them as a set rather
than a sequence.

2.2 Paths in XML trees

We distinguish three types of paths: downward paths,
upward paths, and composite paths. These paths are
subclasses of XPath.

Definition 2.2 [paths] A downward path is of the
form l1.l2. · · · .ln where li ∈ E ∪ A ∪ { ,∼} (i =
1, . . . , n− 1), ln ∈ E ∪A, and if there is an attribute
name or a simple element name in the path, it must
appear at the last position, that is, it must be ln. In
a downward path the symbol represents a wildcard
(which can match any label), and ∼ represents ∗,
namely the Kleene closure of the wildcard. A sim-
ple path is a downward path where there is no or
∼. The number of labels in a simple path p is called
its length. The simple path of length 0 is called the
empty path and denoted ε.

An upward path is of the form ⇑ . · · · . ⇑. If there
are k > 1 upward arrows (to distinguish from the
empty path, we require k ≥ 1), we will sometimes
abbreviate the path as ⇑k.

A composite path is of the form ξ.ρ, where ξ is an
upward path, and ρ is a simple path. ¤

According to the above definition, an upward path
is a special composite path, the empty path is a spe-
cial simple path, which in turn is a special downward
path.

A path is either a downward path or a composite
path. Let us use last(p) to denote the last symbol in
path p.

In any XML tree T , only some paths are valid.
Here the validity of paths is with respect to a node,
as defined below.

Definition 2.3 [valid paths]Let T be an XML tree
and v0 be a node in T . A path p is said to be valid
wrt v0, if one of the following is true:

• p is the empty path.

• p is the downward path l1. · · · .ln, and there is a
sequence of nodes v1, . . . , vn in T such that for
i = 1, . . . , n (1) if li is in E∪A∪{ }, then vi is a
child of vi−1 and the label of vi matches li (note
that the label of any node matches); (2) if li is
∼, then vi is vi−1 or a descendant of vi−1.

• p is the composite path ⇑k .l1. · · · .ln and there
is a sequence of nodes n1, . . . , nk, v1, . . . , vn in T
such that n1 is the parent of v0, ni is the parent
of ni−1 for i = 2, . . . , k, and v1 is a child of nk,
vi is a child of vi−1 for i = 2, . . . , n, and the label
of vi matches li for i = 1, . . . , n.

¤
The sequence of nodes described above (for a non-

empty path p) is called an instance of path p wrt v0.
Generally there may be many such instances. We will
refer to the set

{vn | vn is the last node of an instance of p wrt v0}
as the target set of p wrt v0, denoted v0[p]. For easy
presentation, we also define v0[ε] = {v0} for any node
v0. Note that path p is not valid wrt v0 if and only if
v0[p] is empty.

For example, in the XML tree shown in Figure 1,
student.sno and student.address.city are simple paths
that are valid wrt v3 and v4, but not to others; ⇑ . ⇑ is
an upward path valid wrt all nodes except v1, v2 and
root; ⇑ .cno is a composite path which is valid wrt v3;
and root[course.students.student] = {v5, v6}, root[∼
.student] = {v5, v6, v7}, v5[address] = {v8, v9}, and
v5[address.street] is the set containing the two street
attribute nodes under v8 and v9.

2.3 Value Equality and Node Agreement

In order to compare two nodes n1 and n2 in an XML
tree, we need to define the equality between them.
Obviously, if n1 and n2 are the same node (denoted
n1 = n2), they should be considered equal, but this
kind of node equality is not sufficient, because there
are cases where two distinct nodes have equal val-
ues. So we need to define value equality between
nodes. Since we consider the ordering of child ele-
ments insignificant, our definition of value equality is
different from that in (Buneman, Davidson, Fan &
Hara 2002, Buneman et al. 2001).

Definition 2.4 [value equal] Let n1 and n2 be two
nodes in T . We say n1 and n2 are value equal, denoted
n1 =v n2, if n1 and n2 are of the same label, and

1. n1 and n2 are both attribute nodes or simple
element nodes, and the two nodes have the same
value, or

2. n1 and n2 are both complex elements, and for
every child node m1 of n1, there is a child node
m2 of n2 such that m1 =v m2, and vice versa.

¤
For example, the two nodes v8 and v12 in Figure 1

are value equal. The two nodes v9 and v11 are also
value equal.

Note that node equality implies value equality, but
not vice versa.

We now turn to the definition of the agreement of
two nodes on a path. Intuitively, given two nodes n1
and n2 and a path p, there can be several different
interpretations of agreements between n1 and n2 on
p. For example, every node in the target set n1[p] may
have a node in n2[p] such that the two nodes are value
equal and vice versa, or there may be only some nodes
in the two sets that are value equal. In this paper, we
are interested in the cases defined below.

Definition 2.5 [types of agreement] Let n1, n2 be
two nodes with the same label. Let p be a simple or
composite path.

• We say n1 and n2 node agree or N-agree on p if

– p is a simple path, and n1 = n2; or
– p is an upward path, n1[p] 6= ∅ and n1[p] =

n2[p]; or
– p is a composite path, and n1 and n2 node

agree on the upward path part of p.

• We say that n1 and n2 set agree or S-agree on p
if for every node v1 in n1[p], there is a node v2
in n2[p] such that v1 =v v2, and vice versa.

• We say that n1 and n2 intersect agree or I-agree
on p if there exist nodes v1 ∈ n1[p] and v2 ∈ n2[p]
such that v1 =v v2.

¤
For example, in Figure 1, v5 and v7 S-agree on

address; v6 and v7 I-agree on address; v5, v6 N-agree
on ⇑.

It is straightforward to see that N-agreement im-
plies S-agreement, which in turn implies I-agreement.
Besides, using induction on the length of paths, we
can easily prove the following lemmas.

Lemma 2.1 Let n1 and n2 be two nodes. Then
n1 =v n2 if and only if n1 and n2 S-agree on every
simple path.

Lemma 2.2 Let n1 and n2 be two nodes, and p1 ≡
l1. · · · .lm and p2 ≡ l1. · · · .lm.lm+1 be two simple or
composite paths, where lm+1 is not ⇑. Then

• n1 and n2 N-agree on p2 implies they N-agree on
p1.

• n1 and n2 S-agree on p1 implies they S-agree on
p2.

• n1 and n2 I-agree on p1 implies they I-agree on
p2.

3 Functional Dependencies

Our definition of functional dependency uses the dif-
ferent types of agreements on paths that are defined
in the previous section.

Definition 3.1 [XML functional dependency]
Let T be an XML tree. A functional dependency
(FD) on T is an expression of the form

Q : p1(c1), . . . , pn(cn) → pn+1(cn+1)

where Q is a downward path, p1, p2, . . . , pn are simple
or composite paths, pn+1 is a simple path of length 1
or 0, and ci (i = 1, . . . , n + 1) is one of N, S, and I.

T is said to satisfy the above functional depen-
dency if, for any two nodes n1, n2 ∈ root[Q] the
following statement is true: if n1[pi] is not empty,
and n1, n2 ci-agree on pi (for all i = 1, . . . , n), then
n1[pn+1] and n2[pn+1] are not empty, and n1 and n2
also cn+1-agree on pn+1. ¤

In Definition 3.1 we require that the type of agree-
ment be specified for every path. However, some
types of agreements are more common than others
in practical cases. To simplify the notation, when
ci is omitted we use the following default types of
agreement: for the empty path or an upward path,
the default is N-agreement; for all other paths, the
default is S-agreement.

Our definition of XFD generalizes those in previ-
ously published work, and it can express many differ-
ent constraints, some of which cannot be expressed
by any of the previous XFDs. Here we provide a few
examples only.

Example 3.1 We use the XML tree in Figure 1 in
this example.
(1) To say that any single telephone number of a

student determines his/her set of addresses, we
can use
∼ .student : tel(I) → address(S).
This constraint cannot be expressed by any of
the previously defined XFDs.

(2) To say that student number determines student
name for all student nodes, we can use
∼ .student : sno → name.
This constraint can not be expressed using the
functional dependencies defined in (Arenas &
Libkin 2004) or (Vincent et al. 2004) because the
student nodes are located in different paths.

(3) To say that the student number determines the
student’s set of addresses, we can use
∼ .student : sno → address.
Note that this is different from the multi-valued
dependencies defined in (Vincent & Liu 2003),
and it cannot be expressed by the XFDs in
(Arenas & Libkin 2004), (Vincent et al. 2004),
(Lee et al. 2002), or (Wu et al. 2002).

(4) To say that the course number determines the
course node, i.e., no two course nodes have the
same course number, we can use
course : cno → ε.
This constraint cannot be expressed by the XFDs
in (Hartmann & Link 2003).

(5) To say that the course code and student number
determines the student grade in that course, we
can use
course.students.student : sno,⇑2 .cno → grade.

¤
Example 3.2 Let us now look at the XML tree
about textbooks shown in Figure 2. Suppose that
the title, the set of authors, and the year of publica-
tion can determine the publisher. This constraint can
be expressed by the functional dependency

course.text : title, author, year → publisher.
The above constraint can not be expressed using

the FDs defined in any of the previous work men-
tioned above except (Hartmann & Link 2003). ¤

Note that, according to definition, if root[Q] = ∅,
that is, Q is not valid wrt root, then the FD is trivially
satisfied by T . Also when checking satisfaction of a
FD, we only need to consider those nodes in root[Q]
that have a non-empty target set for every path on the
LHS. In particular, if there is a path on the LHS which
is not valid to any node in root[Q], then the functional
dependency is trivially satisfied by T . Although it
appears to be useless to consider invalid paths, this is
actually necessary when we define FD assertions on
DTDs later.

4 Equality-Generating Dependencies

We start with a discussion of EGDs in relational
databases first, and define a normal form that ex-
tends BCNF to multiple relations. Then we point
out similar problems in XML and define EGDs for
XML data.

4.1 EGDs in Relational Databases

In relational databases, the traditional normalization
technique removes data redundancies within a single
relation, but it cannot remove redundancies across
relations. For example, if we have two relations

Graduate(sNo, sName, address)
UMember(stNum, stName, phone)

representing graduate students and student union
members, where sNo and stNum both represent stu-
dent number, sName and stName both represent
student name, then although both relations are in
BCNF, there are data redundancies across the two
relations if the student information in the two re-
lations overlap. Such redundancies can be detected
using equality-generating dependencies (EGDs). An
EGD1 is an expression of the form

R1.X1 = R2.X2 → R1.Y1 = R2.Y2 (∗)
where R1, R2 are two relation schemas, X1, Y1 are
lists2 of attributes in R1, and X2, Y2 are lists of at-
tributes in R2. The EGD specifies that, for any two
tuples t1 and t2 in instances of R1 and R2 respec-
tively, whenever t1[X1] = t2[X2], then t1[Y1] = t2[Y2].
For instance, for the example above, there is an EGD

Graduate.sNo = UMember .stNum →
Graduate.sName = UMember .stName

Due to the above EGD, if the two relations over-
lap, then there will be data redundancy. To remove
such redundancies we can restructure the two ta-
bles as follows: if every union member appears in
the graduate table, we can change the UMember ta-
ble to UMember(stNum, phone) and add a foreign
key “UMember(stNum) references Graduate(sNo)”;
if only some graduates are union members, and
only some union members are graduates, we can
add another relation Student(sNo, sName), mod-
ify the original tables to Graduate(sNo, address)
and UMemeber(sNo, phone), and add the foreign
keys “Graduate(sNo) references Student(sNo)” and
“UMemeber(sNo) references Student(sNo)”.

FDs are special EGDs where R1 = R2, X1 =
X2, and Y1 = Y2. Like FDs, an EGD can be triv-
ial or non-trivial. An EGD is said to be trivial if it
holds in every database schema. For example, every
trivial FD is a trivial EGD. Also, the EGD (*) will
be trivial if Y1 is a sublist of X1, and Y2 is a corre-
sponding sublist of X2.

Given a set E of EGDs for a database schema
D, we may be able to derive some other EGDs.
For example, from R1.x = R2.x → R1.y = R2.y
and R1.y = R2.y → R1.z = R2.z we can derive
R1.x = R2.x → R1.z = R2.z. Let us use (D, E)+ to
denote the set of all EGDs that hold in D and that
can be derived from E.

We now define a new normal form of a relational
database schema that directly extends BCNF.

1For simplicity, we consider only EGDs involving two tuples on
the left-hand side, but the idea presented here readily extends to
general EGDs. Also note our EGDs are not defined on a universal
relation as in (Fagin & Vardi 1984).

2We use list to stress that (1) the attributes in X1 (and Y1)
are ordered, and (2) an attribute in X1 (and Y1) may appear more
than once.

Definition 4.1 [normal form wrt EGDs in rela-
tional databases] A relational database schema D
is said to be in normal form with respect to a given
set E of EGDs, if for every non-trivial EGD

R1.X1 = R2.X2 → R1.Y1 = R2.Y2

in (D, E)+,

• if R1 = R2, X1 = X2, and Y1 = Y2 then X1 is a
superkey of R1;

• Otherwise, there is a corresponding exclusion
constraint R1[X1] ∩ R2[X2] = ∅, which means
that the projections r1[X1] and r2[X2] are dis-
joint, where r1 and r2 are instances of R1 and R2
respectively in every possible database instance.

¤
We now briefly discuss about the above definition.

For the EGD in the definition, if R1 = R2, X1 = X2
and Y1 = Y2, it becomes a FD R1 : X1 → Y1. By
requiring X1 to be a superkey of R1 we are demand-
ing that R1 be in BCNF with respect to the FD.
Therefore, the first condition in our normal form is
equivalent to say that all relation schema is in BCNF
with respect to the FDs in (D, E)+. If R1 6= R2,
or X1 6= X2, or Y1 6= Y2, then the EGD is not a
FD, and the second condition in our normal form re-
quires that instances of R1 and R2 must not overlap
on the X1 (X2) attributes. In effect, in both cases
we require that there are no distinct tuples t1 ∈ r1
and t2 ∈ r2, where r1 and r2 are instances of R1
and R2 respectively, such that t1[X1] = t2[X2]. In
addition, if R1 = R2, but X1 6= X2, we also re-
quire that t[X1] 6= t[X2] for every tuple t. In all
cases, the normal form requires there is a constraint
on the database schema which makes sure that the
pre-condition (i.e, the equality on the left hand side)
of every EGD can not be satisfied by any non-empty
database instance.

In our graduate student/union member ex-
ample above, the database schema is in nor-
mal form with respect to the given EGD if
and only if Graduate[sNo] ∩UMemembr [stNum] = ∅
holds. That is, there are no graduate students who is
a union member.

For a detailed discussion about the inference rules
for relational EGDs and a lossless decomposition algo-
rithm that decomposes a relational schema into one
in normal form with respect to a set of EGDs, see
(Wang 2004).

4.2 EGDs for XML

EGDs may also exist and cause redundancies in XML
data. Figure 3 shows an example document where a
student union member also has student number, name
and telephone, which are already stored under some
student node.

Before defining EGDs for XML, we need to re-
vise our definition of value equality to include nodes
with literally different but semantically identical la-
bels. Ideally, we should have a complete classification
of all labels such that labels with the same mean-
ing are put to the same set, and those with different
meanings (even if they are literally identical, eg, name
of a product and name of a supplier) are put to dif-
ferent sets. There are many possible ways to make
such a classification, ranging from trivially dividing
the labels into disjoint sets to sophisticated classifica-
tions using Ontology (which, for instance, also checks
the position of occurrences of the labels) (Sowa n.d.).
Here we just assume such a classification exists, and
we use l1

.= l2 to denote that label l1 and l2 are se-
mantically identical.

university

root

school

v1
union

v2

students

v3

sname

'IT'

uname

'Chinese'

studentv6

 sno

 's2'

address
name

'Ken'

tel

'5113'

street

'st2'

city

'Syd'

members
V4

city

'GC'

V9

student
v5

 sno

 's1'
name

'Li'

address

street

'Main'

V8

tel

'5523'

member
v7

 stno

 's1'
stname

 'Li'
tel

'5523'

major

 'IT'

Figure 3: The Uni-School-Union example

Definition 4.2 [semantic value equal] Let n1 and
n2 be two nodes in XML tree T . We say n1 and n2
are semantically value equal, denoted n1 =sv n2, if
lab(n1)

.= lab(n2), and

1. n1 and n2 are both attribute nodes or simple
elements, and the two nodes have the same value,
or

2. n1 and n2 are both complex elements, and for
every child node a1 of n1, there is a child node
a2 of n2 such that a1 =sv a2, and vice versa.

¤
For example, in the XML tree in Figure 3, assum-

ing sno .= stno, and name .= stname, then the sno
attribute node under v5 and the stno attribute node
under v7 are semantically value equal, and so are the
two attributes name and stname under v5 and v7
respectively.

Let S1 be the paths p1, . . . , pn and S2 be the paths
q1, . . . , qn. Let n1 and n2 be two nodes. We will use
n1.S1 =sv n2.S2 to denote the fact that n1[pi] 6= ∅,
n2[pi] 6= ∅, and every node v in n1[pi] has a corre-
sponding node v′ in n2[qi] such that v′ =sv v and vice
versa, for all i = 1, . . . , n.

Definition 4.3 [XML equality-generating de-
pendency] Let T be an XML Tree. An equality-
generating dependency (EGD) on T is an expression
of the form

Q1, Q2 : 1.S1 =sv 2.S2 → 1.q1 =sv 2.q2

where Q1 and Q2 are downward paths, S1, S2 are lists
of simple or composite paths, and q1, q2 are simple
paths of length 1 or 0.

T is said to satisfy the EGD if for every pair of
nodes n1 ∈ root[Q1] and n2 ∈ root[Q2] the following
statement is true: if n1[p] 6= ∅ for every p ∈ S1, and
n1.S1 =sv n2.S2, then n1[q1] 6= ∅, n2[q2] 6= ∅, and
n1.q1 =sv n2.q2. ¤
Example 4.1 The XML tree in Figure 3 satisfies the
following EGDs:

school.students.student, union.members.member :
1.sno =sv 2.stno → 1.name =sv 2.stname,

school.students.student, union.members.member :
1.sno =sv 2.stno → 1.tel =sv 2.tel ¤

A functional dependency where the type of agree-
ment is limited to S-agree can be regarded as a special
case of EGD with Q1 = Q2, S1 = S2 and q1 = q2, as-
suming that for all nodes n1, n2, lab(n1)

.= lab(n2) iff
lab(n1) = lab(n2).

5 Dependencies over DTDs

DTDs and XML Schema documents (we call them
XML scheme files) can be used to restrict the struc-
ture of XML documents. These files define the legal
paths, among other things, in a conforming XML doc-
ument. On top of a scheme file, we can put further
restrictions on the data in conforming documents by
insisting that some FDs or EGDs must hold. We call
these dependencies assertions.

For simplicity we will focus on DTDs in this paper,
but the ideas presented here also apply to any scheme
file including XML Schema documents. The following
definition of DTDs is adapted from (Arenas & Libkin
2004).

Definition 5.1 [DTD and natural paths] A DTD
is defined to be D = (E1, E2, A, P,R, r) where E1 ⊆
E1 is a finite set of complex element names; E2 ⊆ E2
is a finite set of simple element names; A ⊆ A is a
finite set of attributes; P is a mapping from E1 to
element type definitions: ∀τ ∈ E1, P (τ) is a regular
expression

α = ε | τ ′ | α|α | α, α |α∗

where ε is the empty sequence, τ ′ ∈ E1 ∪ E2, and
“|” , “,”, and “*” denote union, concatenation, and
the Kleene closure; R is a mapping from E1 to sets of
attributes; r is the element type of the root, which is
distinct from all other symbols.

A natural path in D is a string l1. · · · .lm, where
l1 is in the alphabet of P (r), li is in the alphabet of
P (li−1) for i ∈ [2,m − 1], lm is in the alphabet of
P (lm−1) or in R(lm−1). The set of all natural paths
in D is denoted paths(D). ¤

The conformity of an XML tree to a DTD is de-
fined as follows.

Definition 5.2 An XML tree T =
(V, lab, ele, att, val, root) is said to conform to
an XML scheme file S = (E1, E2, A, P,R, r) if

1. lab(root) = r,

2. lab maps every node in V to E1 ∪ E2 ∪A.

3. for every complex element node v ∈ V , if
ele(v) = {v1, . . . , vk}, then a permutation of
the sequence lab(v1), . . . , lab(vk) must be in the
language defined by P (lab(v)); if att(v) =
{v′1, . . . , v′m} then lab(v′1), . . . , lab(v′m) must be in
the set R(lab(v)).

¤
Clearly if XML tree T conforms to DTD D, then

every simple path of T , if valid wrt the root, is in
paths(D).

Note that in an abstract DTD of Definition 5.1,
there are no constraints such as ID or IDREFS that
may exist in a DTD written according to the W3C
specification. Mixed contents are not allowed either.
On the other hand, every abstract DTD has an equiv-
alent W3C DTD. Since the W3C DTDs are more fa-
miliar to readers, we will use them in our examples.

Figure 4 shows an example DTD. The XML tree
in Figure 1 conforms to the DTD.

As mentioned earlier, we can make assertions over
a DTD D. Informally, an assertion is an FD or EGD
defined on conforming XML trees, and it asserts that
every conforming XML tree T must satisfy the depen-
dency. For an FD or EGD to qualify as an assertion,
the paths it contains must be legal paths in D, as de-
fined below.

<!ELEMENT school (course|subject)* >

<!ELEMENT course (students+) >

<!ATTLIST course

 cno CDATA #REQUIRED>

<!ELEMENT subject (students+) >

<!ATTLIST subject

 sno CDATA #REQUIRED>

<!ELEMENT students (student)*>

<!ELEMENT student (tel*, address+, grade?)>

<!ATTLIST student

 sno CDATA #REQUIRED

 name CDATA #REQUIRED>

<!ELEMENT tel (#PCDATA)>

<!ELEMENT address EMPTY>

<!ATTLIST address

 street CDATA #REQUIRED

 city CDATA #REQUIRED>

<!ELEMENT grade (#PCDATA)>

Figure 4: The Course-Subject-Student DTD

Definition 5.3 [legal path] The legal paths in a
DTD are defined as follows:

• A substring (including the empty substring) of a
natural path is a legal path, called a legal simple
path;

• if p = l1. · · · .lm is a natural path, then the
string obtained by replacing some li with or by
replacing some substring of p with ∼ is a legal
path, called a legal downward path;

• if there is a legal simple path of length k > 0,
then ⇑k is a legal path, called a legal upward path.

• if p is a natural path (which may have a length
of 0 or more), and p.l1. · · · .lj and p.l′1. · · · .l′k are
natural paths, then

– ⇑j .l′1. · · · .l′k is a legal path, called a legal
composite path;

– if p′.lj is a legal downward path obtained
from the natural path p.l1. · · · .lj , then
p′.lj . ⇑j and p′.lj . ⇑j .l′1. · · · .l′k are legal
paths.

¤
Intuitively, a path is a legal path if it is valid wrt

some node in at least one conforming document. For
example, in the DTD of Figure 4, all of the follow-
ing are legal paths. ∼ .student, ∼ .student.sno,
∼ .student. ⇑2 .cno. But name.cno is not a legal
path.

We can now formally define assertions.

Definition 5.4 [Assertion] Given a DTD D, an as-
sertion A over D is either of the following:

(1) a FD assertion

Q : p1(c1), . . . , pn(cn) → pn+1(cn+1)

where Q is a legal downward path, p1, . . . , pn are
legal simple, upward or composite paths, pn+1 is
a legal simple path of length 1 or 0, Q.pi is a legal
path, and ci ∈ {N, S, I}, for i ∈ [1, n + 1].

(2) an EGD assertion

Q1, Q2 : 1.S1 =sv 2.S2 → 1.q1 =sv 2.q2

where Q1 and Q2 are legal downward paths,
q1, q2 are legal simple paths of length 0 or 1, S1
and S2 are lists of legal simple, upward, or com-
posite paths, and for i = 1, 2 and pj ∈ Si ∪ {qi},
Qi.pj is a legal path.

The assertion states that every XML tree T conform-
ing to D must satisfy the corresponding dependency.
¤

It is easy to see the FDs in Example 3.1 are asser-
tions over the DTD in Figure 4.

Figures 5 and 6 show two more DTDs. The
XML trees in Figures 2 and 3 conform to the two
DTDs respectively. The FD in Example 3.2 is an
assertion over the DTD in Figure 5, and the EGDs in
Example 4.1 are assertions over the DTD in Figure 6.

<!ELEMENT courses (course+)>

<!ELEMENT course (text)>

 <ATTLIST course

 cno #REQUIRED >

<!ELEMENT text (title, author+, year, publisher)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT year (#PCDATA)>

<!ELEMENT publisher (#PCDATA)>

Figure 5: The Course-Text DTD

<!ELEMENT university (school+, union*)>

<!ELEMENT school (students)>

<!ATTLIST school

 sname #ID>

<!ELEMENT students (student+)>

<!ELEMENT student (address)>

<!ATTLIST student

 sno CDATA #REQUIRED

 name CDATA #REQUIRED

 tel CDATA #IMPLIED>

<!ELEMENT address EMPTY>

<!ATTLIST address

 street CDATA #REQUIRED

 city CDATA #REQUIRED>

<!ELEMENT members (member+)>

<!ELEMENT member EMPTY>

<!ATTLIST member

 stno CDATA #REQUIRED

 stname CDATA #REQUIRED

 tel CDATA #IMPLIED

 major CDATA #IMPLIED>

Figure 6: The Uni-School-Union DTD

An assertion may or may not add any restrictions
to the data in conforming XML documents. For ex-
ample, the assertion ∼ .student : sno → sno does not
add anything to the DTD in Figure 4 because every
instance conforming to the DTD will automatically
satisfy the assertion. We refer to those assertions
that do not add restrictions on the data as trivial
assertions. Formally, we have

Definition 5.5 An assertion A over DTD D is said
to be trivial if every XML tree conforming to D au-
tomatically satisfies A. ¤

For example, the assertions mentioned above on
the three DTDs are all non-trivial. On the other
hand, using Lemma 2.1 and 2.2 we can show that
the following FD assertions are all trivial (assuming
Q.l1. · · · .ln.ln+1 is a natural path):

• Q : l1. · · · .ln(c) → l1. · · · .ln(c)

• Q : l1. · · · .ln(N) → l1. · · · .ln(S)

• Q : l1. · · · .ln(S) → l1. · · · .ln(I)

• Q : l1. · · · .ln.ln+1(N) → l1. · · · .ln(N)

• Q : l1. · · · .ln(S) → l1. · · · .ln.ln+1(S)

• Q : l1. · · · .ln(I) → l1. · · · .ln.ln+1(I)
Given a set F of assertions on DTD D, we may

infer other dependencies that must be satisfied by all
conforming documents of D. As usual, the set of all
dependencies that can be derived from D and F is
denoted (D,F)+.

6 XML Normal Forms and Data Redundancy

6.1 Normal Form with respect to FD Asser-
tions

In relational databases, a table is in BCNF with re-
spect to a set of functional dependencies if the left
hand side (LHS) of every non-trivial functional de-
pendency is a superkey. In XML documents, we can
define a normal form along the same line.

We first define keys in XML. Like in relational
databases, a key is a special FD.

Definition 6.1 [key] If there is a FD assertion
Q : p1(c1), · · · , pn(cn) → ε over the DTD D, then we
call p1(c1), · · · , pn(cn) a key (of Q). ¤

Intuitively, p1(c1), · · · , pn(cn) is a key of Q means
that, for every XML tree T conforming to D, and for
any two nodes n1 and n2 in r[Q] (of T), if n1 and n2
ci-agree on pi for all i ∈ [1, n], then n1 and n2 must
be the same node.

Our definition of keys differs from those in
(Buneman et al. 2002), (Buneman et al. 2001) and
(Fan et al. 2001) in two ways. First, we did not con-
sider the ordering of subelements to be of significance,
and hence the definitions of value equality are differ-
ent. Second, we allow several different interpretations
of agreements (as represented by the cis in the defi-
nition), while the previous definitions only consider
I-agreement (i.e., every ci is I).

Definition 6.2 [XML normal form wrt FDs] A
DTD D is said to be in normal form with respect to a
set of FD assertions F , if for every no-trivial assertion
in (D,F)+, the LHS is a key. ¤

For example, the DTD in Figure 4 is not in normal
form with respect to the FD assertion
∼ .student : sno → name,

because the assertion is non-trivial and we cannot de-
rive ∼ .student : sno → ε from the DTD and the
given assertion. Similarly, the DTD in Figure 5 is not
in normal form with respect to the FD assertion

course.text : title, author, year → publisher.
An alternative definition of normal form is as in

Definition 6.3. Recall that nodes n1 and n2 N-
agree on any simple path pn+1 is defined to mean
n1 = n2. Therefore Definition 6.3 is equivalent to
Definition 6.2.

Definition 6.3 [XML normal form wrt FDs] A
DTD D is said to be in normal form with respect to a
set of FD assertions F , if for every no-trivial assertion

Q : p1(c1), · · · , pn(cn) → pn+1(cn+1)

in (D,F)+, the functional dependency

Q : p1(c1), · · · , pn(cn) → pn+1(N)

is also in (D,F)+. ¤

6.2 Normal Forms with Respect to EGD As-
sertions

Similar to the normal form with respect to EGDs in
relational databases defined in Section 4.1, we can
define a normal form with respect to EGDs for DTDs.

Definition 6.4 [XML normal form wrt EGDs]
A DTD D is said to be in normal form with respect
to a set F of EGD assertions if for every non-trivial
EGD

Q1, Q2 : 1.S1 =sv 2.S2 → 1.q1 =sv 2.q2

in (D,F)+,

(1) if Q1 = Q2, S1 = S2, and q1 = q2, then S1 is a
key of Q1.

(2) otherwise the following disjoint constraint holds:

Q1, Q2 : 1.S1 =sv 2.S2 → False

which means that in every conforming XML tree,
there can not be two nodes n1 ∈ r[Q1] and n2 ∈
r[Q2] such that n1.S1 =sv n2.S2.

¤
For example, the DTD in Figure 6 will be in nor-

mal form with respect to the EGD assertion
school.students.student, union.members.member :
1.sno =sv 2.stno → 1.name =sv 2.stname

if and only if the following constraint hold:
school.students.student, union.members.member :
1.sno =sv 2.stno → 1.ε = 2.ε

which means that there are no student node s and
member node m such that s.sno =sv m.stno. In other
words, school students and union members must not
overlap.

6.3 Data Redundancies

Normal forms are aimed to reduce data redundancies
caused by the assertions. In this section we provide a
result on the relationship between our DTD normal
forms and XML data redundancies.

We need to formally define data redundancy in
XML trees first.

Definition 6.5 [Data Redundancy in XML] Let
D be a DTD, F be a set of assertions over D, and
T be an XML tree conforming to (D,F) (i.e., T con-
forms to D and satisfies F). We say that T has data
redundancies with respect to F if there is a node n of
T such that the subtree rooted at n , if removed from
T , can be fully recovered using other parts of T , D,
and the assertions in F . That is, we can construct a
tree T1 (to be rooted at the position of n) such that
n and the root of T1 are value equal. ¤

For example, the XML tree in Figure 2, which con-
forms to the DTD in Figure 5 and satisfies the asser-
tion in Example 3.2, has data redundancy. This is
because we can restore the publisher node under the
rightmost text node if it is removed, by using the DTD
and the assertion as well as the publisher node under
the leftmost text node. Similarly, the XML tree in
Figure 1 which conforms to the DTD in Figure 4 and
the FD assertion ∼ .student : sno → address has
data redundancies. The XML tree in Figure 3 which
conforms to the DTD in Figure 6 and the EGD asser-
tion in Example 4.1 has data redundancies, because
if we remove the stname attribute under node v7, we
can restore it from the corresponding attribute under
v5.

The next theorem explains why normal-form
DTDs are preferred.

Theorem 6.1 Let D be a DTD, F be a set of FD
assertions over D, and E be a set of EGD assertions
over D. Then

• There exists an XML tree conforming to (D,F)
which has data redundancies iff D is not in nor-
mal form with respect to F .

• There exists an XML tree conforming to (D, E)
which has data redundancies iff D is not in nor-
mal form with respect to E.

It is important to note that we cannot claim that
every XML tree conforming to (D,F)+ will have data
redundancy if D is not in normal form. This is partic-
ularly true if some FDs use I-agreement on the RHS.

7 Comparison with Related Work

Apparently the earliest work on using XML functional
dependencies in the normalization of XML documents
appeared in (Wu et al. 2002). The paper defines an
XML normal form based on partial and transitive de-
pendencies that try to resemble those in the relational
system. The authors made the assumption that the
scheme tree of the XML document has the property
that there is a unique path from the root to every
label. Unfortunately this assumption is not very re-
alistic because, for example, both a subject and a
student may have an attribute “sno” as in Figure 4.
Clearly the two attributes have different paths from
the root. Furthermore, the FDs are limited in ex-
pressive power because of the limitation the authors
put on the types of agreements of two nodes. In ef-
fect, only I-agreement is allowed. More recently, (Lee
et al. 2002), (Hartmann & Link 2003), (Arenas &
Libkin 2004), and (Vincent et al. 2004), and (the
later two both have earlier conference versions) all
provide definitions of XML functional dependencies,
and (Arenas & Libkin 2004) and (Vincent et al. 2004)
went further to define XML normal forms based on
their FDs.

(Lee et al. 2002) uses XPaths to define functional
dependencies among a set of XML subtrees. An XFD
is defined as an expression (Q, [e1, · · · , en → en+1])
where Q is an XPath, and ei, for i ∈ [1, n + 1], is
either an element or an element followed by dot and
a set of key attributes of the element. An XML tree is
said to satisfy the XFD if for any two subtrees rooted
at a node in root[Q], if they agree on the value of
e1, · · · , en, then they also agree on the value of en+1,
provided these values exist. Unfortunately, it seems
that the authors have implicitly assumed that each el-
ement name in the XFD corresponds to a single node
in the subtree (which is not always the case), because
no exact definition of the “value” of an element is
provided. There is also a strong structural restriction
on the path and elements in the FD: if an element’s
ancestor appears in the XFD, then so must its par-
ent. It is not hard to see that the expressive power
suffered from this restriction.

Both (Arenas & Libkin 2004) and (Vincent et al.
2004) regard a simple element as having a child node
labelled S, under which is attached the value of the
element. The definition of XML FDs in (Arenas &
Libkin 2004) is based on the so-called tree-tuples. Es-
sentially, the authors treat a DTD as a single relation
schema, a distinct path (the path in both (Arenas
& Libkin 2004) and (Vincent et al. 2004) are of the
form r.p where p is a natural path) in a DTD as an
attribute, and a tree-tuple a tuple in that relation. In
a tree tuple, each path which ends with an element
name is mapped to a distinct node or the null value
(⊥), and every other path (ending with an attribute

name or S) is mapped to either a string (PCDATA)
or ⊥. An XML data tree T conforming to the DTD
can then be regarded as consisting of a set of max-
imal tree tuples, here maximal means, roughly, that
the tree tuple can not be extended by replacing null
with non-null values while still being a subtree of T .
For example, the XML tree shown in Figure 7 can be

<!ELEMENT school(course)* >

<!ELEMENT course (students) >

<!ATTLIST course

 cno CDATA #REQUIRED>

<!ELEMENT students (student)*>

<!ELEMENT student (name)>

<!ATTLIST student

 sno CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

'Mary'

school

root

course

v1

course

v2

students

v3

students

v4

 cno

 '01'

cno

'02'
v5

'Mary'

student

v6

sno

'002'
name

v9

student

 sno

 '001'
name

v8

S
'ken'

S

student

 sno

 '001'
name

v10

S

v7

Figure 7: The Course-Student example

regarded as an instance of the relation schema with
attributes

school,
school.course,
school.course.@cno,
school.course.students,
school.course.students.student,
school.course.students.student.sno,
school.course.students.student.name,
school.course.students.student.name.S,

and the instance consists of the (maximal tree) tuples
(root, v1, 01, v3, v5, 001, v8, Mary),
(root, v1, 01, v3, v6, 002, v9, Ken), and
(root, v1, 02, v4, v7, 001, v10, Mary).

An XFD is defined as S1 → S2, where S1 and S2 are
sets of paths. An XML document conforming to the
DTD is said to satisfy the functional dependency if
for every two maximal tree-tuples t1 and t2, and every
path p2 ∈ S2, whenever t1.S1 is not null and t1.S1 =
t2.S1, then t1.p2 = t2.p2. For example, the XML tree
in Figure 7 satisfies the functional dependency

school.course.students.student.sno →
school.course.students.student.name.s (**)

but not
school.course.students.student.sno →
school.course.students.student.name.

(Vincent et al. 2004) defines an XFD that is close
to that in (Arenas & Libkin 2004), with a few sig-
nificant differences nevertheless. Rather than using
DTDs, the authors consider a scheme file as a set of
closed paths; rather than using a tree tuple to link the
values in both sides of the FD, they use the concept

of “closest node” to link the values. More specifically,
an XFD is of the form

p1, p2, · · · , pn → q

where pi and q are paths. The satisfaction of the
above XFD by an XML Tree T can be checked as
follows: [Step 1] For i ∈ [1, n], (1) find the common
prefix of pi and q, denoted pre(pi, q); (2) find the
target set root[pre(pi, q)]; (3) for each distinct path
instance I of q, find the unique node xI,i which is
common to I and root[pre(pi, q)]; (4) if last(pi) is not
an element, then find the set NI,i of nodes which are
descendants of xI,i and are in the target set root[pi].
Also find the set val(NI,i) of values of the nodes in
NI,i. [Step 2] If we cannot find two distinct path in-
stances I and J , such that for all i ∈ [1, n], xI,i = xJ,i

(when last(pi) is an element), or val(NI,i)∪val(NJ,i)
contains ⊥ or val(NI,i)∩val(NJ,i) 6= ∅ (when last(pi)
is an attribute or S), but the value of last node
in I and J are not equal, then the XNF is satis-
fied by T . For example, in the XML tree of Fig-
ure 7, the XFD (**) can be shown to hold as follows:
[Step 1] (1) The common prefix of the two paths in
(**) is pre ≡ school.course.students.student, and (2)
the target set root[pre] = {v5, v6, v7}; (3) for the
path instances of the RHS I = root.v1.v3.v5.v8.S,
J = root.v1.v3.v6.v9.S, and K = root.v2.v4.v7.v10.S,
find the nodes XI = v5, XJ = v6 and XK = v7; (4)
find NI , NJ and NK , which are the singleton sets con-
taining the sno node under v5, v6 and v7 respectively;
[Step 2] Only the values of the nodes in NI and NK
are equal, but so are the values of last node in the
corresponding path instances I and K.

A major difference between (Vincent et al. 2004)
and (Arenas & Libkin 2004) lies in the treatment of
null values (missing nodes). In the XML tree of
Figure 7, if we remove both name values under v5
and v7 (or alternatively, if we remove the sno value
under v5), then the XFD (**) is still considered satis-
fied by (Arenas & Libkin 2004), but not by (Vincent
et al. 2004). Another important difference between
(Vincent et al. 2004) and (Arenas & Libkin 2004)
lies in the set of trivial XFDs. Since the XFDs in
(Arenas & Libkin 2004) are defined for a DTD, while
the XFDs in (Vincent et al. 2004) are defined for a
set of closed paths, some trivial XFDs in (Arenas
& Libkin 2004) may turn out to be non-trivial in
(Vincent et al. 2004). This is because a DTD puts
more restrictions on conforming XML trees than a
set of closed paths.

The main problem with the definitions of XFDs in
(Arenas & Libkin 2004) and (Vincent et al. 2004) is
that some natural constraints can not be expressed, as
already seen in Section 3. In addition, since no value
equality between two nodes is defined, it is sometimes
cumbersome to express some functional dependencies.
For instance, in the DTD below (PCDATA elements
are omitted),

<!ELEMENT school(course)* >
<!ELEMENT course (students) >

<!ATTLIST course
cno CDATA #REQUIRED>

<!ELEMENT students (student)*>
<!ELEMENT student (details, grade)>

<!ATTLIST student
sno CDATA #REQUIRED>

<!ELEMENT details(name, address, tel)>
<!ELEMENT name (fname, lname)>
<!ELEMENT address(st, city, state, pcode)>
<!ELEMENT tel(areacode, phone, ext)

if we want to say student number determines student
details, rather than using a simple expression sno →
details, we have to use either a long XFD expression
that has 9 paths on the RHS or 9 separate XFDs.

The XFD of (Vincent et al. 2004) is equivalent to a
special case of our XML FD except for the treatment
of null values for non-element paths on the LHS. We
are yet to find a meaningful example where a con-
straint can be expressed by the FDs in (Arenas &
Libkin 2004) but not ours.

Unlike other previous work that use paths to define
XFDs, (Hartmann & Link 2003) defines two types of
XFDs using homomorphism, v-subtrees and isomor-
phism of XML trees. Homomorphism between two
trees is a mapping from the nodes of one tree to an-
other that preserves the root, label, and kind of nodes,
and it is used to define conformity of an XML tree to
an XML schema file (represented by a schema tree).
A v-subtree is a subtree which roots at node v and
it is determined by the paths from v to a subset of
leaves of the original tree. The isomorphism of two
subtrees is a 1-1 mapping between the two sets of
nodes which is homomorphic in both directions. Iso-
morphism is used to define equivalence between two
XML trees. The equivalence of two subtrees is similar
to the value equality of their roots. An XFD is de-
fined to be of the form v : X → Y , where v is a node
in the schema tree, and X and Y are v-subgraphs in
the schema tree. Two types of satisfaction by a con-
forming XML tree are defined, and they represent two
different types constraints. This allows the XFDs in
(Hartmann & Link 2003) to express some constraints
involving set equality (like our XFDs) as well as some
constraints similar to those in (Arenas & Libkin 2004)
and (Lee et al. 2002).

None of the XFDs in the other previous works
takes set equality into consideration. We believe that
set-equality is natural and common in real applica-
tions and should be included in defining data depen-
dencies. Notably both (Roth, Korth & Silberschatz
1988) and (Hara & Davidson n.d.) have considered
set equality in their definitions of functional depen-
dencies in nested relations.

We are not aware of any formal definitions of
EGDs for XML data, although (Lee & Wu 2000) de-
scribes a totally different type of constraints in XML,
which they call equality-generating dependencies: if
an element v can have at most one subelement, then
when v1 and v2 are known to be subelements of v,
they must be the same element.

8 Conclusion and Future Work

We have studied a new type of FDs as well as EGDs
for data-centric XML documents, and proposed nor-
mal forms of DTDs that prevent data redundancies
with respect to these dependencies. However, many
issues remain to be resolved, and we plan to investi-
gate these issues in our future work.

As an immediate task, we would like to find effi-
cient algorithms for the implication problem and com-
putation of the closure of our data dependencies. This
must be done before we can efficiently check a DTD
is in normal form. The normalization process has to
be carefully designed too.

We would also like to extend our work to the design
of XML documents in which the ordering of subele-
ments is important or where there are mixed contents,
because such XML documents are ubiquitous.

References

Arenas, M. & Libkin, L. (2004), ‘A normal form
for XML documents’, ACM Transactions on

Database Systems 29, 195–232.

Buneman, P., Davidson, S. B., Fan, W. & Hara,
C. S. (2002), ‘Keys for XML’, Computer Net-
works 39(5), 473–487.

Buneman, P., Davidson, S. B., Fan, W., Hara, C. S.
& Tan, W. C. (2001), ‘Reasoning about keys for
XML’, IDPL’2001, Lecture Notes in Computer
Science 2397, 133–148.

Fagin, R. & Vardi, M. Y. (1984), The theory of
data dependencies—an overview, in ‘Automata,
Languages and Programming, 11th Colloquium’,
Vol. 172 of Lecture Notes in Computer Science,
pp. 1–22.

Fan, W., Schwenzer, P. & Wu, K. (2001), ‘Keys with
upward wildcards for xml’, DEXA’2001, Lecture
Notes in Computer Science 2113, 557–567.

Hara, C. S. & Davidson, S. B. (n.d.), Reasoning about
nested functional dependencies, in ‘PODS’1999’,
pp. 91–100.

Hartmann, S. & Link, S. (2003), More functional de-
pendencies for XML, in ‘ADBIS 2003’, pp. 355–
369.

Lee, D. & Wu, W. W. (2000), Constraints-preserving
transformation from XML to document type def-
inition to relational schema, Technical Report
UCLA-CS-TR-200001, Dept. of Computer Sci-
ence, Uni of California, Los Angeles.

Lee, M. L., Ling, T. W. & Low, W. L. (2002),
‘Designing functional dependencies for XML’,
EDBT’2002, Lecture Notes in Computer Science
2287, 124–141.

Roth, M. A., Korth, H. F. & Silberschatz, A.
(1988), ‘Extended algebra and calculus for
nested relational databases’, ACM Transactions
on Database Systems 13(4), 389–417.

Sowa, J. F. (n.d.), Building, sharing, and merging
ontologies.

Vincent, M. W. & Liu, J. (2003), Multivalued depen-
dencies and a 4NF for XML, in ‘CAiSE 2003’,
pp. 14–29.

Vincent, M. W., Liu, J. & Liu, C. (2004), ‘Strong
functional dependencies and their applicatiopn
to normal forms in XML’, ACM Transactions on
Database Systems 29(3), 445–462.

Wang, J. (2004), Database design using equality gen-
erating dependencies, Technical report, School of
Information Technology, Griffith Univerty, Gold
Coast, Australia.

Wu, X., Ling, T., Y.Lee, S., Lee, M. L. & Dob-
bie, G. (2002), ‘NF-SS: A normal form for
semistructured schema’, ER Workshop’2001,
Lecture Notes in Computer Science 2465, 292–
305.

