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Abstract

Non-driving related cognitive load and variations of emotional
state may impact a driver’s capability to control a vehicle and
introduces driving errors. Availability of reliable cognitive load
and emotion detection in drivers would benefit the design of ac-
tive safety systems and other intelligent in-vehicle interfaces. In
this study, speech produced by 68 subjects while driving in ur-
ban areas is analyzed. A particular focus is on speech produc-
tion differences in two secondary cognitive tasks, interactions
with a co-driver and calls to automated spoken dialog systems
(SDS), and two emotional states during the SDS interactions
- neutral/negative. A number of speech parameters are found
to vary across the cognitive/emotion classes. Suitability of se-
lected cepstral- and production-based features for automatic cog-
nitive task/emotion classification is investigated. A fusion of
GMM/SVM classifiers yields an accuracy of 94.3 % in cognitive
task and 81.3 % in emotion classification.

Index Terms: Cognitive load, emotions, speech production vari-
ations, automatic classification.

1. Introduction

Recent advancements in the electronic industry have made access
to information and entertainment easier than ever before. While
undoubtedly benefiting many areas of our daily lives, there are sit-
uations where the presence of electronic gadgets has the opposite
effect. In a current study, the Virginia Tech Transportation Insti-
tute (VTTI) reports that dialing on a hand-held device whilst driv-
ing increases the risk of an accident by a factor of three, and com-
municating via hands-free set increases the risk by one third [1].
This suggests that performing secondary cognitive tasks while
driving may severely impact driving performance. Besides cog-
nitive load, drivers’ emotions have also been shown to adversely
affect driving performance. In [2], drivers exhibited larger devi-
ations of lane offset and steering wheel angle, and shorter lane
crossing times in anger and excitation situations — signs of re-
duced lane control capability. Availability of an automated sys-
tem assessing cognitive load and emotional state in drivers would
benefit the design of active safety systems and other intelligent in-
vehicle interfaces, making them capable of adapting to the driver’s
current state (e.g. decreasing the frequency of navigation prompts
in high cognitive load situations).

Lately, increasing attention has been paid to emotion recog-
nition in the speech community [3-5], gathering research labs in
joint evaluation projects such as the INTERSPEECH 2009 Emo-
tion Challenge [6], where natural emotions in children interacting
with a pet robot were analyzed. Others have studied the impact of
stress in speech (including cognitive task stress) [7,8], however, a
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relatively limited body of literature deals with the impact of stress
and emotions on drivers.

Driving simulator studies [9, 10] commonly utilize physio-
logical and EEG signals to assess driver emotional states but not
driver speech. An exception to this was speech collected in a driv-
ing simulator [11, 12], where speech was analyzed under various
cognitive tasks and emotional states.

The majority of in-vehicle studies utilize data collected in
driving simulators rather than real driving scenarios. This is due
to the fact that it is much easier to control emotional/cognitive
load scenarios in a lab environment without compromising driver
safety. On the other hand, it is questionable how much the ob-
served phenomena correspond to those in real conditions, where
driving errors may have severe consequences. In addition, we
note that using acted emotions as emotional class templates (as
per [11]) may be misleading, as acted emotions often represent
exaggerated traits (see discussion in [6]).

The goal of the present study is to analyze speech production
variations in real driving conditions. The study extends our ini-
tial efforts presented in [13, 14]. In [13], distributions of drivers’
speech response delays and proportions of negative emotions with
respect to the dialog system failure to recognize the queries, as
well as accompanying variations in speech production were ana-
lyzed in interactions with two commercial speech dialog systems.
In the abstract [14], outcomes of a more comprehensive analysis
of speech production were reported for two cognitive tasks and
two emotional classes as observed for a group of 42 subjects. A
simple classifier employing cepstral features was shown to pro-
vide reasonable accuracy in distinguishing two cognitive tasks.

In order to increase the statistical significance of the observed
effects of cognitive load and emotions in drivers, this study ana-
lyzes speech from a total of 68 subjects (33 females and 35 males).
Two cognitive load tasks — communication with a co-driver and
interaction with two SDS, and two emotional states (neutral and
negative) are studied with respect to speech production changes.
Based on the outcomes of the acoustic analysis, suitability of se-
lected speech features for cognitive task/emotional state classifi-
cation is investigated alongside several common and state-of-the-
art cepstral based speech coding schemes. Furthermore, fusion of
the acoustic and cepstral domain features is studied and shown to
further benefit the classification accuracy.

The current (and often successful) trend in the main stream
emotion recognition is to extract typically hundreds to thousands
of speech parameters and use automatic feature selection strate-
gies to obtain semi-optimal task-oriented feature sets. In con-
trast to this, given the limited knowledge of the impact of real
in-vehicle environments on speakers, the goal of our study is to
analyze and understand the variation in primary speech produc-
tion parameters. In addition, we show that a careful selection and
combination of a very limited number of ‘elementary’ acoustic
features results in promising classification performance.

The remainder of the paper is organized as follows. First, the
data corpus used in the study is described. Second, the procedure
and results of the acoustic analysis of speech are summarized.



Third, performance of selected acoustic and cepstral speech rep-
resentations is evaluated in the cognitive task/emotion state classi-
fication. The final section summarizes the outcomes of the study.

2. Corpus Description

The analyses and experiments presented in this paper are con-
ducted on a set of 68 drivers (33 females and 35 males) from the
UTDrive database [15] collected in real conditions while driving
in urban areas. The session routes comprise a mixture of sec-
ondary, service, and main roads in residential and business dis-
tricts in Richardson, TX. The data were collected in a Toyota
RAV4 vehicle equipped with a set of microphones, CCD cam-
eras for monitoring the driver and the road scene, optical dis-
tance sensor, GPS, CAN-Bus OBD Il port for collecting vehicle
speed, steering wheel angle, gas and brake inputs from driver, and
gas/brake pedal pressure sensors. In this study, a speech signal
from the microphone mounted above the windshield is utilized.
Each driving session includes a mixture of several secondary
tasks that the driver is asked to perform while driving such as sign
reading, operating a radio and AC, talking to a co-driver, and call-
ing two commercial automated dialog systems — American Air-
lines for online flight departure/arrival information, and Tell ME
for general information including weather, sports scores, movie
theaters, etc. Our focus in this study is exclusively on the driver’s
interactions with a co-driver and the calls to the automated SDS.

Table 1: Definition of Emotion Classes.

Neutral
(Non-Negative)

Neutral, Confident, Happy, Humored,
Uninterested

Hesitancy, Confusion, Frustration, Anger,
Increased Vocal Effort, Decreased
Speaking Rate, Altered Pitch

Negative

While the real level of cognitive load in drivers is unknown,
it can be argued that calls to the dialog system are likely to induce
higher load than co-driver interactions. The cell-phone interac-
tion with the dialog system can be broken down into a set of sub-
tasks: holding and dialing, interaction, and processing. Due to the
frequent errors of the automatic speech recognition engine in the
dialog system, the driver is frequently asked to confirm and repeat
queries. This induces further load, where the subject tries to figure
out how to become more intelligible to the system. On the other
hand, the interactions with the co-driver are of a relaxed nature
and the discussed topics do not require any extensive focus (dis-
cussing weather, etc.). Considering this and following [11], we
use cause-type annotation of the cognitive load scenarios and map
cognitive load labels to the tasks — co-driver interactions (low cog-
nitive load) vs. dialog system interactions (high cognitive load).

In addition, it was observed that frequent requests of the di-
alog system for query repetitions are likely to induce negative
emotions in drivers [13]. To further study this phenomenon, in
Table 1 we define two broad emotional classes. Subjectively per-
ceived emotions in drivers’ speech were manually labeled by an
expert annotator. The proportion of negative interactions with the
increasing number of repetition request is shown in Fig. 1. In the
remainder of this paper, the speech variations in the two cognitive
task and emotional state scenarios are analyzed and classified.

3. Speech Production Analysis

Past investigations have observed variations in a number of speech
parameters across stress and emotion classes [3, 7, 16]. In this
section, the following speech production factors are analyzed:

e mean utterance fundamental frequency Fo
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Figure 1: Proportion of negative interactions with dialog systems.
F and M denote female and male subjects respectively; Re0 — no
repetition, Rel — 1°* repetition, Re2-6 — 2"?—6*" repetitions.

o first four formant center frequencies in voiced speech seg-
ments Fi_4

e spectral slope

e duration of voiced segments

e spectral center of gravity (SCG)
e spectral energy spread (SES).

SES is defined as a frequency interval of one standard de-
viation from SCG and is expected to be sensitive to changes in
the energy concentration across the frequency axis. Fo and Fi_4
were extracted using the open source tool WaveSurfer. To reduce
the effect of segmental and contextual variation [17] on the ana-
lyzed factors, their values are averaged on the utterance level.

Since many speech parameters have distinctive nominal val-
ues in males and females, aggregating them may mask any ob-
servable effects of cognitive load and emotions. To account for
this and improve the statistical significance of the following anal-
yses, each speech parameter was first normalized by a fixed mean
with respect to gender and then aggregated. The fixed mean for
each parameter was calculated as the average of the respective
male and female means in the co-driver interactions, in order to
preserve the notion of the original sample amplitudes. For ex-
ample, for observed female mean F; = 208 Hz and male mean
Fy = 136 Hz, both male and female Fj distributions were cen-
tered to Fy = 172 Hz.

The task/emotion dependent mean values for Fy, SCG, and
voiced segment durations are shown in Fig. 2, where the vertical
bars represent 95 % confidence intervals. Similar trends can be
observed for all three parameters: there is an increase in Fp, SCG,
and voiced segment duration when switching from co-driver inter-
actions to the dialog system task. Similarly, a parameter increase
can be seen from neutral to negative emotions, and mostly also
from no-repetition (Re0) to first repetition (Rel), and 2"¢—6t"
repetition. Note that two variants of SCG were analyzed — ‘SCG-
AlI’ refers to the spectral center of gravity extracted from all ut-
terance segments while ‘SCG-Voiced’ was extracted just from
voiced parts of speech. For the remainder of this analysis, only
‘SCG-AII’ is analyzed and denoted as SCG.

The different rates of error bar overlaps give a notion of the
significance of the effects of cognitive task and emotions on the
speech parameters. When inspecting spectral slope plots, consid-
erable overlaps of the 95% error bars were observed across all
classes, suggesting that this parameter is not sensitive to any of
the analyzed effects. This is probably due to the relatively high
energy noise content in the low frequency portion of spectra. For
this reason, spectral slope was not considered in the rest of the
study.

To get a more concrete idea about the significance of the fea-
ture interactions, paired t-tests were performed on the samples
from co-driver vs. dialog system classes, and neutral vs. negative
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Figure 2: Impact of cognitive tasks and emotions on speech pro-
duction.

classes. Data from 58 subjects were evaluated in the co-driver
vs. dialog system paired tests, since data from one of the two
domains were not available for the remaining 10 subjects. The
paired test set was reduced to 30 subjects in the case of emo-
tion analysis, since many subjects did not exhibit negative emo-
tions. Finally, one-way analysis of variance (ANOVA) together
with Levene’s test of homogenity of variance and Fisher’s least
significant difference (LSD) post-hoc test were conducted on the
dialog system repeated queries.

e Co-driver vs. dialog system interactions: Fp — signifi-
cant increase (¢ (57) = —3.820,p < 0.001); F1 - sig-
nificant increase (¢ (57) = —7.282,p < 0.001); Fb 3 —
not significant effects (p > 0.1); F, — significant increase
t(57) = —3.339,p = 0.001); SCG - significant in-
crease (¢ (57) = —9.803,p < 0.001); SES - significant
increase (¢t (57) = —10.487, p < 0.001); duration — sig-
nificant increase (¢ (57) = —2.726, p = 0.008).

e Neutral vs. negative interactions: Fp — significant in-
crease (¢t (29) = —2.472,p = 0.02); Fi_4 — no signif-
icant effects (p > 0.187); SCG - significant increase
(t(29) = —3.008,p = 0.005); SES - no significant

effects (p = 0.541); duration — significant increase
(t (29) = —3.004, p = 0.005).

e Effect of query repetitions interactions: Fj_4 — not sig-
nificant effects (p > 0.833); Fy — significant interaction
(p = 0.002), post-hoc test — significant increases from Re0
to Rel (p = 0.029) and from Re0 to Re2-6 (p < 0.001)
significant, Rel vs. Re6 — no significant interaction (p =
0.076); SC'G - no significant effects (p > 0.05); SES -
no significant effects (p = 0.165); duration — no signifi-
cant effects (p = 0.406).

4. Cognitive Task/Emotion Classification

In this section, the effectiveness of selected acoustic features and
cepstral representations in cognitive task and emotion classifica-
tion is evaluated. In the cognitive task classification, the goal is to
identify whether the driver’s utterance comes from the co-driver
or automated dialog system interaction, while in the emotion clas-
sification, neutral and negative emotional states are to be distin-
guished on the utterance level. For the cognitive task and emo-
tion classification respectively, a Gaussian Mixture (GMM) based
maximum likelihood classifier was trained. Data from 40 sessions
(20 per gender) were used to train the GMM’s; the reminder (28
sessions) were used for speaker/gender-independent open test set
evaluation. For each setup, a binary decision threshold providing
an equal error rate — EER (balanced error of the class assignments)
was found in an iterative procedure on the test set.

From the cepstral domain, common Mel-Frequency Cepstral
Coefficients (MFCC), Perceptual Linear Prediction (PLP), and
Expolog cepstral coefficients (Expolog) [18] are compared. Un-
like MFCC and PLP, Expolog was designed with focus on stressed
speech recognition. Two variants of MFCC and PLP, where dis-
crete cosine transform cepstrum was replaced by linear predic-
tion cepstrum (MFCC-LPC) and vice-versa (PLP-DCT) were also
considered. All cepstral representations were evaluated with and
without applying a full-wave spectral subtraction algorithm.

The results for the cepstral representations are summarized in
Table 2; ‘Def’ and ‘NS’ denote the default front-end setup without
and with noise subtraction respectively. The results are reported
as equal accuracy rates (EAR), calculated as 100 — EER (%).
In both cognitive and emotion classification tasks, the best per-
formance is provided by the Expolog-based classifier (32-mixture
GMM?’s). In the case of emotion classification, standard PLP pro-
vides similar performance to Expolog. The overall performance
suggests that cognitive task classification is somewhat easier than
emotion recognition. This corresponds well with the intuition
obtained in the previous section, where more speech parameters
were found to significantly vary in the cognitive tasks compared
to the emotion states. In addition, a higher p-value was found for
two of the three parameters that displayed significant changes in
emotion states compared to p-values found in cognitive tasks.

Second, performance of acoustic features in the classification
tasks was evaluated. Based on the observations presented in the
previous section, Fy, Fi, SCG, SES, and voiced duration (‘Dur’)
were used as cognitive task classification features. In a similar
setup like for the cepstral features, separate classifiers were first
trained for each individual feature type, and also a classifier com-
bining all of them into a single vector was trained. The perfor-
mance in the cognitive task is shown in Table 3. The best per-
formance can be seen for SCG-based classifier (single Gaussian
GMM?’s). Surprisingly, combining all feature types into a sin-
gle classification vector results in a slightly reduced performance.
Overall, the selected acoustic features provided lower cognitive
class classification accuracy than cepstral-based classifiers, how-
ever, the performance is still considered promising.

Fo, SCG, and duration were employed in the acoustic feature-
based emotion classification (results shown in Table 4). Here, the



Table 2: Cog. task/emotion class. — cepstral features; EAR (%).

Cog. Task Emotion Task

Front-End Def NS Def NS

MFCC 922 937 669 68.8
MFCC-LPC 93.0 925 669 66.4
PLP 924 934 693 66.9
PLP-DCT 933 933 66.4 6438

Expolog 915 94.0 69.3 648

Table 3: Cog. task classification — acoustic features; EAR (%).
Fo F. SCG SES Dur
583 737 900 830 655 882

Together

best performance was reached when combining all three features
into one vector and the equal accuracy rate obtained here (using
single Gaussian GMM?’s) is considerably higher than the cepstral-
based classifiers.

Finally, a support vector machine (SVM) based classifier em-
ploying RBF kernel is used to perform feature fusion. Since the
cepstral features are extracted on a frame level while acoustic fea-
tures are extracted on the suprasegmental (utterance) level, in-
stead of combining them directly into a supervector for SVM,
the cepstral features are replaced by utterance-level scores from
the GMM classifier trained on cepstral features. For each ut-
terance, two scores from class-dependent GMM’s are obtained.
For example, given an MFCC classifier in the emotion classifica-
tion task, the overall likelihoods that the utterance is generated by
neutral and negative models are calculated and used as cepstral-
based score features in the SVM system. Similarly, a variation of
the acoustic features represented by scores from the correspond-
ing classifier is evaluated. Among several feature combinations,
the SVM fusion of SCG acoustic features, SCG likelihood scores
from a GMM classifier, and Expolog likelihood scores from a
GMM classifier provided a slight performance improvement in
the cognitive task, yielding 94.3% accuracy (compared to 94.0%
accuracy of SCG-based classifier), and the fusion of Fy, SCG,
duration, and their scores from the respective GMM classifiers
yielded an accuracy of 81.3 % in the emotion classification (com-
pared to 78.1 % obtained from the acoustic based classifier).

5. Conclusion

In this study, speech produced by 68 subjects while driving in
realistic scenarios was analyzed. A particular focus was on the
impact of two types of secondary cognitive tasks that were con-
sidered to represent different levels of cognitive load, and two
emotional states, on speech production parameters. A number
of parameters were found to vary significantly with the cognitive
task and emotional state. Based on the outcomes of this anal-
ysis, features likely to provide discrimination between cognitive

Table 4: Emotion classification — acoustic features; EAR (%).
FO SSG Dur Fg+SCG Fg+SCG+Dur
73.2 62.2 57.0 757 78.1

tasks and emotional states were selected and compared alongside
cepstral-domain speech representations in automatic classifica-
tion tasks. The best performance was reached by fusing acoustic
features, their corresponding GMM scores, and cepstral features
in the cognitive task classification (94.3 % accuracy). For emotion
classification, the best result was obtained by SVM-based fusion
of selected acoustic features and their respective GMM scores
(81.3%).
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