UML classdiagram syntax: an empirical study of comprehension

Helen C. Purchase’, Linda Colpoys’, Matthew McGill", David Carrington” and Carol Britton"

"School of Information Technology and Electrical Engineering
University of Queensland
St Lucia, Brisbane 4072, Queensland
"Faculty of Engineering and Information Sciences
University of Hertfordshire
Hatfield, England

{ hcp,

Abstract

Despite UML being considered a software engineering standard,
the UML syntactic notations used in texts, papers,
documentation and CASE tools are often different. The decision
as to which of the semantically equivalent notational variations
to use appears to be according to the persona preference of the
author or publisher, rather than based on any consideration of
the ease with which the notation can be understood by human
readers. This paper reports on an experiment that takes a human
comprehension perspective on UML class diagram notational
variants. Five notations were considered: for each, two
semantically equivalent, yet syntacticaly different, variations
were chosen from published texts. Our experiment required
subjects to indicate whether a supplied specification matched
each of a set of experimental diagrams. The results revea that
the best performing notation may depend on the task for which it
is used, and that our personal, intuitive predictions intuitions
(which were based in the complexity of the notation) were partly
confirmed.

Keywords: UML class diagrams, notation, human performance.

1 Introduction

In recent years, the Unified Modelling Language (UML)
has emerged as the defacto standard for the representation
of software engineering diagrams (Rumbaugh et al.
1999). While adopted as a standard by the membership of
the OMG (Object Management Group) in 1997
(Rumbaugh et al. 1999), a glance through different texts
that use UML, or an investigation of current CASE tools,
reveals a number of notational variations (Page-Jones
2000, Fowler et al. 2000, Evitts 2000, Rational Rose
2001). As a standard, UML is still evolving, and within
each version of the standard are many semantically
equivalent notational variations from which authors or
publishers may choose, according to their personal
preference. There seems to be no basis for the choice of
one notational variation over another.

It may be that one notational variation is easier to
comprehend than another. The research reported in this
paper attempts to determine whether there are any
comprehension differences between five different

Copyright © 2001, Australian Computer Society, Inc. This
paper appeared at the Australian Symposium on Information
Visudlisation, Sydney, December 2001. Conferences in
Research and Practice in Information Technology, Vol. 9. Peter
Eades and Tim Pattison, Eds. Reproduction for academic, not-
for profit purposes permitted provided this text isincluded.

davec} @t ee. uqg. edu. au

notational variations for UML class diagrams, through an
empirical study of subjects performance on a
specification matching task. The notational variants may
be equally as good as each other, in which case, it does
not matter which one is used. But, if there are
comprehension differences, the results of this study could
assist in the definition of appropriate notational standards
(from a human understanding point of view), and in
determining the most suitable notation to use in UML
texts, CASE tools, and practical software engineering
tasks.

Some theoretical analytical work has been performed on
software engineering notations and visual programming
languages, but no empirical studies on human
comprehension of these notations have been found. While
software engineering notations (including UML) have
been analysed and compared using the Cognitive
Dimensions framework (Green and Petre 1996, Blackwell
and Green 2000) this framework is theoretical, and these
analyses, while providing interesting structured
perspectives on the notational features, are not based on
experimental data (Kutar et a. 2000, Cox 2000, Gurr and
Stevens 1999, Gurr and Tourlas 2000). The experiment
reported here complements such analytical work.

1.1 Experimental aim and definitions

Our previous study (Purchase, Allder and Carrington
2000) considered user preferences for some UML
notations and layout features. The experiment reported
here concentrates on user performance, rather than
preference.

The am of this experiment was to determine which
variant of each of five notations used in UML class
diagrams is the more suitable with respect to human
performance. By asking subjects to perform
comprehension tasks on a number of semantically
equivalent UML class diagrams that vary with respect to
the notations used, we aimed to identify the notational
variants that resulted in the best performance.

Notational Variation (a) Variation (b)
Difference
Inheritance
direction (N1) T | | |
(Page-Jones 2000) (Purchase, Allder & Carrington. 2000)
Inheritance
arcs (N2) AF /ﬂ T D\
(Page-Jones 2000) (Rumbaugh et al. 1999)
Association
Dog
representation (N3) Ounership
Person —0g Omership pog Pesosn — 1 Dog
(Evitts 2000) (Evitts 2000)

Association
names (N4) Person Person

OmeD?ghi p O/meDro hip

Dog Dog
(Evitts 2000) (Gurr and Stevens 1999, Rational Rose)
Cardinalities (N5) ! 1
1..* *
(Rumbaugh et al. 1999) (Page-Jones, 2000)

Figure 1: Thefive notational variations.

1.2 UML classdiagrams

Student
: String

Subject
code : String

enrolled in

1.* 1.*

/N

Honours Student Pass Student
h area : String| -project : String

Honours Project|
[-Hitle : String

works on

Figure 2: An example class diagram.

UML class diagrams are used to describe the static view
of an application (Rumbaugh et a. 1999): the main
constituents are classes and their relationships. A class is
a description of a concept, and may have attributes and
operations associated with it. Classes are represented as
rectangles. A relationship between two classes is drawn
as a line. Inheritance relationships indicate that attributes
and operations of one class (the "superclass') are

inherited by other classes (the "subclasses'), without
needing to be explicitly represented in the subclasses
themselves.

Figure 2 is an example of a small UML class diagram,
showing the relationships between the classes in a simple
university domain, including inheritance relationships
between the student, pass student, and honours student
classes.

1.3 Notational variations

Five independent notational variations for UML class
diagrams were considered (see Figure 1): each notation
(N1, N2, N3, N4, N5) has two variations (&) and (b), with
identical semantics. All notational variations had been
found in published documents on UML, or existing
CASE tools, except N1(b), which was used in a prior
experiment which considered user preference on
notational variations (Purchase et al. 2000).

Project organises

Schedule

-title : String

works on

subcontracts

1

Client

-meetings : String

Staff manages

-name : String

I

-name : String

1.*

consults

Consultant
-specialty : String

1

Programmer Administrator|

Senior Programmer

-languages : String -title : String
JAN
1
produces
1.*
[Junior Programmer Report
-title : String

Figure 3: Theapplication domain for the experiment.

Our informal predictions, based purely on our personal
intuition and experience, were that, in each case, the (a)
notation would produce better performance.

2 Experimental task:

The comprehension task was that of matching a given
textual specification against a set of diagrams, indicating
whether each diagram correctly matches the specification
or not. The set of diagrams included both correct and
incorrect diagrams.

21 Experimental materials:

211 Theapplication domain

The class diagram used was based on a simple domain,
which models a small Information Technology company
that employs consultants, programmers and
administrative staff to undertake projects for clients. The
example includes 10 objects, 6 associations and 5
inheritance relations (see Figure 3).

A textual specification of this domain was produced in
simple English. The subjects were asked to match the
experimental diagrams against this specification.

2.1.2 UML tutorial and worked example

A tutorial sheet explained the meaning of UML class
diagrams, and, using a simple example, described the
semantics of al the notational variations. Subjects were
not expected to have any prior knowledge of UML, and
this tutorial provided al the UML background
information they required for the experimental task. A
worked example demonstrated the task that the subjects

were to perform, by presenting a small specification with
four different diagrams, and for each diagram indicating
whether it matched the given specification or not. Care
was taken to ensure that neither the tutoria nor the
worked example would bias the subjects towards one
notational variation over another.

2.2 Theexperimental diagrams

The UML diagram representing the experimental domain
was drawn four times, in four differing layouts. Each
layout was constructed with a view to minimising the
potential for any confounding layout factors. Thus, each
layout had a similar number of edge bends and sloping
lines, no edge crosses, comparable orthogonaity (the
property of fixing nodes and edges to the intersections
and lines of an invisible unit grid), and was of a similar
size. Different layouts were required so that the subjects
would not merely use visual pattern matching in
performing the comprehension tasks: if all the diagrams
had identical layout, the differences between them would
be visualy obvious and detectable without the subject
needing to understand the information embodied in the
diagram.

Using these four layouts of the diagram, the following
experimental diagrams were produced:

221 Correct diagrams (24)

» 1 diagram using &l the (&) notations, in four different
layouts (NOt)

» 1 diagram using the (b) notation for N1, (a) notation
otherwise, in four different layouts (N1t)

» 1 diagram using the (b) notation for N2, (a) notation
otherwise, in four different layouts (N2t)

» 1 diagram using the (b) notation for N3, (a) notation
otherwise, in four different layouts (N3t)

» 1 diagram using the (b) notation for N4, (a) notation
otherwise, in four different layouts (N4t)

» 1 diagram using the (b) notation for N5, (a) notation
otherwise, in four different layouts (N5t)

The naming convention of these diagrams is that the
number (0-5) indicates which notation is being varied
(where O represents that none of the notations is varied,
that is, the (a) notation is used throughout), and the letter
(t) indicates that these are true (correct) diagrams.

2.2.2 Incorrect diagrams (20)

* For N1: For two of the layouts of NOt, errors were
introduced which affected the representation of
inheritance (NOd1). For the same two layouts of N1t,
the same errors were introduced (N1d). The error
introduced was that a superclass was exchanged for a
subclass.

* For N2: For two of the layouts of NOt, errors were
introduced which affected the representation of
inheritance (NOd2). For the same two layouts of N2t,
the same errors were introduced (N2d). The error
introduced was that one of the associations in the
diagran was changed to be an inheritance
relationship.

* For N3: For two of the layouts of NOt, errors were
introduced which affected the representation of
associations (NOd3). For the same two layouts of N3t,
the same errors were introduced (N3d). The error
introduced was that two of the association names were
exchanged.

* For N4: For two of the layouts of NOt, errors were
introduced which affected the representation of
associations (NOd4). For the same two layouts of N4t,
the same errors were introduced (N4d). The error
introduced was that two of the association names were
exchanged.

* For N5: For two of the layouts of NOt errors were
introduced which affected the representation of
cardinality (NOd5). For the same two layouts of N5t,
the same errors were introduced (N5d). The error
introduced was that all cardinalities on al associations
were reversed.

The naming convention of these diagrams is that the letter
(d) indicates that these are “dummy” (incorrect)
diagrams. Diagrams beginning with NO are those that use
the (a) variation throughout, with the final number (1-5)
indicating to which notation the diagram alteration
relates. The other diagrams (N1-N5) indicate which
notation has been varied to use (b) instead of (a).

2.3 Experimental procedure

231

The students were given preparatory materials to read as
an introduction to the experiment. These documents
consisted of a consent form, an instruction sheet, a
tutorial on UML class diagrams and notation, and a
worked example of the experimental task.

Preparation

As part of this document set, the subjects were aso given
the textual specification of the UML case study to be used
in the experiment: this was the specification that they
would need to match the experimental diagrams against.
The subjects were asked to study this specification
closely, and memoriseit if possible,

The subjects were given 15 minutes to sign the consent
form, read through and understand the materials, ask
guestions, take notes, or draw diagrams as necessary.

2.3.2 Onlinetask

The subjects then used an online system to perform the
experimental task. A copy of the text specification was
placed in front of the computer for easy reference, and
UML diagrams were presented in random order for each
subject. The subjects gave a yes/no response to each
presented diagram, indicating whether they thought the
diagram matched the specification or not: two keys on the
keyboard were used for thisinput.

16 practice diagrams (randomly selected from the 44
experimental diagrams) were presented first. The data
from these diagrams was not collected, and the subjects
were not aware that these diagrams were not part of the
experiment. These diagrams gave the subjects an
opportunity to practice the task before experimental data
was collected.

The 44 experimental diagrams were then presented in a
different random order for each subject, in blocks of
eight, with a rest break between each block (the length of
which was controlled by the subject). The final block was
four diagramsin length.

Each diagram was displayed until the subject answered Y
or N, or 40 seconds had passed. A beep indicated to the
subject when the next diagram was displayed after a
timeout (which was recorded as an error). The practice
diagrams helped the subjects get used to the length of the
allocated time period. The timeout period and the time
needed for the subjects to prepare for the experiment
were determined as appropriate through extensive pilot
tests.

A within-subjects analysis was used to reduce any
variability that may have been attributed to differences
between subjects: thus, each subject's performance on one
notation was compared with his or her own performance
on the alternative notation. The practice diagrams and the
randomisation of the order of presentation of the
experimental diagrams for each subject helped counter
the learning effect (whereby the subjects performance on
the task may improve over time, as they become more
competent in the task).

2.3.3 Data collection

The response time and accuracy of the subjects responses
to the 44 experimental diagrams were recorded by the
online system.

24 Subjects

The experiment was performed using 34 novice subjects
and 5 expert subjects. The novice subjects were second
and third year Computer Science and Information
Systems students at the University of Queensland. The
novice subjects were paid $15 for their time, and, as an
incentive for them to take the experiment seriously, the
best performer was given a CD voucher. The expert
subjects were employees of the Distributed Systems
Technology Centre, Brisbane, who volunteered their
time.

3 Reaults

Both the speed and accuracy of each subject's responses
were measured, enabling the analysis of two different
measures of understanding. Anaysis was performed on
both the subjects performance in identifying the correct
diagrams and their performance in identifying the
incorrect diagrams.

3.1 Novice Experiment:

3.1.1 ldentifying the correct diagrams:

Average Times

|

=
al

H(a)
0 (b)

Titinecgee))
5

o o

1 2 3 4 5
Notation

Notational Accuracy

100
80
60
40
20

u(a)
0 (b)

Asoaracyciliyo)

Notation

Figure 4: Theresponsetime and accuracy results
novice userson correct diagrams.

3.1.2 ldentifying theincorrect diagrams:
Average Times
25
%\ 20
& 151 m(a)
g 10 A 0(b)
5 -
(U T
1 2 3 4 5
Notation
Notational Accuracy
100
% 80
60] (@)
40 o®)
20
0
1 2 3 4 5
Notation

Figure5: Theresponsetime and accuracy results
novice userson incorrect diagrams.

Using a two-tailed t-test, the statisticaly significant
results are:
VY Notation 1. accuracy

o for matching the specification to correct diagrams:
(@) is better than (b) (p < 0.05)

o for identifying an error in the diagrams:. (b) is better
than (a) (p < 0.05)

VY Notation 1: time

o for identifying an error in the diagrams:. (b) is better
than (a) (p < 0.05)

VY Notation 2: accuracy

o for identifying an error in the diagrams:. (b) is better
than (a) (p < 0.05)

VY Notation 3: accuracy

o for identifying an error in the diagrams:. (b) is better
than (a) (p < 0.05)

VY Notation 4: time

o for identifying an error in the diagrams:. (a) is better
than (b) (p = 0.058, approaching significance)

Yy Notation 5: accuracy

o for matching the specification to correct diagrams:
(@) is better than (b) (p < 0.05)

Yy Notation 5: time

o for matching the specification to correct diagrams:
(b) is better than (&) (p < 0.05)

3.2 Expert Experiment:

Five expert UML users performed the experiment; while
both response time and accuracy were recorded, the small
sample size meant that statistical analysis is impossible.
However, we asked the five expert UML users to state,
and explain, their preferences for the different notational
variations.

321

Pointing the inheritance arrows upwards (variation (a))
was preferred by all the respondents, with the main
reason being that it appears more natural to have the
superclass (the more general object) above the subclass
(the less general object) than to have the inheritance
pointing downwards (variation (b)). The respondents
revealed their assumptions underlying this view: that
most people would read from top-to-bottom, and that it is

Notation 1

important to identify the superclasses before the
subclasses.
3.2.2 Notation 2

Four out of five respondents preferred the notation of
joined inheritance lines (variation (a)) over the use of
separate lines for each subclass (variation (b))." The two
main reasons for this choice was firstly that the joined
inheritance notation demonstrates that the subclasses are
on the same level of specialisation, and secondly, that in
larger diagrams with more inheritance relationships, there
is a potential for the diagram to "sprawl” and to look less
"neat." The participant who preferred the (b) variation did
S0 because "the diagonals require me to concentrate more
when deciphering meaning.”

3.2.3 Notation 3

All respondents preferred the (a) variation, where the
name of each association is placed beside the line in the
diagram, rather than in a separate association class linked
to the line. The justifications of this choice related to the
reduction of "clutter” ("(b) is too busy"), as well as the
importance of making a clear visual distinction between
objects and associations. One respondent pointed out that
association classes are really only useful when there is
additional information that needs to be recorded about the
association: thiswas not the case in our small case study.

3.24 Notation 4

All respondents agreed that placing the label beside the
line (variation (a)) is preferable to placing it over the line
(variation (b)), for reasons of neatness and clarity ("(a) is
more readable"). One respondent qualified his response
by saying that if there were many more associations in the

! This result concurs with a result obtained as part of a
previous study on user preferences of UML notation and
layout (Purchase, Allder and Carrington 2000), when
76% of 70 subjects preferred notation (a) over notation
(b): atwo-tailed t-test significance of p<0.05.

diagram, the (b) variation may be preferable, as it would
be "clearer which text belongs to which line."

3.25 Notation 5

Variation (8) (making the cardinalities explicit) was
preferred by al respondents, over the option of
abbreviating the cardinalities (variation (b)), for the
reason of improved clarity and reduction of ambiguity.
There was confusion over whether the * meant 0..* or
1.*, the latter being what was stated in the experimental
tutorial materials, while the former was what the experts
assumed (and which is stated in Rumbaugh et al. 1999).
Being explicit was strongly preferred ("It's clearer to put
both upper and lower bounds to avoid this confusion™).

4 Analysis

In performing the experimental task, the subjects would
be looking for mistakes in each diagram, and, as soon as
they identified a single mistake, would press the N key.
The accuracy data therefore needs to be analysed with the
following points in mind:

e We do not know the reason why subjects have
rejected diagrams: it may be because they indeed have
identified the planted errors relating to the notation in
question, in which case, the rejection is valid.

» If subjects have a misunderstanding about one of the
variations of a notation, then they may identify correct
diagrams (incorrectly) as incorrect (by identifying
what they believe to be an error), and incorrect
diagrams (correctly) as incorrect (but for the wrong
reason: an invalid rejection).

* As the (a) notations represented those variations that
we considered to be intuitively the simpler, invalid
rejections may be more likely to occur with the (b)
notation, as this was the more complex.

* Invalid regjections relating to the (b) variation of any
one notation would not affect the results for the other
notations: the diagrams for each notation include their
own variations, but use the (a) notation otherwise.

41 Notation 1

The experts preferred the (a) variation, and, when
identifying correct diagrams, accuracy was significantly
better with the (&) variation than the (b) variation.

When identifying inheritance errors in diagrams,
however, the (b) variation produced both better accuracy,
and a shorter response time. This is a surprising result, as
we would expect the interrelation between accuracy and
time to produce conflicting results (subjects are less likely
to be accurate if they are working fast).

The (b) notational variant had been included to
investigate the direction of flow in a class diagram:
variation (a) follows the convention of reading from top
to bottom, and places the superclass above the subclasses.
The results appear to indicate that the upward flow of the
arrows is more intuitive to understand, and, when this
direction of flow is violated (as in variation (b)), the

subjects may be more careful and cautious when seeking
errors.

As this notation variation did not actually change the
syntax of the diagram, it is unlikely that there would have
been a semantic misunderstanding that may have
produced invalid rejections.

4.2 Notation 2

For identifying inheritance errors, (b) was more accurate
than (a). Four out of five experts preferred variation (a).

The (b) notational variant had been included as it is a
common layout method produced by automatic graph
layout algorithms. The results suggest that when this (b)
variation is used, subjects are more aware of inheritance
errors; as for notation 1, the presence of a less intuitive
notation may mean that the subjects are more diligent in
identifying errors. The comment from the one expert who
preferred the (b) notation supports this interpretation: "the
diagonals require me to concentrate more when
deciphering meaning.”

As this notation variation changed the syntax only
dlightly, it is unlikely that there would have been a
semantic misunderstanding that may have produced
invalid rejections.

4.3 Notation 3

Variant (b) was more accurate for identifying errors in the
associations than variant (a). All the experts preferred the
(a) notation.

The syntax was changed very noticeably in this notation,
so there is a possibility that there may have been some
invalid rejections. These would most probably be on the
more complex notational variant (b), and would help
explain this high accuracy on the incorrect diagrams.
However, the (b) variation highlights the association
name in a separate rectangle on the diagram, rather than
having the name of the association alongside the line,
where it may be less obvious. This emphasising of the
association name could also be the reason why the
association errors were easier to identify.

As one of the experts pointed out, however, it would be
rare to use association classes for such simple
associations, which do not have additional attributes.

4.4 Notation 4

There were no significant results for this notation,
although the time data for identifying an association error
in the diagram approaches significance in favour of
variation (a) being superior. All experts preferred the (a)
notation.

This variation only affects association lines that are not
represented horizontally. Therefore, only parts of the
example diagram were affected in the different versions
of the notation. This may have made the task for this
notation of similar difficulty in all variants, as the parts of
the diagram affected were easier to identify.

45 Notation 5

For identifying the correct diagrams, variation (a) was
significantly more accurate than variation (b), but the
response time for variation (a) was significantly greater
than for variation (b). All experts preferred (a), where the
cardinalities were made explicit, and there was no
potential for ambiguity.

There is an obvious interaction between errors and time
in the recognition of a correct diagram: faster response
time meant more errors, and it is not surprising that the
results are therefore conflicting.

Although the (b) notation performed better than the (a)
notation with respect to the accuracy of identifying
incorrect diagrams, this data was not statistically
significant (p=0.083). It is very likely that the "invalid
rejection” phenomenon affected these results. Although
the semantic equivalence of the (a) and (b) variants was
explained in the preparatory materials given to the
subjects (and had been found in at least one UML text
(Page-Jones 2000)), it appeared that the subjects found
the (b) notation ambiguous. The (b) notation is less
explicit than the corresponding (a) variant, and, as one of
the experts noted, there was a potential semantic
ambiguity in this variation, as, to some, * is semantically
equivalent to 0..*, rather than 1..*.

5 Conclusions

The experts concurred with our intuitions that the (a)
notations would produce better performance than the (b)
notations. The quantitative data only support this with
respect to the task of determining whether a diagram
correctly represents a given specification. When
identifying errors, the (b) notations tended to produce
better performance: it appears that, when the notation is
not intuitive, confusing, or ambiguous, subjects are more
likely to identify errors. This may be because they feel
less at ease with the unintuitive notation, and are
therefore more diligent in seeking mistakes.

Of course, this experiment cannot be the final word on
UML notational variations, and it is not intended to be so.
Our aim has been to raise the issue of the lack of
consistency between texts, propose a methodology for
attempting to determine the most appropriate variation
from the perspective of human comprehension, and to
make some preliminary suggestions. The experiment has
been run in a forma empirical manner, with constraints
on the subjects, application domain and tasks. Case study
investigations including, for example, the use of UML in
a real world industrial application, or the learning of
UML by students over an entire semester, would give
greater insight into the suitability of the different
notational variations from a human comprehension point
of view. Such experiments may, in particular, relate the
effectiveness of the variations according to the task for
which UML is being used. It may be the case, for
example, that some variations may be preferable for
learning UML, but may need to be adapted for real world
use on a multi-person project. In addition, the
conventions and standards of different organisations may
reguire use of one notation over another.

In depicting UML diagrams in CASE tools and UML
texts, choices need to be made regarding which notation
to use between semantically equivalent variations.
Choosing the variation that most assists the users
comprehension can only enhance the value of the tool or
text: only empirical studies can determine which of the
variations are more suitable.

6 Acknowledgements

We are grateful to the students of the School of
Information Technology and Electrical Engineering at the
University of Queensland who willingly took part in the
experiment, to members of the Distributed Systems
Technology Centre at the University of Queensland for
advice, and for acting as expert subjects, and to the
Australian Research Council, which funded this research.
Ethical clearance for this study was granted by The
University of Queensland, 2001.

7 References

BLACKWELL, A. and GREEN, T. (2000): A cognitive
dimensions questionnaire optimised for users.
Proceedings of the Twelfth Annual Meeting of the
Psychology of Programming Interest Group,
Corigliano Calabro, Cosenza, Italy, 137-152, Memoria.

COX, K. (2000): Cognitive dimensions of use cases —
Feedback from a student questionnaire. Proceedings of
the Twelfth Annual Meeting of the Psychology of

Programming Interest Group, Corigliano Calabro,
Cosenza, Italy, 99-121, Memoria.
EVITTS, P. (2000): A UML Pattern Language.

Indianapolis, Macmillan Technical Publishing.

FOWLER, M. and SCOTT, K. (2000): UML Distilled.
Reading, Mass, Addison Wesley Longman Inc.

GREEN, T. and PETRE, M. (1996): Usability analysis of
visual programming environments. A ‘cognitive
dimensions framework. Journal of Visual Languages
and Computing 7:131-174.

GURR, C. and STEVENS P. (1999): A cognitively
informed approach to describing product lines in UML.
unpublished. University of Edinburgh, Edinburgh,
Scotland.

GURR, C. and TOURLAS, K. (2000): To the principled
design of software engineering diagrams. 22™
International Conference on Software Engineering,
Limerick, Ireland, 509-518, ACM Press.

KUTAR, M., BRITTON, C. and WILSON, J. (2000):
Cognitive dimensions: An experience report.
Proceedings of the Twelfth Annual Meeting of the
Psychology of Programming Interest Group,
Corigliano Calabro, Cosenza, Italy, 81-98, Memoria.

PAGE-JONES, M. (2000): Fundamentals of Object-
Oriented Design in UML. New York, Dorset House
Pub.

PURCHASE, H., ALLDER, J. and CARRINGTON, D.
(2000): User preference of graph layout aesthetics: A
UML study. Proceedings of the Graph Drawing

Symposium 2000, Colonial Williamsburg, USA, 5-18,
Springer-Verlag.

PURCHASE, H., CARRINGTON, D. and ALLDER, J.
(2000): Experimenting with aesthetic-based graph
layout. Proceedings of the Theory and Application of
Diagrams Conference, Edinburgh, Scotland 498-501,
Springer-Verlag.

RATIONAL ROSE (2001)
http://www.rational .com/products/rose/index.jsp, 23
October 2001.

RUMBAUGH, J. JACOBSON, I. and BOOCH, G.
(1999): The Unified Modeling Language Reference
Manual. Reading, Mass, Addison Wesley Longman
Inc.

SCHMULLER, J. (1999): Teach Yourself UML in 24
Hours. Indianapolis, SAMS.

http://www.rational.com/products/rose/index.jsp

