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Abstract

Chang and Lyuu [Chang and Lyuu, 2008] study the
spreading of a message in an Erdős-Rényi random
graph G(n, p) starting from a set of vertices that are
convinced of the message initially. In their strict-
majority scenario, whenever more than half of the
neighbors of a vertex v are convinced of a message,
v itself also becomes convinced. The spreading pro-
ceeds asynchronously until no more vertices can be
convinced. Following Chang and Lyuu [Chang and
Lyuu, 2008], we derive lower bounds on the minimum
number min-seed(n, p) of vertices that need to be con-
vinced initially so that all vertices will be convinced at
the end. Our main results are that min-seed(n, p) =
Ω
(
min

{
n, p2n2

})
and min-seed(n, p) = Ω

(
n2/3

)
hold with high probability. We also consider the case
of random seeds. For any sufficiently large constant
d > 0 and any s ≤ n/(d lnn), we show that if one
picks the set of seeds uniformly at random from the
family of all s-sized sets, then with high probability,
not all vertices will be convinced at the end.

1 Introduction

Chang and Lyuu [Chang and Lyuu, 2008] study the
spreading of messages in undirected graphs under the
assumption that each vertex is convinced of a mes-
sage when more than half of its neighboring vertices
are convinced. In their setting, a message initially
convinces a set of vertices called the seeds. Then the
spreading process proceeds asynchronously and a ver-
tex is convinced of the message when more than half
of its neighboring vertices are convinced. The spread-
ing ends when no more vertices can be convinced.

This paper focuses on the case where the under-
lying graph in which messages spread is the Erdős-
Rényi random graph G(n, p), n ∈ N, p ∈ [ 0, 1 ]
[Bollobás, 2001]. Denote by min-seed(n, p) the min-
imum number of seeds needed to convince all ver-
tices of G(n, p) at the end. Chang and Lyuu
[Chang and Lyuu, 2008] show that min-seed(n, p) =
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Ω (min {n, 1/p}) holds with high probability over
G(n, p), n ∈ N, p ∈ (0, 1]. However, their
Ω (min {n, 1/p}) lower bound weakens as p increases.
In this paper, we prove an Ω

(
min

{
n, p2n2

})
lower

bound on min-seed(n, p) that holds with high prob-
ability over G(n, p). This complements the previous
Ω (min {n, 1/p}) lower bound in that the new bound
grows as p increases. Combining these two lower
bounds, we prove that min-seed(n, p) = Ω

(
n2/3

)
holds with high probability over G(n, p), thereby es-
tablishing a lower bound on min-seed(n, p) that is
independent of p. In addition, the proof of our
Ω
(
min

{
n, p2n2

})
lower bound is extended to deal

with the convincing of a δ fraction of vertices for any
δ ∈ (0, 1].

We also consider the case of random seeds. For
any sufficiently large constant d > 0 and any s ≤
n/(d lnn), we show that if one picks the set of seeds
uniformly at random from the family of all s-sized
sets, then with high probability, some vertices will
never be convinced.

Prior to our paper, Watts [Watts, 2002], Glee-
son and Cahalane [Gleeson and Cahalane, 2007] and
Chang and Lyuu [Chang and Lyuu, 2008] also con-
sider the more general case where each vertex v is
assigned a threshold α(v) and is convinced of the mes-
sage when at least α(v) of v’s neighbors are convinced.
However, unlike the work of Chang and Lyuu [Chang
and Lyuu, 2008] and the current paper, Watts [Watts,
2002] and Gleeson and Cahalane [Gleeson and Caha-
lane, 2007] do not prove (lower or upper) bounds on
the minimum number of vertices needed to convince
all or a large fraction of vertices in a graph.

Analogous to the convincing of vertices in our
setup, neurons in neural networks often adopt thresh-
old activation functions to determine whether to fire
[Haykin, 1998]. However, our spreading process has
the objective of convincing all vertices, whereas neu-
ral networks do not aim at making all neurons fire.

Schelling [Schelling, 1973] studies the general phe-
nomenon of binary choices with externalities, wherein
the involved individuals may adopt any particular
mechanism to make binary choices with the aid of
available information from others. Sensibly, such a
setting is general enough to model a broad class of
scenarios like those in this paper and Watts’ pa-
per, among others (see, e.g., those mentioned by
Watts). But our results are independent from those
of Schelling.

There are also the related issues of rumor spread-
ing [Karp et al., 2000, Doerr et al., 2008], broadcast-
ing, accumulation and gossiping in interconnection
networks [Hedetniemi et al., 1988, Hromkovic et al.,
1996], but our setting is different from these in that,
under our setup, a vertex may not believe a message



even if some of its neighboring vertices do.
Our lower bounds can also be viewed from the per-

spective of trust propagation [Grandison and Sloman,
2000, Artz and Gil, 2007] in that we provide rigor-
ously provable limitations on propagating the indi-
viduals’ trust in messages.

This paper is organized as follows. Section 2 de-
fines our model for the spreading of messages and
introduces notations to be used later. The model
is a special case of that of Watts [Watts, 2002] and
Chang and Lyuu [Chang and Lyuu, 2008]. Section 3
briefly describes the known results needed in later
sections. Section 4 presents our lower bounds on
min-seed(n, p). Section 5 extends our treatment to
the case of random seeds. Section 6 concludes the
paper.

2 Definitions and notations

We follow Chang and Lyuu’s [Chang and Lyuu, 2008]
setup on the spreading of messages. The underly-
ing network in which messages spread is the Erdős-
Rényi random graph G(n, p), which is a graph with
vertices 1, . . . , n where each of the possible

(
n
2

)
edges

appears independently with probability p [Bollobás,
2001]. The spreading of a message begins from a set of
vertices, called the seeds, which are convinced of the
message initially. Subsequently, each vertex becomes
convinced after more than half of its neighboring ver-
tices are convinced. The spreading proceeds asyn-
chronously until no more vertices can be convinced.

We follow the notations of Chang and Lyuu
[Chang and Lyuu, 2008]. In particular, we write
[n] ≡ {1, . . . , n} and N(v) for the set of v’s neighbors
in G(n, p), v ∈ [n]. We denote by c(S) the set of ver-
tices of G(n, p) which are convinced at the end, given
that S ⊆ [n] is the set of seeds. Clearly, S ⊆ c(S) for
every S ⊆ [n]. As a slight simplification of Chang and
Lyuu’s notations, we write min-seed(n, p) for the min-
imum number of seeds needed to convince all vertices
of G(n, p). Note that N(v), c(S) and min-seed(n, p)
are all random variables as G(n, p) is a random graph.

3 Preliminaries

Before establishing our lower bounds on
min-seed(n, p), we state several known results
that will be useful later. The following facts are
the lower and upper tails of the Chernoff bound
[Chernoff, 1952, Motwani and Raghaven, 1995].

Fact 1. Let X1, . . . Xm be independent Bernoulli tri-
als with Pr[ Xi = 1 ] = p, 1 ≤ i ≤ m, and write
µ = E [

∑m
i=1 Xi ]. Then for any δ ∈ (0, 1),

Pr

[
m∑

i=1

Xi < (1− δ) µ

]
< exp

(
−δ2 µ

2

)
.

Fact 2. Let X1, . . . Xm be independent Bernoulli tri-
als with Pr[ Xi = 1 ] = p, 1 ≤ i ≤ m, and write
µ = E [

∑m
i=1 Xi ]. Then for any δ > 0,

Pr

[
m∑

i=1

Xi > (1 + δ) µ

]
<

(
exp (δ)

(1 + δ)1+δ

)µ

.

We will also use the following well-known fact.

Fact 3. ([Motwani and Raghaven, 1995]) For any
positive integers s ≤ n,(

n

s

)
≤
(en

s

)s

.

The following theorem is due to Chang and Lyuu
[Chang and Lyuu, 2008].

Theorem 4. ([Chang and Lyuu, 2008]) Let n be a
positive integer and p ∈ (0, 1]. With probability 1 −
o(1),

min-seed(n, p) = Ω
(

min
{

n,
1
p

})
.

4 Spreading of messages in random graphs

In this section, we derive lower bounds on
min-seed(n, p). For this purpose, we introduce sev-
eral lemmas below.

Lemma 5. Let p ∈ [ 0, 1 ], n, s be positive integers
with s ≤ n/100 and S ( [n] have cardinality s. If
|c(S) \ S| ≥ pn/8 and |N(v)| > pn/2 for all v ∈ [n],
then there exist distinct vertices v1, . . . , vpn/8 ∈ [n]\S
with |N(vk) ∩ S| > pn/8 for 1 ≤ k ≤ pn/8.

Proof. Clearly, the elements of c(S) \ S can be se-
quenced as v1, . . . , v|c(S)\S| such that given S as the
set of seeds, the vertices in c(S) \ S are convinced in
that order. By definition,

|N(vk) ∩ S|+ |{v1, . . . , vk−1}| >
|N(vk)|

2
,

1 ≤ k ≤ |c(S)\S|. As |N(v)| ≥ pn/2 for each v ∈ [n],
for 1 ≤ k ≤ pn/8,

|N(vk) ∩ S| > |N(vk)|
2

− (k − 1) ≥ pn

4
− pn

8
=

pn

8
.

Lemma 6. Let p ∈ [ 0, 1 ] and n, s be positive integers
with s ≤ n/100. For each S ( [n] of size s,

Pr
[ (
|c(S) \ S| ≥ pn

8

)
∧
(
∀v ∈ [n], |N(v)| ≥ pn

2

) ]
≤

(
n− s

pn
8

)
exp

(
−p2n2

128
ln

n

8s

)
,

where the probability is taken over the random graphs
G(n, p).

Proof. In the proof, all probabilities are taken over
the random graphs G(n, p). By Lemma 5,

Pr
[ (
|c(S) \ S| ≥ pn

8

)
∧
(
∀v ∈ [n], |N(v)| ≥ pn

2

) ]
≤ Pr

[
∃ distinct v1, . . . , vpn/8 ∈ [n] \ S such that

∀k, 1 ≤ k ≤ pn

8
, |N(vk) ∩ S| > pn

8

]
≤

∑
distinct v1,...,vpn/8∈[n]\S

Pr
[
∀k, 1 ≤ k ≤ pn

8
,

|N(vk) ∩ S| > pn

8

]
≤

(
n− s

pn
8

)
max

distinct v1,...,vpn/8∈[n]\S
Pr
[
∀k, 1 ≤ k ≤ pn

8
,

|N(vk) ∩ S| > pn

8

]
. (1)

By the definition of Erdős-Rényi random graphs,
the random variables |N(v) ∩ S| for v ∈ [n] \ S are



independently and identically distributed. Hence for
any distinct v1, . . . , vpn/8 ∈ [n]\S and any u ∈ [n]\S,

Pr
[
∀k, 1 ≤ k ≤ pn

8
, |N(vk) ∩ S| > pn

8

]
=

pn
8∏

k=1

Pr
[
|N(vk) ∩ S| > pn

8

]
=

(
Pr
[
|N(u) ∩ S| > pn

8

]) pn
8

. (2)

Fact 2 implies that for each u ∈ [n] \ S,

Pr
[
|N(u) ∩ S| > pn

8

]
= Pr

[
|N(u) ∩ S| > n

8s
ps
]

= Pr
[
|N(u) ∩ S| > n

8s
E [ |N(u) ∩ S| ]

]
<

(
exp

(
n
8s − 1

)(
n
8s

) n
8s

)ps

< exp
(
−pn

16
ln

n

8s

)
,

where the last inequality follows from s ≤ n/100 and
straightforward calculations. This and Eqs. (1)–(2)
complete the proof.

We now establish the following lower bound on
min-seed(n, p).

Theorem 7. Let n be a positive integer and p ∈
[ 0, 1 ]. With probability 1− o(1),

min-seed(n, p) = Ω
(
min

{
n, p2n2

})
.

Proof. In the sequel, all the probabilities are taken
over the random graphs G(n, p). For p < 32(lnn)/n,
we have p2n2 = o(1/p) and therefore the lower bound
on min-seed(n, p) follows from Theorem 4.

Now assume p ≥ 32(lnn)/n and let s ≤ n/100 be
an arbitrary positive integer. We have

Pr [min-seed(n, p) ≤ s ]
= Pr [∃S ( [n], |S| = s, c(S) = [n] ]

≤ Pr
[
∃S ( [n], |S| = s, |c(S) \ S| ≥ pn

8

]
≤ Pr

[
∃v ∈ [n], |N(v)| < pn

2

]
+Pr

[ (
∃S ( [n], |S| = s, |c(S) \ S| ≥ pn

8

)
∧
(
∀v ∈ [n], |N(v)| ≥ pn

2

) ]
≤

∑
v∈[n]

Pr
[
|N(v)| < pn

2

]
+

∑
S([n],|S|=s

Pr
[ (
|c(S) \ S| ≥ pn

8

)
∧
(
∀v ∈ [n], |N(v)| ≥ pn

2

) ]
≤

∑
v∈[n]

Pr
[
|N(v)| < pn

2

]
+
(

n

s

)(
n− s

pn
8

)
exp

(
−p2n2

128
ln

n

8s

)
, (3)

where the last inequality follows from Lemma 6.

Now Fact 1 implies that for v ∈ [n],

Pr
[
|N(v)| < pn

2

]
= Pr

[
|N(v)| < n

2(n− 1)
p(n− 1)

]
= Pr

[
|N(v)| < n

2(n− 1)
E [ |N(v)| ]

]
< exp

(
−pn

9

)
. (4)

Combining Eqs. (3)–(4),

Pr [min-seed(n, p) ≤ s ]

< n exp
(
−pn

9

)
+
(

n

s

)(
n− s

pn
8

)
exp

(
−p2n2

128
ln

n

8s

)
≤ n exp

(
−pn

9

)
+
(en

s

)s

n
pn
8 exp

(
−p2n2

128
ln

n

8s

)
= n exp

(
−pn

9

)
+ exp

(
s + s ln

n

s
+

pn

8
lnn− p2n2

128
ln

n

8s

)
< o(1) + exp

(
s + s ln

n

s
− p2n2

256
ln

n

8s

)
, (5)

where the second inequality uses Fact 3 to deduce(
n
s

)
≤ (en/s)s and the last inequality follows from

p ≥ 32(lnn)/n, s ≤ n/100 and straightforward calcu-
lations.

By setting s = min
{
n/100, εp2n2

}
for a suffi-

ciently small constant ε > 0 in Eq. (5),

Pr [min-seed(n, p) ≤ s ]

≤ o(1) + exp
(
−Ω

(
p2n2 ln

n

s

))
= o(1),

where the last equality follows from p ≥ 32(lnn)/n
and s ≤ n/100.

We now state a lower bound on min-seed(n, p) that
is independent of p.

Corollary 8. Let n be a positive integer and p ∈
[ 0, 1 ]. With probability 1− o(1),

min-seed(n, p) = Ω
(
n

2
3

)
.

Proof. Invoke Theorem 4 for p < n−2/3 and Theo-
rem 7 otherwise.

Our proof of Theorem 7 actually shows the follow-
ing stronger result.

Corollary 9. Let n be a positive integer and p ∈
[ 32(lnn)/n, 1 ]. For a sufficiently small constant ε >
0 and any s ≤ min

{
n/100, εp2n2

}
,

Pr
[
∃S ( [n], |S| = s, |c(S) \ S| ≥ pn

8

]
= o(1).

Building on Corollary 9, we obtain the following
lower bound on the minimum number of seeds needed
to convince a δ ∈ (0, 1] fraction of vertices in G(n, p).

Corollary 10. Let n be a positive integer, p ∈
[ 32(lnn)/n, 1 ] and δ ∈ (0, 1]. With probability
1 − o(1) over the random graphs G(n, p), at least
Ω
(
min

{
δn, p2n2

})
seeds are needed to convince a δ

fraction of the vertices.



Proof. In the proof, all probabilities are taken
over the random graphs G(n, p). First, suppose
99δn/100 ≥ pn/8. For a sufficiently small constant
ε > 0,

Pr
[
∃S ( [n], |S| = min

{
δn

100
, εp2n2

}
, |c(S)| ≥ δn

]
≤ Pr

[
∃S ( [n], |S| = min

{
δn

100
, εp2n2

}
,

|c(S) \ S| ≥ 99δn

100

]
≤ Pr

[
∃S ( [n], |S| = min

{
δn

100
, εp2n2

}
,

|c(S) \ S| ≥ pn

8

]
= o(1),

where the last equality follows from Corollary 9.
Now suppose, on the other hand, 99δn/100 <

pn/8. If there exists a set S ( [n] with S ( c(S),
then at least one vertex must have degree less than
2|S|, for otherwise N(v)∩S cannot constitute a strict
majority in N(v) for any v ∈ [n], yielding c(S) = S.
Consequently,

Pr [∃S ( [n], |S| < δn, |c(S)| ≥ δn ]
≤ Pr [∃S ( [n], |S| < δn, S ( c(S) ]
≤ Pr [∃S ( [n], |S| < δn,∃v ∈ [n], |N(v)| < 2|S| ]
≤ Pr [∃v ∈ [n], |N(v)| < 2δn ]

≤ Pr
[
∃v ∈ [n], |N(v)| < pn

2

]
≤

∑
v∈[n]

Pr
[
|N(v)| < pn

2

]
= o(1),

where the last equation follows from Eq. (4) in the
proof of Theorem 7.

5 Random seeds

In this section, we extend the proof of Theorem 7 to
deal with random seeds.

Theorem 11. Let n be a positive integer and p ∈
[ 0, 1 ]. Let S be picked uniformly at random from the
family of all n/(d lnn)-sized subsets of [n] and con-
sider the spreading of a message in G(n, p) beginning
from S. If d > 0 is a sufficiently large constant, then
with probability 1− o(1), c(S) 6= [n].

Sketch of proof. We shall mimic the proof of Theo-
rem 7. In the sequel, all probabilities are taken over
both G(n, p) and S. Also, we set s = n/(d lnn). For

p ≥ 32(lnn)/n and any sufficiently large constant d,

Pr [ c(S) = [n] ] (6)

≤ Pr
[
|c(S) \ S| ≥ pn

8

]
(7)

≤ Pr
[
∃v ∈ [n], |N(v)| < pn

2

]
+Pr

[ (
|c(S) \ S| ≥ pn

8

)
∧
(
∀v ∈ [n], |N(v)| ≥ pn

2

) ]
(8)

≤
∑

v∈[n]

Pr
[
|N(v)| < pn

2

]
+Pr

[ (
|c(S) \ S| ≥ pn

8

)
∧
(
∀v ∈ [n], |N(v)| ≥ pn

2

) ]
(9)

≤
∑

v∈[n]

Pr
[
|N(v)| < pn

2

]
+
(

n− s
pn
8

)
exp

(
−p2n2

128
ln

n

8s

)
(10)

≤ n exp
(
−pn

9

)
+
(

n− s
pn
8

)
exp

(
−p2n2

128
ln

n

8s

)
(11)

≤ n exp
(
−pn

9

)
+ n

pn
8 exp

(
−p2n2

128

)
(12)

= o(1). (13)

Above, Eq. (10) follows from Lemma 6, which can be
easily shown to hold for random seed sets; Eq (11)
follows from Eq. (4) in the proof of Theorem 7; the
last two inequalities are straightforward calculations.

Next, we turn to the case of 0 < p < 32(lnn)/n.
For any sufficiently large constant d, Theorem 4 im-
plies that with probability 1− o(1), at least

Ω
(

min
{

n,
1
p

})
= Ω

( n

lnn

)
>

n

d lnn

seeds, randomly chosen or otherwise, are needed to
convince all vertices.

A slight modification to Theorem 11 yields tighter
bounds for the case of p > 32(lnn)/n. In fact,
Eqs. (6)–(13) in Theorem 11 hold even if S is picked
uniformly at random from the family of all n/100-
sized subsets of [n] and s = n/100, provided p >
32(lnn)/n. In other words, in slightly dense (i.e.,
p > 32(lnn)/n) random graphs, an Ω(n) number of
random seeds are needed if we want an Ω(1) proba-
bility of convincing all vertices. This is summarized
in the following corollary.
Corollary 12. Let n be a positive integer and p ∈
[ 0, 1 ]. Let S be picked uniformly at random from the
family of all n/100-sized subsets of [n] and consider
the spreading of a message in G(n, p) beginning from
S. If p > 32(lnn)/n, then c(S) 6= [n] holds with
probability 1− o(1).

Note that n/100 is an asymptotically optimal
bound as n seeds trivially suffice to convince all ver-
tices.

As a final remark, Theorem 11 and Corollary 12
still hold if S consists of n/(d lnn) and n/100, re-
spectively, independent and uniformly random sam-
ples from [n], with repetitions removed. This is be-
cause if S is formed by picking s ∈ N independent and
uniformly random samples from [n], then by adding
to S a uniformly chosen (s − |S|)-sized set (from all
(s− |S|)-sized subsets of [n] \ S), the resulting S dis-
tributes as if it has been chosen uniformly at random
from the family of all s-sized subsets of [n].

6 Conclusion

Our lower bounds on min-seed(n, p) limit the convinc-
ing of a message to vertices in G(n, p) beginning from



any small (i.e., o(n2/3)) set of seeds. Clearly, the limi-
tations are still valid even if the choices of seeds can be
made dynamically during the spreading process. We
also give a much tighter bound of Ω(n/lnn) on the
number of randomly chosen seeds needed to convince
all vertices. It is, however, future work to close the
gap between the Ω(n2/3) lower bound and the trivial
O(n) upper bound on min-seed(n, p). Similarly, it re-
mains to close the gap between the Ω(n/lnn) lower
bound for random seeds and the trivial O(n) upper
bound. It is also future work to generalize the lower
bounds to more realistic settings where, for example,
the belief in a message is represented by a real number
rather than the binary full or none. Finally, the in-
troduction of mutual trust and distrust between pairs
of individuals, as proposed by Guha et. al. [Guha
et al., 2004], may have influences on the convincing
of a message to individuals and may be worth further
research.
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