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Abstract 
This paper applies a Bayesian network to model multi 
criteria distribution maps and to discover knowledge 
contained in spatial data. The procedure consists of three 
steps: pre processing map data, training the Bayesian 
Network model using distribution maps of Australia and 
testing the generalization and diagnosis of the model 
using individual states’ maps. The Bayesian network that 
we used in this study is known as naïve Bayesian 
network. Results show that this environmental Bayesian 
network model can generalize the classification rules 
from training data for good prediction and diagnosis of a 
distribution map. 

Keywords:  Bayesian network, multi-criteria analysis, 
combining evidence, distribution maps. 

1 Introduction 
Analysis of spatial information in natural resource 
management is crucial to support a decision making 
process. However, with the advent of various 
technologies to acquire the data, analysis of multiple 
spatial data becomes a very challenging area. These 
technologies will produce the data with different accuracy 
and different resolution in the data. In spite of multi 
representations of spatial data, evidences of an area can 
be from different time intervals and different observer’s 
views which make combination of those evidences 
complicated. Spatial data can have spatial attributes and 
non-spatial attributes. The former one is incorporated in 
spatial topological systems or relationships, and the latter 
is also called thematic data..
Environmental distribution map is crucial for decision 
support systems as it helps to monitor resource condition 
and also to identify the potential areas for investment. 
The information discovered from distribution maps is 
also contributing to applications such as land value 
determination, local and regional planning, pest and 
disease control, emergency response planning, 
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agricultural productivity assessment and agricultural 
diversification (BRS, 2006). The complexity of a 
distribution map depends on the number of classes used 
to represent the data. It can be classified into as few as 
two classes or an infinite number of classes to represent 
the data. The more classes is used to quantise the data, the 
more precise the produced distribution map is, but also 
the more complexity of computation arises. In this study, 
we quantise the pixel values in a raster distribution map 
into five classes, where one colour is used to represent the 
associated class of a pixel.  
In order to analyse the information contained in 
distribution maps, we need to discover as much 
knowledge as we can. Knowledge discovery on 
distribution maps includes combining multi criteria maps 
in order to extract general knowledge and interesting 
patterns from non-spatial attributes. The dependency 
between data that are usually uncertain make the analysis 
more complicated. Besides, different experts might have 
different opinions about the dependencies and factors 
involved in deriving any knowledge from spatial data. As 
a beginning, in this study, we focus on raster distribution 
maps as spatial data and discover knowledge from non-
spatial attributes where we extract non-spatial attributes 
for each pixel in a distribution map. We apply Bayesian 
network model to do the generalization and diagnosis in 
predicting the class distribution of the data in a target 
map. 

The aim of this study is to apply a Bayesian network in 
modelling multi criteria distribution maps. This paper 
provides a very basic introduction about Bayesian 
network. The technical details can be found in 
(Heckerman, 1995). The structure of this paper is as 
follows. We start in section 2, presenting several 
applications of Bayesian network in spatial data analysis. 
Section 3 describes the sources of the data used in this 
experiment. The process of the experiment is explained in 
section 4, including modelling distribution maps by naïve 
Bayesian network, data pre processing and model training 
and testing. The experimental results are discussed in 
section 5 and discussions are discussed in section 6. 
Finally, conclusions and future works are presented in 
section 7. 

2 Literature Review 
Spatial data can be derived from different type of sources. 
It has been used for discovering interesting knowledge 
and for making a decision. In order to do prediction and 
to produce a decision, the data needs to be represented in 
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a particular approach and one of them is Bayesian 
network. We will also describe several applications of 
Bayesian networks for prediction in this section. 

A Bayesian network, also called belief net, is a directed 
acyclic graph (DAG) which consists of nodes to represent 
variables and arcs to represent dependencies between 
variables (Pearl 1986, Charniak 1991). Arcs or links also 
represent causal influences among the variables. The 
strength of an influence between variables is represented 
by the conditional probabilities which are summarized in 
a conditional probability table (CPT). Bayesian network 
is one of the graphical modelling techniques and it has 
been used widely in various applications including 
computer vision, medicine and spatial data analysis. 
There are two fundamentals idea in a Bayesian network 
according to De Vel et. al (2006). First, the notion of 
modularity where a complex system is decomposed into 
simpler parts and the second fundamental idea is their 
connections. The model also can deal with two main 
problems: uncertainty and complexity and therefore have 
an explanatory power for the modelling data.  

In Bayesian networks, one can predicts the target values 
or the missing values given the model and other 
evidences. The class value for each pixel in a target node 
is obtained by finding the class associated with the 
highest posterior probability for that node. Bayesian 
networks work under the assumption of conditional 
independence where it estimates the posterior 
probabilities of the classification occurred in the training 
data. Bayesian networks have several advantages for data 
analysis. First, it can handle situations where some of the 
input data are missing. This is a great advantage, as 
having incomplete data is unavoidable in real world 
applications. Second, there are a few algorithms that have 
been developed for both structure and parameter training 
to learn the Bayesian networks from data. Third, 
Bayesian networks can be extended to model the 
structured data. This method is called probabilistic 
relational model (PRM) (Friedman 1999)  

Representing spatial data using Bayesian networks for 
prediction has been applied successfully in many 
applications. Margaret et. al (2005) modelled satellite 
images using a Bayesian network for estimating leaf area 
index (LAI). The network was evaluated on a per pixel 
basis and the predicted results showed better 
classification than other classifiers such as neural 
networks and spectral vegetation indices, one of the pixel 
classifier approaches. On the other hand, Stassopoulou et 
al. (1998) used a Bayesian network to infer the risk of 
desertification of some burned forest in the 
Mediterranean region by combining several related 
evidences. The evidences used were from various sources 
with different resolution and accuracy. The network was 
also evaluated on a per pixel basis for modelling the data 
that came from different resolution.  

Swayne (2004) used a Bayesian network and extended it 
into an influence diagram for multi objective modeling 
and decision support for a nonpoint source pollution 
model in Southern Ontario, Canada. They adjusted the 
conditional probability values of a Bayesian network to 
get a better decision based on the specific criteria 

preference. Besides prediction, the ability of Bayesian 
networks in detection applications has been successfully 
developed and the details can be found in Stassopoulou et 
al (2000) for building detection and Sebe et al. (2004) for 
skin detection. 

3 Spatial Data Source 
The data used in this study is acquired from the Multi 
Criteria Analysis Shell for Spatial decision support 
system (MCAS-S) provided by the Bureau Rural 
Sciences (BRS) of Australia (Michael et. al, 2005). 
Figure 1 and 2 show the distribution maps used to train 
the Bayesian network model. Figure 1(a) – (d) describe 
the distributions maps of population total, elevation, 
taxable income and accessible/remoteness index of 
Australia (ARIA) for 2001. The data has been quantized 
into five different classes and the scope for each class is 
also shown in the figure. One colour is used to represent a 
class while white pixel belongs to the background. These 
distribution maps are in a raster format where each pixel 
is associated with either a class or background. 

 

 
(a) 

 
(c)  

Legend 
    Class 1 : < 2832.813 
     Class 2 : up to 4249.219 
     Class 3 : up to 5665.625 
     Class 4 : up to 8498.438 
     Class 5 : > 8498.438 

Legend 
     Class 1 : < 31811.14 
     Class 2 : up to 36124.52 
     Class 3 : up to 38820.38 
     Class 4 : up to 40437.89 
     Class 5 : > 40437.89 

 
(b) 

 
(d)  

Legend 
     Class 1 : < 111.7831 
     Class 2 : up to 207.253 
     Class 3 : up to 302.7228 
     Class 4 : up to 430.0159 
     Class 5 : > 430.0159 

Legend 
    Class 1 : < 9.28125 
     Class 2 : up to 14.90625 
     Class 3 : up to 16.875 
     Class 4 : up to 17.71875 
     Class 5 : > 7.71875 
 

Fig. 1. Distribution maps of Australia (a) population total, 
(b) elevation, (c) taxable income, and (d) accessible 
remoteness index of Australia (ARIA). 

In addition to the data shown in Figure 1, we are also 
given a distribution map of development potential as 
shown in Figure 2. Data of development potential 
distribution is also quantized into five different classes 
and the same colours are used to label the classes in this 
map. Figure 2(a) shows the distribution map of 
development potential of Australia while Figure 2(b) is a 
set of classes corresponding to the specified window in 
the map. All these five distribution maps are used in 
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parameter training. The detail of the training process is discussed in section 4. 

 
Legend 
     Class 1 
     Class 2 
     Class 3 
     Class 4 
     Class 5  

(a) (b) 

Fig. 2. (a) Distribution map of development potential of Australia (b) pixels’s classes in the specified region. 

 

 

Besides the distribution map of the whole Australia, we 
are also provided with the distribution maps of the same 
criteria (population total, elevation, taxable income and 
ARIA) for the individual states in Australia (Queensland, 
Victoria, New South Wales, Australian Capital Territory, 
Western Australia and Adelaide). In this study, Victoria 
distribution maps are used for testing the Bayesian 
network model and the details are discussed in section 5. 

To get the class value of each pixel, we pre processed 
each distribution map using Matlab and Java. The size of 
the distribution map image is 270 pixels height and 340 
pixels width. Therefore, for each image, there are 91800 
pixel values. However, only some parts of the image 
contain class values while others are just the background. 
Section 4.1 describes the process in details. 

4 Bayesian Network (BN) for Modelling 
Spatial Data 

4.1 General Framework 
Figure 3 shows the flow chart of the experiment. The first 
step is data pre processing. The RGB values of each pixel 
are extracted from a raster distribution map and for each 
of them a class number is assigned based on its RGB 
values. A class number ‘0’ is set to a background pixel, 
while class ‘1’ to ‘5’ are assigned to five different states 
or classes for each node. In the second step, the pixel 
values in the distribution map of Australia are used for 
training the Bayesian network model to obtain the model 
parameters- the Conditional Probability Table (CPT). In 
this study, we assume the structure of the Bayesian 
network is known and we focus only on parameter 
training. The next two steps are testing. We apply an 
individual state-Victoria distribution maps to test the 
performance of the proposed Bayesian Network Model. 
In the first experiment, we test the trained model to infer 
the distribution map of development potential of the 
whole state of Victoria, while in the second experiment 
we apply the model to infer the Victoria elevation 
distribution map. The proposed Bayesian network model 
will be discussed in details in the following subsections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. General framework of the experiment 

 

4.1.1 Modelling structure. 
In the Bayesian network model used in this experiment, 
each distribution map is represented by a node. Figure 4 
shows the structure of the Bayesian network. The 
Development Potential node is a child node for 
population, elevation, tax-income and ARIA. Population 
node, elevation node, tax-income node and ARIA node are 
parent nodes for Development Potential and also known 
as root nodes. There is no link between root nodes. Each 
node has five states that are ‘vlow’, ‘low’, ‘med’, ‘high’ 
and ‘vhigh’ associated with five classes in the distribution 
map, and the state’s value corresponds to the probability 
of that class in the map. Class ‘1’ corresponds to state 
‘vlow’(very low), while class ‘2’ corresponds to state 
‘low’. Class ‘3’ is the state ‘med’ (medium) and class ‘4’ 
equals to state ‘high’. Finally, class ‘5’ corresponds to 
state ‘vhigh’ (very high). 

TEST THE MODEL TO INFER 
DEVELOPMENT POTENTIAL 

DISTRIBUTION MAP OF VICTORIA 

DATA PREPROCESSING 

TRAIN THE BAYESIAN NETWORK 
MODEL WITH AUSTRALIA 

DISTRIBUTION MAP

TEST THE MODEL TO INFER ELEVATION 
DISTRIBUTION MAP OF VICTORIA 
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Fig. 4. The proposed Bayesian network model 

4.1.2 Training data and Trained Model 
The non-spatial attributes from the distribution maps of 
Australia are used to train the model. We only select the 
value of each pixel that contains the available class for 
making up the training dataset as the format shown in 
Figure 5. Norsys’s Netica Java software toolkit is used to 
train the Bayesian network.  The data is incorporated into 
the network with ‘.cas’ file format. There are six columns 
in the file including the IDnum. The .cas file is created by 
using Java codes. 

 

 

 

 

 

Fig. 5. Format of the input data into Bayesian network (.cas file) 

After training the model, a conditional probability table 
(CPT) is assigned to children nodes while prior 
probability is assigned to root nodes. According to the 
structure, Development Potential has a CPT while all 
other nodes have prior probabilities. As we are using the 
Netica learning algorithm, the prior distributions are 
Dirichlet functions. The Development Potential node 
consists of five states and four links directed into this 
node has 54 = 625 rows in its CPT. Figure 6 shows parts 
of the CPT for Development Potential node derived from 
Netica (2006).  

 

 

Fig. 6. Conditional Probability Table (CPT) for Development 
Potential node. 

 

 

4.1.3 An example of proposed Bayesian 
Network Model 

Here, an example of the mode in the pixel level is 
explained. Figure 7 shows the posterior probabilities for 
each class in Development Potential node when the state 
of population node is ‘very low’, state of Elevation node 
is ‘medium’, state of Taxable Income node is ‘medium’ 
and state of AccessRemoteIndexAustralia (ARIA) node is 
‘very high’. From this sample, we can see that the 
posterior probabilities from class ‘1’ to class ‘5’ are 0.53, 
0.53, 97.9, 0.53 and 0.53 respectively. As a state ‘med’ 
holds the maximum probability (97.9%), the class of the 
pixel is inferred as class 3, where green colour is set to 
represent that pixel in the target distribution map. 

 Idnum    Population     Elevation Taxincome ARIA DevelopPotential 
1   vhigh vlow low vhigh med  
2 med low med low med  
3 vhigh vlow vhigh med low  
: 
: 
: 
35881 low high vhigh vlow low  
35882 vhigh vlow vlow vhigh vlow

Fig. 7. Posterior probability inferred for each class of 
Development Potential node in Netica. 

5 Experimental Results 
This section presents the results of two testing 
experiments: generalization and diagnosis. The 
distribution maps of Victoria are used to test the model in 
both experiments. We compared on the values for each 
pixel. After the states’ probabilities of each pixel are 
inferred, the pixel is set to the class/state with maximum 
probability and the pixel’s colour is set accordingly. We 
only present the visual comparison in this paper for both 
testing experiments. We use the fastest known inference 
algorithm associated with Netica, a junction tree of clique 
algorithm for exact general probabilistic inference. 

The first experiment is to test the model to infer class 
value of Development Potential node given other nodes 
(Population, Elevation, TaxableIncome and ARIA). 
Figure 8 shows the data and the result of the experiment. 
Figure 8(a)–(d) presents the data used as inputs to the 
model. Figure 8(e) is the development potential 
distribution map inferred by the Bayesian network model 
while Figure 8(f) is an empirical development potential 
distribution map, also as an expert knowledge. From the 
result, we can see that there are no big differences 
between the distribution map in Figure 8(e) and 8(f). 

The second experiment is to infer the uncertainty—the 
class of the pixel with missing value of Elevation node 
given other nodes (Population, TaxableIncome, ARIA, 
and Development Potential). Figure 9 shows the data and 
the results of the experiment. Figure 9(a), (c), (d), (e) 
shows the data used as inputs to the model. Parts of the 
distribution map of elevation is removed and we used  

CRPIT Volume 61

72



 
(e) 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
(f) 

Fig. 8. Data and result of testing the generalization of the training data (a) Data Population      (b) Data Elevation (c) Data Taxable 
Income (d) Data ARIA (e) Development potential distribution map inferred by the Bayesian network model (f) Empirical 

Development Potential 

 
 

 
(f) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 

 
(g) 

Fig. 9. Data and result of testing the diagnosis of the training data (a) Data Population (b) Data Elevation (missing data) (c) Data 
Taxable Income (d) Data ARIA (e) Data Development Potential (f) Data Elevation inferred by the model (g) Complete Data 
Elevation 

black pixels to represent the missing values as shown in 
Figure 9(b). Figure 9(f) is the Elevation distribution map 
inferred by the Bayesian network model while Figure 
9(g) is the elevation distribution map acquired from the 
MCAS-S application. More than 80% of pixel’s colour 
matches quite well between the distribution maps in 
Figure 9(f) and 9(g).  

6 Discussions 
The use of Bayesian network in this context assumes that 
all data in distribution maps can be quantized into the 
same number of classes where each class has more or less 
the same number of pixels. In real world, this assumption 
might not be true. Moreover, we do not use a truncated 
function to limit the range in each class. For example, 
there might be a limit value for elevation that does not 
influence other nodes. This limitation can be solved if the 
expert opinions are included into the modelling process. 
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This problem is also related to the use of different modes 
between equal area distribution maps and equal interval 
distribution maps. In the future, it might be worth to 
understand how both modes affect the parameter 
estimation process in Bayesian networks. 

The process to extract the class or state value for each 
pixel is not very accurate but still reliable. This is because 
of the difficulties to extract the values for each pixel 
especially at the boundaries between different 
states/classes. In this study, the class value for each pixel 
is only based on RGB values. It is quite hard to identify 
the exactly class value for each pixel that have similar 
colours or quite similar RGB values. As a result, some of 
the pixels are considered as missing if the program cannot 
distinguish the class values for that pixel. 

This study only considered parameter training and the 
structure training is not included. There is a lot of 
research that focus on developing algorithms for structure 
training. In the future, we are planning to incorporate 
structure learning when constructing a Bayesian network. 
Since the dependencies between spatial environmental 
distributions are in diversity, the future work will include 
more complex model structure and model parameters’ 
training. For the future, we are also planning to include 
learning algorithms when hidden variables are present. 
Despite all three problems discussed above, we are also 
facing difficulties to get more data for testing the model 
that we build.  

7 Conclusions and Future Work 
This paper describes how a Bayesian network can be used 
to model raster environmental distribution maps and their 
dependencies. It demonstrates that a Bayesian network is 
quite robust to discover knowledge from distribution 
maps, even though the present Bayesian network used in 
this study is only naïve Bayesian network. As their full 
potential has not yet been explored, we recommend it as 
one of the future works.  
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