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Abstract demonstrate the extent of these relationships, by observing
that a simpldast-successoprediction model (which pre-

Most modern I/O systems treat each file access indepen- . o
y P dicts that an access to fikewill be followed by the same

dently. However, events in a computer system are driven by _. .
programs. Thus, accesses to files occur in consistent pat- . that fo(l)lowed the last access &) is able to correctly
terns and are by no means independent. The result is that predict 72% of access events.
modern I/O systems ignore useful information. We then examine two models previously presented for
Using traces of file system activity we show that file ac- learning file relationships by tracking access patterns. Af-
cesses are strongly correlated with preceding accesses. In ter each event both of these models provide a list of pre-
fact, a simple last-successor model (one that predicts each dicted files to be accessed next and a probability associated
file access will be followed by the same file that followed With each file. If the next file accessed was one of those
the last time it was accessed) successfully predicted the Predicted, then that model's score is increased by the prob-
next file 72% of the time. We examine the ability of two pre- ability with which that file was predicted. These scores are
viously proposed models for file access prediction in com- then normalized over the number of total events in each
parison to this baseline model and see a stark contrast in trace, providing a measure we catlditive accuracythat
accuracy and high overheads in state space. We then en- fanges from zero to one.
hance one of these models to address the issues of model The first model [3] examined is based on a graph, that
space requirements. This new model is able to improve keeps frequency counts for all files accessed within a win-
an additional 10% on the accuracy of the last-successor dow following an access to each file. The second model
model, while working within a state space that is within a  [5] was adapted from the text compression technfiniee
constant factor (relative to the number of files) of the last- multi-order context modelinFMOCQ), to track file access
successor model. While this work was motivated by the use patterns. It uses a tree to keep frequency counts of access
of file relationships for I/O prefetching, information regard-  patterns, tracking a finite number of multiple-order patterns
ing the likelihood of file access patterns has several other (order in this case means the length of the pattern tracked).
uses such as disk layout and file clustering for disconnected The primary difference between these two models is that

operation. the graph-basedmodel considers subsequent accesses as
. an unordered set (a window) to allow for interleaving of
1 Introduction accesses patterns from different sources, while-©C

Many 1/O systems benefit extensively from sequential tracks the order in which subsequent accesses occur. The
prefetching. For example, disk controllers frequently do (g)rigg-basednodel SEEes extrergelﬁé);addnwe a;:uracy
read-ahead prefetching of the next disk block. File sys- - ?g a7\£%ra_g|;_ﬁ as comparef tr?aes -Success d_accu-
tems often prefetch the next sequential block in a file. In "acy 0f 0.720. The success of thest-successoindicates
both of these cases, prefetching can be done because theréhat there would be little interleaving of different patterns in
is a concept of the next sequential data element intrinsic in tf]lcer;[races r‘:sbeda 6(‘;]0' gellps r'f]O explain the poor performance
the abstraction. However, there is no intrinsic concept of O,f_t egrapn-basemmodel. THeFMOC at 0.818dsegs a ﬁlg-
the next file in a sequence. This limits the ability of file n icant improvement over t ast-successq@re ucmglt €
systems to prefetch data across files. difference betweetast-successoand an ideal predictor
File accesses follow previous patterns with a high prob- by greater than one third), but at the cost of significantly
ability [3, 5, 7]. Using traces of file system activity, we greater overhead.
We then present an improve#10C model called dar-
fInternet: tmk,darrell@cse.ucsc.edu, Telephone (831) 459-4458. " :
fSupported in part by the National Science Foundation under Grant titioned .Co.nte.Xt MOde“ES] (PCM)' This model addresses.
CCR-9704347, the Usenix Association and Office of Naval Research un- the. |_(ey limitation of model St_ate Space. We ShPW that this
der Grant NO0014-92-J-1807. efficient model sees a marginal improvement in accuracy
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while working within a state space that is within a constant
factor of thelast-successomodel (typically 8 to 16 nodes
per file instead of one node per file). TREM model sees
anadditive accuracyf 0.820.

This work is motivated by the use of the above models to
improve 1/0O system caching decisions. However, models
that accurately estimate the access relationships between
files have significant value for many other applications.
Placing related information in close proximity on disk has
been shown to improve 1/O performance dramatically [2].
Additionally, the grouping of files that are likely to be ac-
cessed within close temporal proximity is a problem faced
by systems that try to hoard files for disconnected opera-
tion as well as lay out data for tertiary storage systests. (

a tape robot putting related files on the same tape).

The rest of this paper is organized as follo§@presents

the last-successqrgraph-basedand FMOC models, §3

presents the trace data used and the results of our tests withto occur within the context dbjec’.

these three model§4 introducedartitioned Context Mod-
eling and presents the results from its predictions. We then
discuss related work if5, future work in§6 and conclude

in §7.

2 File access prediction

We present three models for predicting file accesses. The
first, is a simpldast-successamodel that serves as a base-
line. This model predicts that an access to Alavill be
followed by the same file that followed the last accesA.to
This model requires only one node per unique file within
the traces so we can say that its state spa@éns, wheren

is the number of unique files. The second model was orig-
inally proposed by Griffioen and Appleton [3] and uses a
probability graph that keeps counts of accesses within each

so we can say that the state space for this modelis’).
Figure 1 shows a sample probability graph.

Figure 1: An example probability graph

2.2 Context modeling

Finite Multi-Order Context models originate from the text
compression algorithm PPM [1]. A context model is one
that uses preceding events to model the next event. For
example, in the stringdbject’ the character t” is said

The length of a
context is termed it®rder. In the example string,jéc’
would be considered a third order context fot.“ Tech-
niques that predict using multiple contexts of varying or-
ders €.g."ec’, “ jec”, “ bjec”) are termedMulti-Order
Context Modelg§1]. To prevent the model from quickly
growing beyond available resources, mostimplementations
of a multi-order context model limit the highest order mod-
eled to some finite numbet, hence the terrfinite Multi-
Order Context Modelln the examples here we have used
letters of the alphabet to illustrate how this modeling works
in text compression. For modeling file access patterns, each
of these letters is replaced with the name of a unique file.

A context model uses tie, a data structure based on a
tree, to efficiently store sequences of symbols. Each node
in this trie contains a symbog(g. a letter from the alpha-
bet, or the name of a specific file). By listing the symbols

node and uses weighted edges to indicate previous accesscontained on the path from the root to any individual node,

proximity. The last [5] is derived from the text compression
field and uses a tree with access counts in each node.

2.1 Graph based modeling

Griffioen and Appleton first proposed modeling file ac-
cess patterns with a probability graph that keeps frequency
counts of accesses that follow within a window of a speci-
fied length. This model maintains a graph where each node
represents a distinct file. When file A is accessed the count
in its node is increased. Then for a window of subsequent
accessese(g. file B C and D) an edge with a count of 1

is made connecting file A's node to the nodes represent-
ing these files. If an edge connecting the files already ex-
ists then the count for this edge is incremented. The un-
ordered nature of the window of accesses is intended to
allow the interleaving of access streams from different ac-
tivities. This model keeps one node for each file, but for
each of these nodes must also track the count on each edge

each node represents an observed pattern. The children of
every node, represent all the symbols that have been seen
to follow the pattern represented by the parent.

To model access probabilities we add to each node a
count of the number of times that pattern has been seen.
Since the children of a node represent all the symbols that
have previously followed that node’s sequence, then the
sum of their counts should equal the count of that node.
The one exception to this case is when the node repre-
sents an event that has just occurred and the model has
not had a chance to see what event will follow. In this
case, the frequency count is equal to the sum of its chil-
dren’s counts plus one. Therefore, we can use the formula
countenita/(countparent — 1) to estimate the likelihood of
a child’s symbol occurring as the next event.

Figure 2 extends an example from Bell [1] to illustrate
how this trie would develop when given the sequence of

eventsCACBCAABCAIN this diagram the circled node
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represents the patte@A, which has occurred three times.

lows: after each file access if the file accessed was among

This pattern has been followed once by another access to those predicted by the model, then the model’'s accuracy

the fileA and once by an access to the fileThe third time

for that event is the likelihood with which this file was pre-

is the last event to be seen and we haven't yet seen what dicted. To measure a model’s accuracy with respect to a

will follow. We can use this information to predict boh
andC each with a likelihood of 0.5. The state space for this
model is proportional to the number of nodes in this tree,
which is bounded by)(n™), wherem is the highest order
tracked and: is number of unique files. This large state

specific sequence of accessegy(a trace of file activity),
we consider each successful prediction independently and
sum these values. This number is then normalized over the
total number of events in the sequence, to producadati-
tive accuracymeasure. This measure is a number between

space results because this model treats the following events 0 and 1 which represents how well a model was able to

as an ordered (instead of unordered) sequence&3 e
see that for the traces we examine, tracking this ordering is
important to the accuracy of a model.

ROOT

A@® BQ c@

RN | \

A (1) B(1) C(@ cQ) B (1)

B (1) c@ B AQ2) c@

A cm

Figure 2: Example trie for the sequenCACBCAABCA
3 Experimental results

To study inter-file access patterns of a computer system, we
used trace data collected with the DFSTrace system. This
system was used by the Coda project [13] to trace all sys-
tem calls on 33 machines over a period ranging from Febru-
ary of 1991 to March of 1993. For this work we selected
the workload of four specific machines for the month of

predict the next event.

In the case of théast-successamodel only one file was
predicted after each access, so each correct prediction in-
creased the score by one. Thus #uklitive accuracyor
alast successomodel is also the fraction of times that the
model was able to correctly predict the next event. Figure 3
shows the results of our tests for thst-successanodel, a
graph basednodel for windows of size two (Graph 2) and
four (Graph 4), and EMOC model for the second~ViOC
2) and fourth EMOC 4) order.

Theadditive accuracgcores for thgraph-basedanodel
are significantly lower than those of tR&IOC model. We
note that thegraph-basednodel’s performance decreases
as window size is increased, while for tRMOC model
the accuracy increases as model order is increased. Addi-
tionally, when comparing the results across the four differ-
ent workloads we see that there is little difference. One
might expect that the workload with the highest call rate
or greatest number of users might have greater interleaving

January 1993. These machines were selected to represent 8,44 henefit more from the unordered window that the graph

diverse set of workload characteristics. The maclhiae

ber was a server with the highest rate of system calls per
second. The machingvorak had the highest percentage
of write activity, iveshad the largest number of users, and
mozartwas selected as a typical desktop work station. Ta-

ble 1 provides some summary statistics of these trace sets.

The column markedate indicates the rate of system calls.
The column markedomp misgepresents the compulsory

misses or, the fraction of accesses where the file accessed Additionally,

has not been previously accessed (number of unique files
divided by the number of events). Such events are not pre-
dictable by any online model. So, one minus this fraction
can be used to represent a bound onatiditive accuracy
measure of our models.

Table 1: Trace data summary information (Length is in
hours, rate is in calls per second).

Machine | Length | Rate | # Records| Comp M | bound
ives 591 | 4.18 | 8886861 0.0179 | 0.982
barber 554 | 16.42 | 32764738 0.0210| 0.979
dvorak 760 | 5.19 | 14203240 0.0287 | 0.971
mozart 511 | 2.93| 5390288 0.0436 | 0.956

models use. This is not the casmrberwith the highest
workload is slightly greater for all modeldveswith the
greatest number of users is not distinctly different than any
of the other traces. Based on these observations and the
success of thiast-successamodel it is apparent that there

is little interleaving between various predictive sequences.
Therefore, the need for the access window thagttagh-
basedmodel uses does not exist in these traces.

as of this writing we are in the process of
running the same tests on a set of traces taken recently
at Berkeley [12]. These traces represent three workloads,
research, instructional and web server, with activity rates
ranging from 23 to 107 calls per second. Preliminary re-
sults from these traces confirm the results seen with the
Coda traces, with no distinct difference between the vari-
ous workloads.

In addition to accuracy our tests also examined the model
space used by each of these modelg2we presented the
bounds on the state space of these models. Figure 4 shows
the actual number of nodes required for each model, nor-
malized over the total number of records in each trace. For

In order to measure and compare the accuracy of these the graph-basednodel we count one node for each edge

models we define the measuasdditive accuracyas fol-

and one for each file. THEMOC model space is simply
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voo access to the file represented by that node. Since removing
0.80 any first order node would result in the loss of all the in-
gg;g ot formation associated with patterns that begin with the file
§ 050 ® Graph 2 represented by that node, we pursued an approach to limit
2 oo oo the model size by not purging any first order nodes but in-
2 gzg mFMOC 4 stead limiting their descendants.
0.10 This approach divides the trie into partitions, where each
0.00 partition consists of a first order node and all of its descen-
mozart . bawer - hesdork dants. The number of nodes in each partition is limited to
Figure 3:Additive Accuracycores a static number that is a parameter of the model. The effect

of these changes is to reduce the model space requirements
the number of nodes in the trie, and for the last-successor fromO(n™)to O(n). Figure 5 shows the trie from Figure 2
we count one node for each unique file accessed. This fig- With these static partitions.
ure shows that both models scale poorly in comparison to coor

thelast-successorAdditionally, theFMOC with its bound / | \

of O(n™) requires significantly more space than ginaph- ‘ A@ o B ‘ c@
basedmodel. N P \ i ;
Based on the results shown here, we are able to make  (*® B‘@ C‘M § ce Ao B |

two conclusions for the traces studies. First, significant in-
formation is lost by disregarding the order in whichevents ¢~ . == a0 o0 T

occur. Second, thast-successamodel shows that file ref- Partition A Partition B Partition C

erence patterns can be accurately modeled with a constant

amount of information for each file. I1f4 we present a Figure 5: Example partitioned trie for the access sequence
modifiedFMOC that addresses several issues of scale and CACBCAABCA

is able to track higher order sequences in the state space

35(1) cw 5(1)3 w A(2) 33A(1) cQ@ cQ@ ‘

that is within a constant factor of tHast successomodel When a new node is needed in a partition that is full,
with respect to the number of files. all node counts in the partition are divided by two (inte-
ger division), any nodes with a count of zero are cleared to
2000 make space for new nodes. If no space becomes available,
18.00 .. . —
600 the access is ignored. Another benefit of restricting space
% 14.00 st in this manner is that when new access patterns occur, ex-
& izgg ;E’ap:j isting node counts see this exponential decay, causing the
% 500 4 DFMSCZ model to adapt faster to new access patterns.
£ 6.00 mFMOC 4
2 400 4.1 Partitioned context model results
2.00
0.00 1 To test the accuracy and adaption of teatitioned Con-
mozart barber ives dvorak

text Mode] we ran it through the trace data for a model
Figure 4: Model space requirements (normalized over the ©Order ranging from one to four and a partition size rang-
number of unique files) ing from four to 1024. We saw that a PQM required sig-
nificantly less space than and was marginally more accu-
" : rate tharFMOC, averaging amdditive accuracyf 0.820.
4 Partitioned context mOdelmg Since thePCM maintains less state, this can only be at-
We addressed the issue of model state space by modifying tributed to the model’s increased adaptability.
the FMOC model presented i§2. This techniqueParti- To examine how the model’s partition size affectettli-
tioned Context Modelingg], partitions the trie based on  tive accuracywe graphed prediction accuracy over varia-
first order nodes and then limits the size of each partition. tions in partition size. Figure 6 shows a typical graph of the
We tested this model on our trace data and saw that not effects of partition size on the prediction accuracy. From
only was it able to work efficiently in a state space that was this graph we can see that a small amount of state space,
within a constant factor of thiast-successomodel, but eight to 12 nodes per file, will provide enough information
also that the prediction accuracy was improved because of to represent nearly all of the predictive information about
its ability to adapt faster to changes in the access patterns. access patterns beginning with that file. Additionally, as the
Each first order node in the trie off@MOC model rep- partition size increases the model becomes less adaptive to
resents an access pattern of length one, consisting of one changes and we see a marginal decline in the performance.
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Figure 6: Partition size versu#slditive Accuracyor a sec-
ond ordePCM. (Note theX axis is log scale ranging from
four to 1024)

Figures 7 and 8 compare the prediction accuracy results
for the PCM, last-successoand second and fourth order
FMOC. PCM2/8 and 4/32 represents a second order model
with a partition size of eight and a fourth order model with
a partition size of 32. These figures show that B@M
is able to provide prediction accuracy equal to that of a
FMOC, while working in a state space of the same order
aslast-successorn practice a typical partition would take
approximately 348 bytes, with 12 bytes per node (eight for
a unique ID, two for a count and two for child and sib-
ling pointers). Although this is significantly greater than
the eight bytes per file required folast-successamodel,
thePCM model reduces by one third the amount of inaccu-
racy of thelast-successomodel. With a space cost of 384
bytes per file it is quite reasonable to envisioniarode
like structure for each file that indicates its relationships to

other files.

mozart barber
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mFMOC 2
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m PCM 4/32

Additive Accuracy

ives dvorak

Figure 7:PCMs prediction accuracy results.
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Figure 8:PCM space sizes.

4.2 Analysis of PCM

To better understand why this partition model is so effec-
tive, we consider the worst case for context models. This
case is one in which the access frequencies of all the chil-
dren of a selected file4) are evenly distributed. In such

a case all events following an access4avould be inde-
pendent of each other, however this work is based on the
inter-dependence between files. By statically limiting the
number of data points used in the partition for file we

are requiring that the majority of the distribution’s proba-
bility mass is able to be kept within this many data points.
If this is not the case then an access tofiles not strongly
correlated with accesses to any other files, and it has little
predictive information to offer.

5 Related work

The use of compression modeling techniques to track ac-
cess patterns and prefetch data was first examined by Vit-
ter, Krishnan and Curewitz [14]. They proved that for a
Markov source such techniques converge to an optimal on-
line algorithm, and go on to test this work for memory
access patterns in an object-oriented database and a CAD
System. Cheret al. [4] examine the use oFMOC type
models for use in branch prediction. Griffioen and Apple-
ton [3] were the first to propose thggaph-basednodel

that has seen use across several other applications [11, 10].
Lei and Duchamp [8] have pursued modifying aid file
system to monitor a process’s use of fork and exec to build
a tree that represents the processes execution and access
patterns. Kuenningt al.[7] have developed the concept of

a semantic distanceand used this to determine groupings
of files that should be kept on local disks for mobile com-
puters. Madhyasthet al.[9] used hidden Markov models
and neural networks to classify 1/0 access patterns within
a file.

6 Future work

This work has started several discussions into better met-
rics for the accuracy of each model. We intend to rigor-
ously formalize the problem space, and apply several other
measures. Some of the measures that have been discussed
are: an entropy based meas@te= ) —log(p;) where
p; is the probability with which the occurred event was
predicted; a squared loss functiégn= (1 — p;)? and
a zero-one measure where only the item with the highest
probability is predicted. Additionally, a threshold based
measure, that models prefetching based qradability
thresholdhas also been discussed. As mentionegBimve
have begun using additional traces taken recently by the
Now project at UC Berkeley.

The partitioned model presented here is one successful
method for efficiently restricting finite multi-order context
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models. Other variations of this model still require further
exploration. We intend to explore many extensions of this
model, for example, including recency and frequency in
the likelihood estimates, and removing the order limitation
on the partitions. This work has chosen to examine these
predictive models separate from an application, we intend
to use these models for cache prefetching within the Coda
filesystem.

7 Conclusions

For the traces examined, there is a strong degree of cor-
relation between file accesses. While there is no intrinsic
concept of the next sequential file there do exist probabilis-
tic relationships between files. This information is of great
value not only for file system prefetching, but also for disk
layout and related file grouping in general.

We have demonstrated that while a simfast succes-
sormodel can do quite well to predict file relationships, a
more intelligent model that adapts to changing access pat-
terns can do even better within the same order of space con-
straints. Finally, we have shown that tracking ordering and
linear model space are critical components of any effec-
tive file access pattern model. We believe that models like
the partitioned context mode¢hat maintain a fixed amount
of predictive information and adapt as patterns change can
provide significant improvements for 1/0O system perfor-
mance.
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