
One-Time and Interactive Aggregate Signatures from Lattices

Dan Boneh
Stanford University

dabo@cs.stanford.edu

Sam Kim
Stanford University

skim13@cs.stanford.edu

Abstract

An aggregate signature scheme enables one to aggregate multiple signatures generated by different
people on different messages into a short aggregate signature. We construct two signature aggregation
schemes whose security is based on the standard SIS problem on lattices in the random oracle model.
Our first scheme supports public aggregation of signatures, but for a one-time signature scheme. Our
second scheme supports aggregation of signatures in a many-time signature scheme, but the aggregation
process requires interaction among the signers. In both schemes, the size of the aggregate signature is at
most logarithmic in the number of signatures being aggregated.

1 Introduction

A signature scheme is a tuple of three algorithms: KeyGen generates a key pair (sk, pk), Sign(sk,m) → σ
signs a message m, and Verify(pk,m, σ)→ 0/1 verifies a signature σ on message m. A one-time signature is a
signature scheme that is existentially unforgeable against an adversary that is given the public key and the
signature on a single message of its choice.

One-time signatures (OTS) have found many applications in cryptography. They are used to transform any
existentially unforgeable signature into a strongly unforgeable signature [BS08], in several chosen-ciphertext
secure public-key encryption constructions [DDN03, CHK04], in offline/online signatures [EGM96], and for
authenticating streaming data [GR01]. The classic OTS scheme of Lamport [Lam79] and its Winternitz
variant [BDE+13] shows that one-time signature schemes can be constructed from any one-way function.
Shorter one-time signatures can be constructed from algebraic assumptions, as we discuss below.

Aggregate signatures [BGLS03] are signature schemes with two additional algorithms: SigAgg(PK,M,Σ)→
σag and Verify(PK,M, σag) → 0/1. The signature aggregation algorithm SigAgg takes as input a vector of
n public keys PK = (pk1, . . . , pkn), a vector of n messages M = (m1, . . . ,mn), and a vector of n signatures
Σ = (σ1, . . . , σn), and outputs a short aggregate signature σag. This short aggregate signature convinces a
verifier that all the signatures aggregated into σag are valid. Specifically, if Verify(PK,M, σag) = 1 then the
verifier should be convinced that ski was used to sign mi, for all i = 1, . . . , n. Note that the aggregation
algorithm can be run by anyone at any time after the signatures have been generated.

Aggregate signatures are used in blockchain systems, where aggregation can compress many signatures in
a block into a short aggregate, thereby shrinking the size of the blockchain. They are also used in consensus
protocols where many signatures from different block validators are compressed into a short aggregate.

A simple and efficient aggregate signature scheme is built from BLS signatures [BLS01] using pair-
ings [BGLS03]. The Schnorr signature scheme supports a weaker form of aggregation, where the signers must
interact with one another while generating the signatures to produce a short aggregate [BN06, MPSW18a,
DEF+19]. We refer to this as interactive aggregation. If the signers need not be involved in aggregation
then we say that aggregation is non-interactive. Recently, Doröz et al. proposed a lattice-based aggregate
signature scheme, but where the aggregate signature size grows linearly with the number of signatures being
aggregated [DHSS20].

It is currently an open problem to construct a lattice-based non-interactive aggregation scheme where the
aggregate signature size is (almost) independent of the number of signatures being aggregated.

1

Our contributions. In this paper, we construct two lattice-based aggregate signature schemes whose
security is based on the standard SIS assumption, and where the aggregate size grows at most logarithmically
in the number of signatures begin aggregated.

Construction 1. Our first result (Section 4) is an aggregate one-time signature scheme, where the aggregation
process is non-interactive. The starting point for this scheme is a discrete-log based one-time signature scheme
due to Mihir Bellare and Sarah Shoup [BS08]. Their scheme uses a group G of order q with generator g and
works as follows: the secret key is a random pair (x, y) ∈ Z2

q and the public key is (h1 = gx, h2 = gy) ∈ G2.
To sign a message m compute c← H(m) using a hash function H :M→ Zq and output σ ← cx+ y ∈ Zq.
A signature σ is valid if gσ = hc1h2. Bellare and Shoup prove that this scheme is a secure one-time signature
assuming that the one-more discrete-log assumption [BNPS03] holds in G.

We first observe in Section 3.2 that this scheme is aggregatable: it gives a very simple aggregate one-time
signature scheme based on the standard discrete-log assumption in the random oracle model. It is tempting
to aggregate signatures by simply adding them up, however, that is insecure due to a rogue public key
attack discussed in Section 3.2. Instead, we use an aggregation mechanism due to Boneh, Drijvers, and
Neven [BDN18b], and prove security of the resulting scheme based on the discrete-log assumption in the
random oracle model.

We then adapt the scheme to the lattice settings. First, we point out that the one-time signature scheme
of Lyubashevsky and Micciancio [LM08] has a similar structure to the Bellare-Shoup scheme, and can be
similarly aggregated. However, proving security of the resulting lattice aggregate scheme is more difficult. We
do so in Section 4, and obtain an aggregate one-time signature scheme based on the standard SIS problem,
where aggregation does not require any help from the signers.

Both of these one-time aggregate signature schemes can be generalized to obtain an aggregate t-time
secure scheme (supporting up to t signatures for each public key). The cost is a larger public key whose size
grows linearly in t. The aggregate signature size does not change. However, the security reduction to the
underlying hardness assumption becomes quite inefficient for a non-constant t.

We briefly note that even a one-time aggregate signature scheme can be used to shrink the Bitcoin
blockchain. Recall that funds in the Bitcoin system [Nak08] are held in records called UTXOs (unspent
transaction outputs). A UTXO has an associated value and contains a commitment to one or more public
keys. To spend a UTXO one provides one or more digital signatures that verify under the public keys
committed in the UTXO. Once spent, the UTXO cannot be spent again, and the funds are transferred to a
different UTXO. Currently Bitcoin uses a many-time digital signature such as ECDSA. However, because
every UTXO is only spent once, it is possible, in principle, replace ECDSA with a one-time signature. The
enduser would need to ensure that one-time public keys are never reused across UTXOs, but there is already
a strong privacy incentive to do so. In situations where there is a need to issue multiple signatures for a single
public key (e.g., for payment channels), users can revert to using a many-time signature scheme. However,
all the signatures in transactions signed by the one-time scheme can be aggregated to shrink the overall
blockchain.

Construction 2. Our second result (Section 6) is a many-time aggregate signature scheme, but where the
aggregation process is interactive. Here our starting point is the Schnorr signature scheme, and in particular,
the interactive aggregation process of Bellare and Neven [BN06]. In their system, the signers engage in an
interactive protocol to produce a short aggregate signature.

Lyubashevsky’s lattice-based signature scheme [Lyu08, Lyu12] has a similar structure to Schnorr signatures.
However, a rejection sampling process during signing is necessary to protect the signing key, and this makes
the scheme more complicated than Schnorr’s.

In Section 6 we show how to adapt the Bellare-Neven interactive aggregation technique to Lyubashevsky’s
signature scheme. Rejection sampling poses a technical challenge. To prove security we must incorporate
rejection sampling into our interactive aggregation protocol. Specifically, at one point in the protocol, every
signer flips a coin and either continues as normal, or notifies the other signers that it rejected the signing
process. At the end of the protocol, if one or more of the signers rejected the signature, signature generation
fails. We set the parameters of the scheme so that correctness (completeness) of the protocol can still be
achieved using either sequential or parallel repetition of the signing protocol.

2

Additional related work. While the focus of this paper is on aggregate signatures, a related concept
called multi-signatures is a restricted form of signature aggregation, where one can only aggregate signatures
from multiple parties on the same message. This concept was introduced in [IN83] and further developed
in [OO99, MOR01, Bol03, BN06, MPSW18b, DGNW19] in both the interactive and non-interactive settings.

Pairing-based aggregate signatures were studied extensively in [BGLS03, LOS+06, RY07, BNN07, BDN18b].
Universal signature aggregation, namely an aggregation procedure that works for all signature schemes, were
constructed using SNARKs [BCCT13] and obfuscation [HKW15].

Currently, there is little work on aggregate signatures from lattice problems. El Bansarkhani and Jan
Sturm [BS16] gave a construction where describe their construction. Doröz et al. give a lattice-based
aggregate signature scheme, but where the aggregate signature size grows linearly with the number of
signatures being aggregated [DHSS20].

2 Preliminaries

Basic notation. For two integers n < m, we write [n,m] to denote the set {n, n+ 1, . . . ,m}. When n = 1,
we simply write [m] to denote the set {1, . . . ,m}. Unless specified otherwise, we use λ to denote the security
parameter. We say that an algorithm is efficient if it runs in probabilistic polynomial time in the length of its
input. We use poly(λ) to denote a quantity whose value is bounded by a fixed polynomial in λ.

Vectors and matrices. We use bold lowercase letters (e.g., v,w) to denote vectors and bold uppercase
letters (e.g., A,B) to denote matrices. Throughout this work, we always use the infinity norm for vectors
and matrices. Namely, for a vector x ∈ Zn, we write ‖x‖ to denote maxi |xi|. Similarly, for a matrix
A = (Ai,j) ∈ Zn×m, we write ‖A‖ to denote maxi,j |Ai,j |.

Statistical distance. For any two distributions D0, D1 over a finite domain Ω, the statistical distance
between D0 and D1 is defined by ∆(X,Y) = 1

2

∑
ω∈Ω |D0(ω)−D1(ω)|. For a distribution D, we write x← D

to denote the procedure of sampling x according to distribution D. For a finite domain Ω, we write ω ←$ Ω
to denote the procedure of sampling ω uniformly from Ω.

2.1 Discrete Log Problem

We recall the discrete log problem.

Definition 2.1 (Discrete Log). Fix a security parameter λ and let G = G(λ) be a group of prime order p.
Then, the Discrete Log problem (DLogG) is defined as follows: given two uniformly random group elements
g, h←$ G, find x ∈ Zp such that gx = h. More precisely, for an adversary A, we define its DLogG advantage
as follows:

AdvDLog(λ,A) = Pr
g,h←RG

[
A(g, h)→ x ∧ gx = h

]
.

The Discrete Log assumption states that for any efficient adversary A, we have AdvDLog(λ,A) = negl(λ).

2.2 Short Integer Solution Problem

In this work, we work with the Short Integer Solution (SIS) problem and its polynomial ring variant. Our
constructions that are based on these two problems are similar and therefore, we unify their presentation by
working with the general SIS problem that is defined over an arbitrary commutative ring, which we denote
by R. This way of presentation have been used in prior works such as [BGV14, CC17]. For a ring R with a
multiplicative identity, the ideal qR for any q ∈ N is well-defined. We use Rq to denote the quotient ring
Rq = R/qR throughout the paper.

For the general SIS problem over a ring R, we need a suitable measure of a norm in the ring. For both
the integer lattice and polynomial ring instantiations of the general SIS problem, we can define natural norm
functions that we define below.

3

Definition 2.2 (General Short Integer Solutions). Fix a security parameter λ, parameters ` = `(λ), q = q(λ),
β = β(λ), and a ring R = Rλ with an associated norm function ‖·‖ : R → N. The Short Integer Solutions
problem SISR,`,q,β is defined as follows: given a uniformly random vector a ←$ R`q, find a non-zero vector

x ∈ R` such that aᵀ · x = 0 and ‖x‖ ≤ β. More precisely, for an adversary A, we define its SISR,`,q,β
advantage as follows:

AdvSISR,`,q,β (λ,A) = Pr
a←RR

[
A(a)→ x ∧ aᵀx = 0 ∧ ‖x‖ ≤ β ∧ x 6= 0

]
.

The Short Integer Solution assumption states that for any efficient adversary A, we have AdvSIS(λ,A) =
negl(λ).

SIS over Integer Lattices. To capture the SIS problem over integer lattices [Ajt96], we can set the
ring R = Zn×n for a dimension n determined as a function of the security parameter n = n(λ).1 Then
we have Rq = Zn×nq , and we can use the infinity norm over matrices ‖A‖ = maxi,j∈[n] |ai,j | for any
A = (ai,j)i,j∈[n] ∈ Zn×nq . It can be readily checked that for any two matrices A,B ∈ Zn×n, we have
‖A ·B‖ ≤ n ‖A‖ ‖B‖.

SIS over Ideal Lattices. To capture the SIS problem over polynomial rings (ideal lattices) [HPS98,
Mic07, PR06, LM06], we can set the ring R to be the cyclotomic polynomial ring R = Z[X]/(Xn + 1) for a
power-of-two integer n = n(λ) and set Rq = Zq[X]/(Xn + 1). For any polynomial a ∈ R, we can represent its
coefficients as entries in a vector over Zn. We define the norm of an element in R as the infinity norm of its
vector representation in Zn: ‖a‖ = maxi∈[n] |ai−1| for any a = a0 + a1X + · · ·+ an−1X

n−1 ∈ Z[X]/(Xn + 1).
It can be readily checked that for any two polynomials a, b ∈ Z[X], we have ‖a · b‖ ≤ n ‖a‖ ‖b‖.

2.3 Forking Lemma

In this work, we rely on the forking lemma [PS00, Sch91, BN06, BCJ08] to prove the security of our
constructions. For our aggregate one-time signatures in Sections 3.2 and 4, we do not require the full general
form of the forking lemma and therefore, we use a simple variant of the lemma that we formulate below.

Lemma 2.3 (Rewinding Lemma [BDN18a]). Let S, R, and T be finite, non-empty sets, and let f : S×R×T →
{0, 1} be a function. Let X and Y , Y ′ and Z, Z ′ be mutually independent random variables where X takes
values in the set S, the variables Y and Y ′ are each uniformly distributed over R, and Z and Z ′ take values
in the set T . Let ε = Pr[f(X,Y, Z) = 1] and N = |R|. Then

Pr
[
f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y 6= Y ′

]
≥ ε2 − ε/N.

For our interactive aggregate signature construction in Section 5, we use the general forking lemma. We can
formulate the forking lemma in multiple ways and in this work, we follow the presentation in [BN06]. We
first define the concept of a simulation algorithm. The simulation algorithm takes in an input, generally an
instance to a hard problem such as a discrete log challenge or an SIS challenge, and a number of hash outputs,
generally used to program a random oracle in a security experiment, and returns an index and an auxiliary
output. The auxiliary output generally corresponds to an adversary’s forgery in a security experiment and
the index is the forking point that generally corresonds to an adversary’s random oracle query related to its
forgery.

Definition 2.4 (Simulation Algorithm). Fix a positive integer Q and sets X , H such that |H| > 1. We say
that a randomized algorithm S is a simulation algorithm if on input x ∈ X and h1, . . . , hQ ∈ H, it returns an

1We note that inserting R = Zn×n directly into Definition 2.2 gives a slight variant of the traditional SIS where the adversary is
required to produce a vector of short matrices as opposed to vectors. This variant of the SIS problem is at least as hard as the
original formulation of the SIS problem by Ajtai in [Ajt96].

4

index and an auxiliary output (i, aux) ∈ [0, Q]×{0, 1}∗. For a distribution IG over X , we define the advantage
of the simulation algorithm S as follows:

AdvSimIG (λ,A) = Pr
[
(i, σ)←$ S(x, h1, . . . , hQ) ∧ i 6= 0

]
,

where x← IG and h1, . . . , hQ ←$ H.

Next, we define the forking algorithm that runs two executions of the simulation algorithm with a fork at an
index.

Definition 2.5 (Forking Algorithm). Fix a positive integer Q and sets X , H such that |H| > 1. Then, for a
simulation algorithm S, we define the forking algorithm FS as follows:

Forking Algorithm FS(x):

1. Sample random coins ρ for S
2. h1, . . . , hQ ←$ H
3. (i, σ)← S(x, h1, . . . , hQ)
4. If i = 0, then return (0,⊥,⊥)
5. h′i, . . . , h

′
Q ←

$ H
6. (i′, σ′)← S(x, h1, . . . , hQ)
7. If i = i′ and hi 6= h′i, return (1, σ, σ′).
8. Otherwise, return (0,⊥,⊥).

For a distribution IG over X , we define the advantage of a forking algorithm FS as follows:

AdvForkIG (λ,F ,S) = Pr
[
(b, σ, σ′)← FS(x) ∧ b = 1

]
,

where x← IG.

The general forking lemma bounds the success probability of the forking algorithm with respect to the success
probability of a simulation algorithm.

Lemma 2.6 (General Forking Lemma). Fix a positive integer Q, sets X , H such that |H| > 1. Let IG be a
distribution over X , let S be a simulation algorithm with advantage, and let FS be a forking algorithm for S.
Then, we have

AdvForkIG (λ,F ,S) ≥ AdvSimIG (λ,S) ·

(
AdvSimIG (λ,S)

Q
− 1

|H|

)
,

or alternatively,

AdvSimIG (λ,S) ≤ Q

|H|
+

√
Q · AdvForkIG (λ,F ,S).

3 Aggregatable OTS

In this section, we recall the notion of aggregatable signatures. We present the formal algorithms with the
compactness, correctness, and security requirements in Section 3.1. In Section 3.2, we show how to aggregate
Bellare-Shoup [BS08] signatures.

3.1 Definitions

The notion of an aggregatable signature scheme was first formalized by Boneh et al. [BGLS03], which
generalizes multi-signatures [IN83, MOR01]. The algorithms for an aggregate signature scheme is identical to
that of a standard signature scheme, but with an additional signature aggregation algorithm SigAgg. The
algorithm SigAgg takes in as input an arbitrary set of signatures Σ = {σ1, . . . , σN} where each signature σi
certifies a message mi under a public key pki. It then returns a succinct signature σag that certifies each of
the messages m1, . . . ,mN under each of the public keys pk1, . . . , pkN respectively.

5

Definition 3.1 (Aggregate Signatures). An aggregate signature scheme ΠAS for a message space M consists
of a tuple of efficient algorithms ΠAS = (PrmsGen,KeyGen,Sign,SigAgg,Verify) with the following syntax:

• PrmsGen(1λ)→ pp: On input a security parameter λ, the parameter generation algorithm returns a set
of public parameters pp.

• KeyGen(pp)→ (sk, pk): On input a set of public parameters pp, the key generation algorithm returns a
signing key sk and a public key pk.

• Sign(sk,m) → σ: On input a signing key sk and a message m ∈ M, the signing algorithm returns a
signature σ.

• SigAgg(PK,M,Σ)→ σag: On input a set of public keys PK = (pki)i∈[N], set of messages M = (mi)i∈[N],
and a set of signatures Σ = (σi)i∈[N], the signature aggregation algorithm returns an aggregated
signature σag.

• Verify(PK,M, σ)→ 0/1: On input a set of public keys PK = (pki)i∈[N], a set of messages M = (mi)i∈[N],
and a signature σ, the verification algorithm either accepts (outputs 1) or rejects (outputs 0).

When the set of public keys PK = (pk) and messages M = (m) are singleton sets, then we simply write
Verify(pk,m, σ).

An aggregatable signature scheme must satisfy compactness, correctness, and unforgeability properties.
The compactness property of an aggregatable signature scheme requires that any aggregate signature

σag that is output by the signature aggregation algorithm SigAgg has size that is independent or at most
poly-logarithmic in the number of signatures that it is aggregating. Without the compactness requirement,
an aggregatable signature scheme can be constructed trivially as any set of signatures σ1, . . . , σN can be
concatenated into an aggregate signature σag ← σ1‖ . . . ‖σN .

Definition 3.2 (Compactness). Let ΠAS = (PrmsGen,KeyGen,Sign,SigAgg,Verify) be an aggregate signature
scheme for a message space M. We say that ΠAS is compact if there exists a polynomial poly(·) and a
negligible function negl(·) such that for all security parameter λ and set of messages m1, . . . ,mN ∈M, if we
set

1. pp← PrmsGen(1λ),
2. (ski, pki)← KeyGen(pp) for i ∈ [N],
3. σi ← Sign(sk,mi) for i ∈ [N],
4. σag ← SigAgg((pki)i∈[N], (mi)i∈[N], (σi)i∈[N]),

then we have
Pr
[
|σag| ≤ poly(λ, logN)

]
= 1− negl(λ),

where |σag| is the bit length of σag.

For correctness, we require that an aggregated signature of any set of properly generated signatures must
verify under the corresponding set of public keys and messages.

Definition 3.3 (Correctness). Let ΠAS = (PrmsGen,KeyGen,Sign,SigAgg,Verify) be an aggregate signature
scheme for a message space M. We say that ΠAS is correct if for all security parameter λ ∈ N and number of
signers N ∈ N, we have

Pr
[
Verify(PK,M,SigAgg(PK,M,Σ)) = 1

]
= 1,

where pp← PrmsGen(1λ), (ski, pki)← KeyGen(pp) for i ∈ [N], σi ← Sign(ski,mi) for i ∈ [N], PK← (pki)i∈[N],
M← (mi)i∈[N], and Σ← (σi)i∈[N].

6

We note that the correctness requirement above implies that an aggregate signature is also correct as a
standard signature scheme since the set of public keys PK and messages M can be singleton sets.

Finally, we define the unforgeability security requirement. The unforgeability experiment for an aggregate
signature scheme is defined identically to that of a standard signature scheme where the adversary is provided
with a public key pk∗ and an oracle access to the signing algorithm Sign(sk∗, ·). The only difference between
the unforgeability experiment of an aggregate signature scheme and that of a standard signature scheme is the
winning condition of an adversary. Since the verification algorithm for an aggregate signature scheme takes in a
set of public keys and messages, we allow an adversary to also output a set of public keys PK = (pki)i∈[N] and
messages M = (mi)i∈[N] as part of its forgery. Specifically, we say that an adversary wins the unforgeability
experiment if it can produce a verifying set of public keys PK = (pki)i∈[N], messages M = (mi)i∈[N], and
a signature σ∗ such that pk∗ = pki∗ for some i∗ ∈ [N] and mi∗ is a message that was never queried to the
signing oracle.

Definition 3.4 (Unforgeability). Let ΠAS be an aggregate signature scheme for a message space M. For a
security parameter λ ∈ N and an adversary A, we define the signature unforgeability experiment EXPAS[λ,A]
as follows:

1. pp← PrmsGen(1λ),
2. (sk∗, pk∗)← KeyGen(pp),
3. (PK,M, σag)← ASign(sk∗,·)(pp, pk∗),
4. Output Verify(PK,M, σag).

We say that A is an admissible adversary for the unforgeability experiment if for any execution of the
experiment, the following property holds: for any forgery (PK = (pki)i∈[N],M = (mi)i∈[N], σag) that A returns
at the end of the experiment, we have pki∗ = pk∗ for some i∗ ∈ [N], and the message mi∗ is never queried
to the signing oracle Sign(sk∗, ·). We say that an aggregate signature scheme ΠAS is unforgeable if for all
efficient and admissible adversaries A, we have

Pr
[
EXPAS[λ,A] = 1

]
= negl(λ).

In this work, we work with the notion of a one-time signature scheme where unforgeability is guaranteed under
the condition that a signing key is used at most once to generate a signature. We define the unforgeability
experiment for aggregatable one-time signature schemes analogously to Definition 3.5.

Definition 3.5 (Unforgeability for OTS). Let ΠAS be an aggregate signature scheme for a message space
M. For a security parameter λ ∈ N and an adversary A = (A1,A2), we define the one-time signature
unforgeability experiment EXPAS,OT[λ,A] as follows:

1. pp← PrmsGen(1λ),
2. (sk∗, pk∗)← KeyGen(pp),
3. (m̂, state)← A1(pp, pk∗),
4. σ̂ ← Sign(sk∗, m̂),
5. (PK,M, σag)← A2(state, σ̂),
6. Output Verify(PK,M, σag).

We say that A is an admissible adversary for the unforgeability experiment if for any execution of the
experiment, the following holds: for any forgery (PK = (pki)i∈[N],M = (mi)i∈[N , σag) that it returns at the
end of the experiment, we have pki∗ = pk∗ for some i∗ ∈ [N], and m̂ 6= mi∗ . We say that an aggregate
signature scheme ΠAS is unforgeable if for all efficient and admissible adversaries A, we have

Pr
[
EXPAS,OT[λ,A] = 1

]
= negl(λ).

7

3.2 Warm-up: Aggregating Bellare-Shoup OTS

In this section, we show how to aggregate the Bellare-Shoup one-time signature scheme [BS08]. The
construction is straightforward, but it conveys the main intuitions for the lattice constructions in Sections 4
and 6.

The Bellare-Shoup signature scheme works over a group G of prime order p with a generator g ∈ G. A
public key in the signature scheme consists of two group elements h0, h1 ∈ G and the corresponding secret
key consists of the discrete log of these elements x0, x1 with respect to g: h0 = gx0 and h1 = gx1 . A signature
σ for a message m is defined as σ ← c · x0 + x1 ∈ Zp where c ← H(m) and H is a hash function that is
modeled as a random oracle that maps messages to elements in Zp. The signature can be verified by the
relation gσ = hc0 · h1.

Let σ1, σ2 ∈ Zp be two signatures under two public keys (h1,0, h1,1), (h2,0, h2,1) and two messages m1,m2

in the Bellare-Shoup signature scheme. Then, a natural first attempt at aggregating these signatures is to
simply add them together: σag ← σ1 + σ2 ∈ Zp. The sum of the two signatures can still be verified by the
group relation

gσag =
(
hc11,0 · h1

)
·
(
hc22,0 · h2,1

)
,

where c1 ← H(m1) and c2 ← H(m2). This way of aggregating signatures, however, results in rogue attacks.
Namely, given a signature σ1 under a public key (h1,0, h1,1) and a message m1, an adversary can produce a
another signature σ2, public key (h2,0, h2,1), and two messages m′1, m2 for m′1 6= m1 such that σag verifies a
message tuple (m′1,m2). Specifically, the adversary can sample any arbitrary signature σ2 ∈ Zp, messages
m′1,m2 ∈ M, public key component h2,0, and then solve for h2,1 in the group relation

gσ1+σ2 =
(
h
c′1
1,0 · h1

)
·
(
hc22,0 · h2,1

)
,

where c′1 ← H(m′1) and c2 ← H(m2).
One way of preventing such type of attacks is to require that any public key in the scheme includes a

Proof-of-Knowledge (PoK) of discrete log on each of the two group elements [Bol03, LOS+06, RY07]. However,
this inevitably increases the size of the public keys. In this work, we prevent rogue attacks without increasing
the size of the public keys by relying on the power of random oracles. Given two signatures σ1, σ2 ∈ Zp under
public keys (h1,0, h1,1), (h2,0, h2,1) and messages m1,m2, we define the aggregate signature as the weighted
sum σag ← t1 · σ1 + t2 · σ2 ∈ Zp where

(t1, t2)← H ′
(
(h1,0, h1,1), (h2,0, h2,1),m1,m2

)
∈ Z2

p,

and H ′ is an additional hash function that is modeled as a random oracle. Since σag is a linear combination
of the signatures σ1, σ2, it can still be verified using group operations as before. At the same time, unless
an adversary can predict the output of H ′ that is modeled as a random oracle, it cannot carry out a rogue
attack as before.

We formally define an aggregate one-time signature scheme based on the Bellare-Shoup signature
scheme [BS08] below. In the construction description, we use a hash function that has a dynamic out-
put H1 : {0, 1}∗ → (Zp)∗. Such a hash function can be constructed from any hash function with a static

output H̃1 : {0, 1}∗ → Zp by iteratively applying it on an input. For instance, to map an input x ∈ {0, 1}∗ to
N elements in Zp, we can set

H1(x) =
(
H̃1(1, x,N), H̃1(2, x,N), . . . , H̃1(N, x,N)

)
.

Construction 3.6. Fix a message space M and let H0 : M → Zp, H1 : {0, 1}∗ → (Zp)∗ be two hash
functions. We construct an aggregate signature scheme as follows:

• PrmsGen(1λ) → pp: On input a security parameter λ, the parameter generation algorithm defines a
group G = G(λ) of prime order p. It samples a group element g ←$ G and returns pp = (G, g).

8

• KeyGen(pp)→ (sk, pk): On input the public parameter pp, the key generation algorithm samples two
exponents x0, x1 ←$ Zp and computes h0 = gx0 , h1 = gx1 ∈ G. It sets

sk = (x0, x1), pk = (h0, h1).

• Sign(sk,m) → σ: On input a signing key sk = (x0, x1) and a message m ∈ M, the signing algorithm
computes the hash c← H0(m). It sets σ ← c · x0 + x1 and returns σ.

• SigAgg(PK,M,Σ)→ σag: On input a set of public keys PK = (pki)i∈[N], messages M = (mi)i∈[N], and
signatures (σi)i∈[N], the aggregation algorithm computes the hash (t1, . . . , tN)← H1(PK,M). It then
defines the aggregate signature to be

σag ←
∑
i∈[N]

ti · σi,

and returns σag.

• Verify(PK,M, σ)→ 0/1: On input a set of public keys PK = (pki)i∈[N], messages M = (mi)i∈[N], and a
signature σ, the verification algorithm first parses the public keys as pki = (hi,0, hi,1) for i ∈ [N]. It
then computes the hash values

– ci ← H0(mi) for i ∈ [N],
– (t1, . . . , tN)← H1(PK,M),

and verifies the following relation:

gσ =
∏
i∈[N]

(
hcii,0 · hi,1

)ti
.

If the relation holds, then the algorithm accepts the signature (outputs 1) and otherwise, it rejects
(outputs 0).

We now state the compactness, correctness, and security properties of Construction 3.6.

Theorem 3.7 (Compactness). The aggregate signature scheme in Construction 3.6 is compact (Defini-
tion 3.2).

Theorem 3.8 (Correctness). The aggregate signature scheme in Construction 3.6 is correct (Definition 3.3).

Theorem 3.9 (Security). Suppose that the discrete log problem DLogG is hard. Then the aggregate one-time
signature scheme in Construction 3.6 satisfies unforgeability (Definition 3.5).

More precisely, suppose that there exists an adversary A in the unforgeability experiment EXPAS,OT[λ,A] that
makes at most Q0 random-oracle queries to H0 and Q1 random-oracle queries to H1 such that

ε = Pr
[
EXPAS,OT[λ,A] = 1

]
.

Then, there exists a discrete log algorithm B such that(
ε− 1

p

)
· 1

Q0 ·Q1
· 1

|M|
≤
√

AdvDLog[λ,A] +
1

p
.

We provide the proof of the theorems above in Appendix A. We provide a high level overview of the security
proof below.

Security proof overview. For the main intuition behind the security proof, let us first consider the security
of the Bellare-Shoup signature scheme without signature aggregation. When aggregation is not involved, we
can construct a simple reduction algorithm B that simulates the view of the standard (one-time) unforgeability
experiment for an adversary A as follows:

9

1. Upon receiving a discrete log challenge ĥ ∈ G, algorithm B generates a random exponent c ←$ Zp,
signature σ ←$ G, and sets the public key as pk∗ = (h0 = ĥ, h1 = gσ/ĥc). The public key is defined
precisely to satisfy the verification relation gσ = hc0 · h1.

2. Suppose that adversary A makes Q0 random oracle queries to H0: m1, . . . ,mQ0
. B guesses one of these

messages mi∗ for some i∗ ∈ [Q0], programs the random oracle H0(mi∗)← c, and hopes that A makes
the single signing query on the message mi∗ . It can be readily checked that if A does indeed make
the single signing query on mi∗ , then the public key components h0, h1, random exponent c, and the
signature σ of mi∗ are correctly distributed.

3. Suppose that A does indeed make the signing query on mi∗ and at the end of the experiment, produces
a valid forgery (m′, σ′) such that gσ

′
= hc

′

0 · h1 where c′ ← H0(m′). Algorithm B solves for the variable
x0 in the two linear relations

σ = c · x0 + x1,

σ′ = c′ · x0 + x1.

Assuming that mi∗ 6= m′, these two relations are linearly independent with high probability. The
variable x0 is the solution to the discrete log challenge h∗.

The main idea of the reduction above is that algorithm B “prepares” a single signature to provide to A
without knowing a valid signing key, but only by programming the random oracle H0. When adversary A
generates a forgery, algorithm B knows two valid signatures under a single signing key and can immediately
deduce the signing key, which contains the discrete log solutions to the public key components.

The unforgeability experiment for aggregate signatures in Definition 3.5 is identical to the standard
unforgeability experiment for one-time signatures except for the structure of an adversary’s forgery. Instead
of outputting a message-signature pair, an adversary now produces a set of public keys PK = (pki)i∈[N],
messages M = (mi)i∈[N], and a signature σag such that

gσag =
∏
i∈[N]

(hcii,0 · hi,1)ti , (3.1)

where pki = (hi,0, hi,1), ci ← H0(mi) for i ∈ [N], and (t1, . . . , tN)← H1(PK,M). Now, simply applying the
same reduction algorithm B above does not work since the additional public-key components prevent B from
deriving a linear relation to solve. Therefore, to emulate the proof strategy above, we must simplify (3.1) by
rewinding (Lemma 2.3).

Since the hash function H1 is modeled as a random oracle, a reduction algorithm B can program its output
H1(PK,M) for any query (PK,M) that an adversary A makes. Hence, we define algorithm B to simulate two
executions of the aggregate unforgeability experiment in exactly the same way except for when the adversary
A makes a random oracle query on the set of public keys PK = (pki)i∈[N] and messages M = (mi)i∈[N] that it
will eventually forge on. For simplicity, suppose that pk1 = pk∗ corresponds to B’s (the challenger’s) public
key that it generates at the start of the experiment. Then during the first execution of the experiment,
algorithm B samples (t1, t2, . . . , tN)←$ ZNp and programs H1(PK,M)← (t1, t2, . . . , tN). During the second
experiment, it samples t′1 ←

$ Zp and programs H1(PK,M)← (t′1, t2, . . . , tN). Now suppose that adversary A
produces a valid forgery corresponding to the exact set of public keys PK = (pki)i∈[N], M = (mi)i∈[N] in both
executions of the experiment to produce signatures σag and σ′ag respectively. Then, these two signatures must
satisfy the verification relation

gσag = (hc11,0 · hi,1)t1
∏

i∈[N]\{1}

(hcii,0 · hi,1)ti ,

gσ
′
ag = (hc11,0 · hi,1)t

′
1

∏
i∈[N]\{1}

(hcii,0 · hi,1)ti .

10

Dividing the second relation onto the first relation, algorithm B can now remove the additional public key
components from the group relations:

gσag−σ′ag = (hc11,0 · hi,1)t1−t
′
1 .

Converting the group relation above as a linear relation over the exponents, the reduction algorithm B can
now solve for the discrete log challenge with high probability as before.

We note that the reduction algorithm B above succeeds only if adversary A produces a valid forgery on
the same set of public keys and messages. There are other set of bad events that may force the reduction
algorithm to fail as well. For instance, if t1 = t′1, then the reduction algorithm B above fails. The bulk of the
proof constitutes carefully bounding the probability that any of these bad events occur.

Remark 3.10 (Optimization). For practical implementations of group-based constructions, we generally
work over elliptic curve groups G of order p where p is a 256-bit prime. For Construction 3.6, we can optimize
the performance of the verification algorithm by restricting the output of the hash function H1 to a subset
R = {1, . . . , 2128} or R = {−264, . . . , 264} in Zp:

H1 : {0, 1}∗ → R∗.

The reduction loss in Theorem 3.9 remains the same except for the additive factors 1/p, which becomes
1/|R| = 1/2128. This optimization still provides a very reasonable security guarantee for practice. Since
the exponents ti’s now live in a smaller set, the verification algorithm is guaranteed to execute smaller
exponentiation operations.

Remark 3.11 (Extension to stateless k-time signatures). We note that by allowing the signing algorithm to
be stateful, any one-time signature scheme can be easily converted into a k-time signature scheme (for a priori
bounded k) by invoking k parallel instances of the one-time signature scheme. A signing key can consist of
k independent signing keys that are produced from the key-generation algorithm. To sign a message, the
signing algorithm uses one of the k signing keys to generate a signature. However, to prevent double signing
on any of the k signing keys, the signing algorithm must remember all the keys that were previously used,
making it a stateful algorithm.

For the case of Construction 3.6, we can extend the scheme to a k-time signature scheme with a stateless
signing algorithm. Instead of defining the public key to be a pair of group elements h0, h1 ∈ G, we define
the public key to consist of k + 1 group elements h0, . . . , hk ∈ G. A signing key consists of the discrete
log of these elements x0, . . . , xk ∈ Zp. To generate a signature on a message m, the signing algorithm sets
σ ← x0 + c1 · x1 + . . .+ ck · xk where (c1, . . . , ck)← H0(m) and H0 :M→ Zkp is a hash function that maps

messages to vectors in Zkp. This signature can be verified by the group relation

gσ = h0 ·
∏
i∈[N]

hcii .

It can be easily checked that the signatures that are generated in this way are also aggregatable in the same
way as in Construction 3.6.

The proof of Theorem 3.9 can be extended to show that this extension of the Bellare-Shoup signature
scheme is k-time secure. As described in the proof overview above, we prove that Construction 3.6 is one-time
secure by constructing a reduction algorithm B that can “prepare” a single signature to provide to an
adversary A by programming the hash function H0. When A produces a forgery, B combines the linear
relation that is induced by the signature that it generated itself and the signature generated by A to solve a
discrete log challenge. For the extension to a k-time secure scheme as above, we can modify B such that it
prepares k signatures to provide to A by programming the random oracle H0 on k different messages. At
this point, B knows exactly k linear relations over k + 1 unknown variables. When A produces a forgery, B
can now solve for k + 1 variables over k + 1 linear relations and solve a discrete log challenge.

Although this extension of the construction and the proof is natural, it is ideal only for small values of
k. The reason is that in order to use the rewinding lemma (Lemma 2.3), the actual proof of Theorem 3.9
require guessing arguments whose success probability degrades expoentially as k grows.

11

Remark 3.12 (Schnorr Signatures). The Bellare-Shoup one-time signature scheme is fundamentally related
to the Schnorr identification scheme [Sch91]. Specifically, a public key in the Bellare-Shoup signature scheme
can be viewed as consisting of a prover’s public key in the Schnorr identification protocol along with its
first message in the protocol. A Bellare-Shoup signature then consists of the prover’s second message in the
protocol.

The Schnorr identification protocol can be alternatively compiled into a full-fledged Schnorr signature
scheme using the Fiat-Shamir transform [FS86]. Instead of including the first message of the identification
protocol into the public key, the Schnorr signature scheme includes both the prover’s first and the second
protocol messages in the signature itself. With this interpretation, a Bellare-Shoup signature can be viewed
as consisting of the “half” of Schnorr’s signature.

Therefore, Construction 3.6 and Theorems 3.7, 3.8, and 3.9 show that Schnorr signatures are also partly
aggregatable. Although this property of the Schnorr signature scheme is folklore, we are unaware of any
previous work that rigorously proves this fact. It is also useful to note that by our discussion preceding
Construction 3.6, aggregating Schnorr signatures by simply “adding” the relevant components together is
susceptible to rogue attacks. Our construction shows how to securely aggregate the relevant components of
Schnorr signatures in a secure way.

Remark 3.13 (Okamoto Protocol). The main property of the Bellare-Shoup signature scheme that we used
to construct an aggregate signature scheme is the linearity of the decryption algorithm. The linear decryption
algorithm allowed multiple signatures to be added together, and we used the unpredictability of hash functions
to prevent rogue attacks. This technique can be applied to existing signature schemes that have similarly
linear decryption algorithms over groups. For instance, the Okamoto identification protocol [Oka92] can be
extended into an aggregatable one-time signature scheme as in Construction 3.6.

4 Aggregatable OTS from Lattices

In this section, we show how to aggregate the Lyubashevsky-Micciancio one-time signature scheme [LM08].
The Lyubashevsky-Micciancio signature scheme has a similar structure to the Bellare-Shoup signature scheme,
but over the ring R that can be instantiated over either integer or ideal lattices (see Section 2.2). Technically,
the Lyubashevsky-Micciancio one-time signature scheme works in the standard model. In this section, we
present the random-oracle variant of the construction as it simplifies the analysis and we must work in the
random-oracle model to prevent rogue attacks regardless.

In the Lyubashevsky-Micciancio one-time signature scheme, the public parameters include a vector of ring
elements a ∈ R`q, which is analogous to a group generator in the Bellare-Shoup scheme. A public key consists
of two ring elements v0, v1 ∈ Rq, and the corresponding secret key consists of a vector of short ring elements
s0, s1 ∈ R` such that aᵀs0 = v0 and aᵀs1 = v1. A signature σ for a message m is defined as σ ← s0 · c+ s1

where c← H(m) and H is a hash function that maps messages to short elements in R.2 The signature can
be verified by the relation aᵀσ = v0 · c+ v1.

As in the case of Bellare-Shoup, a natural way to aggregate these signatures is to add them together over
the ring R. However, like before, we use an additional hash function H ′ that maps public keys and messages
to short elements in R to prevent rogue attacks. We define the aggregate signature of a set of signatures to
be the weighted sum of the signatures with respect to the hash of the corresponding public keys and messages
as in Construction 3.6.

We note that since signatures in the Lyubashevsky-Micciancio scheme consist of short vectors in R`,
their (weighted) sum does increase the norm of the final signature. For instance, when aggregating N
signatures, the final signature will have a greater norm compared to the individual signatures by a factor of
N . When considering the actual bit-length of an aggregate signature, an increase in the norm by a factor of
N only increases the size of the aggregate signature by a logarithmic factor. Hence, this way of aggregation

2We note that since R can be a non-commutative ring, whether we multiply c to s0 on the left or right impacts the correctness
condition of the scheme.

12

does satisfy our compactness requirement in Definition 3.2. This logarithmic increase in size for signature
aggregation appears to be inherent for any SIS-based signatures in general.

We formally define an aggregate one-time signature scheme based on the Lyubashevsky-Micciancio scheme
below. For the presentation of the construction, we use Bβ for β ∈ N to denote the set of ring elements in R
with norm at most β: Bβ = {r ∈ R : ‖r‖ ≤ β} ⊆ R. As in Construction 3.6, we rely on hash functions with
dynamic output.

Construction 4.1. Let `, q, βs, β0, β1 and βver be positive integers and let R be a ring. Fix a message M
and let H0 :M→ Bβ0

, H1 : {0, 1}∗ → (Bβ1
)∗ be two hash functions. We construct an aggregate signature

scheme as follows:

• PrmsGen(1λ)→ pp: On input a security parameter λ, the parameter generation algorithm generates a
uniformly random vector of ring elements a←$ R`q and sets pp = a.

• KeyGen(pp)→ (sk, pk): On input the public parameters pp, the key generation algorithm samples two
vectors of ring elements s0, s1 ←$ B`βs

. It then defines v0 ← aᵀs0, v1 ← aᵀs1 and sets

sk = (s0, s1), pk = (v0, v1).

• Sign(sk,m) → σ: On input a signing key sk = (s0, s1) and a message m ∈ M, the signing algorithm
computes the hash c← H0(m). It sets σ ← s0 · c+ s1 and returns σ.

• SigAgg(PK,M,Σ)→ σag: On input a set of public keys PK = (pki)i∈[N], messages M = (mi)i∈[N], and
signatures (σi)i∈[N], the aggregation algorithm computes the hash (t1, . . . , tN)← H1(PK,M) in (Bβ1

)N .
It then defines the aggregate signature as

σag ←
∑
i∈[N]

σi · ti,

and returns σag ∈ R`.

• Verify(PK,M, σ)→ {0, 1}: On input a set of public keys as PK = (pki)i∈[N], messages M = (mi)i∈[N],
and a signature σ, the verification algorithm first parses the public keys pki = (vi,0, vi,1) for i ∈ [N]. It
then computes the hash values

– ci ← H0(mi) for i ∈ [N],
– (t1, . . . , tN)← H1(PK,M),

and then verifies the following conditions:

– aᵀ · σ =
∑
i∈[N](vi,0 · ci + vi,1) · ti,

– ‖σ‖ ≤ βver.

If both of these conditions are true, then the algorithm accepts the signature (outputs 1) and otherwise,
it rejects (outputs 0).

We now state the compactness, correctness, and security properties of Construction 4.1.

Theorem 4.2 (Compactness). Let n = poly(λ) be a positive integer, R = Zn×n or R = Z[X]/(Xn + 1), and
suppose that the parameters `, q, βs, β0, β1 = poly(λ) are set as any polynomial functions over λ. Then, the
aggregate signature scheme in Construction 4.1 is compact (Definition 3.2).

Theorem 4.3 (Correctness). Suppose that the parameters of Construction 4.1 are set such that the ring R
is instantiated as either R = Zn×n or R = Z[X]/(Xn + 1) for a positive integer n, and that the inequality
βver ≥ Nnβsβ1(nβ0 + 1) holds. Then, Construction 4.1 is correct (Definition 3.3).

13

Theorem 4.4 (Security). Suppose that the parameters of Construction 4.1 are instantiated such that the
ring R is instantiated as either R = Zn×n or R = Z[X]/(Xn + 1) for a positive integer n, and that
2βsβ1(nβ0 + 1) < q. Additionally, suppose that

• when R = Zn×n, the inequality 2βs + 1 ≥ q1/` · 2λ/n` holds.

• when R = Z[X]/(Xn + 1), the inequality 2βs + 1 ≥ q1/` · 2λ/n` holds.

With these parameter settings, assume that the SIS problem SISR,`,q,β? for β? = 3 ·βver + (nβsβ0 +βs) · 2nβ1 +
(nβ0 + 1)βs is hard. Then Construction 4.1 satisfies unforgeability (Definition 3.5).

More precisely, suppose that there exists an adversary A in the unforgeability experiment EXPAS,OT[λ,A] that
makes at most Q0 random-oracle queries to H0 and Q1 random-oracle queries to H1, such that

ε = Pr
[
EXPAS,OT[λ,A]

]
.

Then, there exists an SIS algorithm B such that(
ε− 1

|Bβ1
|

)
· 1

Q0 ·Q1
· 1

|M|
≤
√

2 · AdvSISR,`,q,β? [λ,B].

We provide formal proofs of the theorems above in Definition B. We provide an overview of the security proof
below.

Security proof overview. Although the Bellare-Shoup signature scheme and the Lyubashevsky-Micciancio
signature scheme have similar algebraic structures, the approaches that are needed to prove their security are
different. Let us first ignore signature aggregation and just consider these constructions as one-time signature
schemes. To prove that the Bellare-Shoup scheme is secure, we construct a reduction algorithm that takes a
discrete log challenge and simulates the unforgeability experiment without knowing a valid signing key for
the experiment. To prove that the Lyubashevsky-Micciancio scheme is secure, we instead define a reduction
algorithm B that knows a valid signing key for the entire duration of the unforgeability experiment that it
simulates. Specifically, interacting with an adversary A, algorithm B simulates the unforgeability experiment
as follows:

1. Given an SIS challenge a ∈ R`q, algorithm B generates the signing and public keys exactly as in the key
generation algorithm

sk = (s0, s1), pk = (v0, v1).

2. Using the signing key sk, B simulates the rest of the unforgeability experiment exactly as in the
unforgeability experiment.

3. At the end of the experiment, suppose that adversary A produces a valid forgery (m, σ) such that
aᵀσ = v0 · c+ v1 where c← H0(m). At this point, B generates its own signature σ′ on the same message
m using its own signing key. If σ = σ′, then B fails to solve the SIS challenge. However, if σ 6= σ′, then
by the property of the verification condition, σ − σ′ ∈ R is a short solution to the SIS challenge.

The main technical part of the proof is on bounding the probability that σ 6= σ′.
Now consider the unforgeability experiment for aggregatable signatures (Definition 3.5). In this experiment,

an adversary can produce a set of public keys PK = (pki)i∈[N], messages M = (mi)i∈[N], and a signature σag
such that

aᵀσag =
∑
i∈[N]

(vi,0 · ci + vi,1) · ti,

where pki = (vi,0, vi,1), ci ← H0(mi) for i ∈ [N], and (t1, . . . , tN)← H1(PK,M). The additional public-key
components prevent the reduction algorithm B above from using σag to generate a solution to an SIS challenge.
As in the proof of security for Construction 3.6, we use rewinding so that B can remove these additional

14

public-key components. Specifically, algorithm B simulates two executions of the aggregate unforgeability
experiment identically except for the way it programs the random oracle H1 on the set of public keys
PK = (pki)i∈[N] and messages M = (mi)i∈[N] that adversary A will forge on. Suppose that pk1 in PK
corresponds to the public key that B (the challenger) generated at the start of the experiment. Then, in the
first execution, B samples (t1, t2, . . . , tN)←$ BNβ1

and programs H1(PK,M)← (t1, t2, . . . , tN). In the second
execution, B samples t′1 ←

$ Bβ1
and programs H1(PK,M)← (t′1, t2, . . . , tN).

Now suppose that adversary A produces two valid forgeries corresponding to PK and M in both executions
of the experiment to produce σag and σ′ag. These signatures must satisfy the verification relation

aᵀσag = (v1,0 · c1 + v1,1) · t1 +
∑

i∈[N]\{1}

(vi,0 · ci + vi,1) · ti,

aᵀσ′ag = (v1,0 · c1 + v1,1) · t′1 +
∑

i∈[N]\{1}

(vi,0 · ci + vi,1) · ti.

By subtracting the two relations, algorithm B can remove the extra public key components

aᵀ(σag − σ′ag) = (vi,0 · c1 + v1,1) · (t1 − t′1).

Since B generated the public key components vi,0 and vi,1 itself, it knows the corresponding signing keys
s0, s1 for vi,0, vi,1 such that aᵀs0 = v1,0 and aᵀs1 = v1,1. Hence, algorithm B can deduce the relation

aᵀ(σag − σ′ag) = aᵀ(s0 · c1 + s1) · (t1 − t′1),

which implies that (σag − σ′ag)− (s0 · c1 + s1) · (t1 − t′1) is a potential short solution to the SIS challenge as
long as it is not an identically zero ring element. The bulk of the proof is in showing that this is indeed the
case with constant probability. In the proof, we also bound the probability of a series of bad events that can
cause the reduction algorithm to fail as in the proof of Definition 3.9.

Remark 4.5 (Optimization for R = Zn×n). One can naturally optimize Construction 4.1 over integer
lattices (R = Zn×n) by working with vectors as opposed to only matrices. By modifying the hash function H1

to output short vectors in Zn as opposed to short matrices in Zn×n, the final aggregated signature becomes
a short vector in Zn as opposed to matrices Zn×n. The proofs of correctness (Definition 4.3) and security
(Definition 4.4) can be extended to this setting in a straightforward way.

One can naturally consider further shrinking the parameters of Construction 4.1 by working with vectors.
For instance, by setting s1 to be vectors in (Zn)` as opposed to matrices in (Zn×n)`, and then working with
message hash functions H0 that map messages to short vectors in (Zn)` as opposed to short matrices in
(Zn×n)n, we can greatly shrink the size of the public/secret keys as well as the signatures. When signature
aggregation is not a concern, then this optimized construction can be shown to satisfy both correctness and
security as a one-time signature scheme. However, now that the signatures themselves become vectors, the
output of the hash function H1 must be short scalar values in Z, which causes the scheme to be insecure.
As shown in Theorem 4.4, it is important that the output space of the hash function H1 have have size at
least 2λ.

4.1 Setting the parameters

Theorems 4.2, 4.3 and 4.4 give some flexibility into how we can set the concrete parameters for applications.

• We can first set n to be large enough to prevent existing attacks on the SIS or Ring-SIS problem. For
the case SIS, n = 640 is a reasonable choice to provide sufficient security against classical attacks and
n = 768 is a reasonable choice for sufficient quantum security. For the Ring-SIS problem, n = 1048 can
be reasonable for both classical and quantum security.

15

• Next, the modulus q can be set according to implementation considerations and the maximum number
of signatures N that require aggregation for a particular application. A reasonable choice for q can
be either a 24-bit prime, in which case elements in Zq fit into a 3-byte unsigned integer, or a 32-bit
prime, in which case elements fit into a 4-byte unsigned integer. The former case can safely support a
small number of aggregation up to N = 32, and the latter case can safely support aggregation of up to
N = 1024 signatures.

• Next, there is a trade-off between the vector length ` and the norm bounds βs, β0, and β1 for the secret
key and the hash functions. One way to set these parameters is to first set β0 = β1 = 1 to minimize
type conversions on binary outputs of hash functions. Then, we can set ` = 2dlog qe and βs to be the
smallest positive integer such that the security conditions of Theorem 4.4 are satisfied.

• Finally, once all the parameters above are set, the signature norm bound βver can be set to be large
enough such that the correctness condition in Theorem 4.4 are satisfied, but still smaller than the
modulus q.

5 Aggregate Signatures with Interaction

Although Constructions 3.6 and 4.1 are applicable to many practical scenarios such as blockchains, the
fact that a single signing key can be used to sign only a single message can be a limiting factor for other
applications. In this section, we define aggregate signatures with an interactive signing procedure. Instead of
requiring that the signing and signature aggregation algorithms to be completely non-interactive algorithms
as defined in Section 3, we allow signers to jointly generate compact signatures in an interactive protocol.
This relaxation of the model can still be reasonable for many applications and it allows us to construct an
aggregate signature scheme from lattices that allow unbounded re-use of signing keys (see Section 6).

In our interactive aggregate signature definition, the syntax of the parameter generation, key generation,
and signature verification algorithm remains unchanged from Definition 3.1. However, the separate signature
generation and signature aggregation algorithms are replaced with a joint protocol among a pre-determined
set of signers. Suppose that N number of signers wish to generate a joint signature on a set of messages
M = (mi)i∈[N]. At the start of the protocol, each signer i ∈ [N] has access to its own signing key ski and
a message mi to sign as well as the public keys PK = (pki)i∈[N] of other participants (co-signers) of the
protocol. At the end of the protocol, each signer can generate a short signature σag that certifies each
messages m1, . . . ,mN under each of the public keys pk1, . . . , pkN .

Definition 5.1 (Interactive Aggregate Signatures). An interactive aggregate signature scheme Π↔AS for a
message spaceM is a tuple of efficient algorithms Π↔AS = (PrmsGen,KeyGen,Sign↔,Verify) with the following
properties:

• PrmsGen(1λ): On input a security parameter λ, the parameter generation algorithm returns a set of
public parameters pp.

• KeyGen(pp)→ (sk, pk): On input a set of public parameters pp, the key generation algorithm returns a
signing key sk and a public key pk.

• Sign↔
〈
(PK, ski,mi)i∈[N]

〉
→ σag/⊥: The signing protocol is run by a set of signers in the system.

– Start of the protocol: Each signer i ∈ [N] holds a set of public keys PK = (pkj)j∈[N], its own
signing key ski, and a message to sign mi ∈M.

– End of the protocol: Each signer i ∈ [N] holds an aggregate signature σag that authenticates
all messages M = (mi)i∈[N] under the public keys PK = (pki)i∈[N].

• Verify(PK,M, σag) → {0, 1}: On input a set of public keys PK = (pki)i∈[N], a set of messages M =
(mi)i∈[N], and a signature σag, the verification algorithm either accepts (outputs 1) or rejects (outputs
0).

16

Similarly to a non-interactive aggregate signature scheme, we enforce a compactness requirement on the final
signatures of the signing protocol in order to rule out trivial constructions.

Definition 5.2 (Compactness). Let Π↔AS be an interactive aggregate signature scheme for a message space
M. We say that Π↔AS is compact if there exists a polynomial poly(·) and a negligible function negl(·) such
that for all security parameter λ, number of signers N ∈ N, and messages m1, . . . ,mN ∈M, if we set

1. pp← PrmsGen(1λ),
2. (ski, pki)← KeyGen(pp) for i ∈ [N],
3. σag ← Sign↔

〈
(PK, ski,mi)i∈[N]

〉
,

then we have
Pr
[
|σag| ≤ poly(λ, logN)

]
= 1− negl(λ),

where |σag| is the bit-length of σag.

For the correctness condition, we can define an analogous definition to Definition 3.3 where the signing
protocol produces a verifying signature with overwhelming probability. However, since the signing procedure
is a protocol as oppose to a single signing algorithm, it is useful to relax this condition and allow the signing
protocol to successfully produce a signature with only a constant probability. With sequential or parallel
repetition, such a protocol can be upgraded into a protocol that succeeds to produce a valid signature with
overwhelming probability.

Definition 5.3 (Correctness). Let Π↔AS be an interactive aggregate signature scheme for a message space
M. We say that Π↔AS is correct if for all security parameter λ ∈ N, number of signers N ∈ N, and messages
m1, . . . ,mN ∈M, there exists a constant C ∈ N such that

Pr
[
Verify(PK,M, σag) = 1

]
= 1/C,

where pp ← PrmsGen(1λ), (ski, pki) ← KeyGen(pp) for i ∈ [N], σag ← Sign↔pp
〈
(PK, ski,mi)i∈[N]

〉
, PK =

(pki)i∈[N], and M = (mi)i∈[N].

Finally, we define the unforgeability experiment for an interactive aggregate signature scheme. The unforge-
ability security experiment is largely similar to Definition 3.4 except for the way an adversary’s signing query
is defined. Since there exists no single signing algorithm that an adversary can get access to, we allow the
adversary to be able to instantiate the signing protocol with the challenger. An adversary does this by first
submitting a set of public keys PK = (pkj)j∈[N] and a set of messages M = (mj)j∈[N] to the challenger. For a
valid initiation of the protocol, there must exist an index i ∈ [N] for which pki corresponds to the challenger’s
public key that it provides to the adversary at the start of the experiment. Once an initialization of the
signing protocol is made, the challenger plays the role of the ith signer in the protocol while the adversary
plays the role of the rest of the signers in the protocol. We allow the adversary to pause a protocol and
instantiate a new signing protocol at any point in the experiment. Hence, an adversary can participate in
multiple parallel executions of the signing protocol throughout the experiment.

Definition 5.4 (Unforgeability). Let ΠAS be an interactive aggregate signature scheme for a message space
M. For a security parameter λ ∈ N and an adversary A, we define the signature unforgeability experiment
ExptAS↔ [λ,A] as follows:

1. pp← PrmsGen(1λ),
2. (sk∗, pk∗)← KeyGen(pp),
3. (PK,M, σag)← ASign↔〈 · 〉(pp, pk∗),
4. Output Verify(PK,M, σag).

where the oracle Sign↔〈 · 〉 is defined as follows:

17

• A valid signing query consists of a set of public keys PK = (pkj)j∈[N] and a set of messages M = (mj)j∈[N]

where pki = pk∗ for some i ∈ [N].

Each query (PK,M) instantiates a new signing protocol between a challenger and the adversary A. The
challenger plays the role of the signer with input (PK, sk∗,mi) and the adversary plays the role of the
other signers.

For each protocol, the adversary A can submit new signing queries at any point in the experiment such
that multiple protocols run concurrently.

We say that A is an admissible adversary for the unforgeability experiment if the following holds: for any
PK = (pkj)j∈[N] that it returns at the end of the experiment, we have pki = pk∗ for some i ∈ [N], and A
never initiated a protocol with (PK,M) as an input. We say that an interactive aggregate signature scheme
Π↔AS is unforgeable if for all efficient and admissible adversaries A, we have

Pr
[
ExptAS↔ [λ,A] = 1

]
= negl(λ).

6 Aggregate Signatures via Interaction from Lattices

In this section, we present our interactive aggregate signature scheme that allow unbounded key-reuse. We
first provide an overview of our construction in Section 6.1. Then, we establish basic notations and recall basic
facts on the discrete Gaussian distribution in Section 6.2. We provide the formal construction description in
Section 6.3 and its proofs in Appendix C.

6.1 Construction Overview

Our interactive aggregate signature scheme is inspired by the Bellare-Neven [BN06] aggregate signature
scheme, which is also an extension of Schnorr signatures [Sch91]. We briefly recall these schemes to provide
more context for our lattice-based scheme.

Schnorr and Bellare-Neven signatures. The Schnorr signature scheme is based on the Schnorr identifi-
cation protocol [Sch91] that works over a group G of prime order p with a generator g ∈ G. The public key
of a user in the system consists of a group element h ∈ G and the corresponding secret key is the discrete log
of the public key: x ∈ Zp such that gx = h. To prove knowledge of the secret exponent x, the prover (user)
and a verifier proceeds as follows:

1. The prover generates a random exponent y ←$ Zp and sends its commitment w ← gy to the verifier.

2. The verifier sends a random challenge c←$ Zp to the prover.

3. The prover provides z ← c · x+ y ∈ Zp to the verifier.

Using standard arguments, one can show that the protocol is sound and honest-verifier zero-knowledge. The
protocol can be compiled into a non-interactive signature scheme using the Fiat-Shamir transform [FS86]. A
signature σ then consists of the prover’s first and second messages σ = (w, z) where c is derived from both
the hash of the prover’s public key and the message to be signed.

It is natural to ask whether the Schnorr signatures can be aggregated. Indeed, it is possible to aggregate
the second components of Schnorr signatures as demonstrated in Section 3.2 (see Remark 3.12). However,
one can quickly realize that any algebraic approach to aggregating the first components is difficult as they
must be fed into a hash function that is modeled as a random oracle in order to verify the signature.

The Bellare-Neven overcomes this issue by allowing the signing algorithm to be interactive. Suppose that
there are N number of signers indexed by i = 1, . . . , N that wish to sign messages m1, . . . ,mN respectively.
Each signer i ∈ [N] holds a signing key xi ∈ Zp corresponding to its public key hi = gxi . Then the signers
can jointly generate a short signature that authenticates the entire set of messages as follows:

18

1. Each user i ∈ [N] generates a random exponent yi ←$ Zp and broadcasts its commitment wi ← gyi to
other signers.

2. Upon receiving the commitments from other signers, each signer i aggregates the commitments into a
group product w? ←

∏
i∈[N] wi and uses it to proceed with the rest of the Schnorr protocol. Namely,

it computes zi ← ci · xi + yi where ci ∈ Zp is the hash of the entire set of public keys, messages, the
signer index, and the aggregated commitments. It broadcasts the components zi to other signers.

3. Finally, upon receiving the components z1, . . . , zN , each signer aggregates these components z? ←∑
i∈[N] zi and defines the final signature to be

(
w?, z?

)
.

Since all the exponents c1, . . . , cN are now derived from the aggregated commitment w?, correctness of the
interactive signature scheme can be easily verified. Bellare-Neven [BN06] showed that with an additional
round of hash commitments to wi’s at the start of the protocol, the protocol can be shown to be secure.

Lyubashevsky signatures and our construction. Given the relation between the Schnorr and Bellare-
Neven signature schemes as discussed above, there is a natural starting point to constructing an interactive
aggregate signature scheme for lattices: the Lyubashevsky’s identification protocol [Lyu08, Lyu12]. Lyuba-
shevsky’s protocol is a natural lattice analogue to the Schnorr identification protocol that works over a ring
R with a public vector a ∈ R`q. A user’s public key consists of a ring element v ∈ Rq and the corresponding

secret key is a short vector s ∈ R` such that aᵀs = v. To prove knowledge of the secret key s, the prover and
a verifier proceeds in the protocol as follows:

1. The prover generates a short vector y ∈ R` and sends its commitment w ← aᵀy ∈ Rq to the verifier.

2. The verifier sends a random challenge c to the prover. The challenge c is a short ring element in R.

3. With certain probability, the prover sends z ← s · c + y ∈ R` to the verifier (see rejection sampling
below).

At the end of the protocol, the verifier can check whether aᵀz = v · c+ w and whether z has a small norm.
With a proper rejection sampling mechanism that is incorporated into the final round, the protocol can be
shown to be secure as an identification protocol [Lyu08, Lyu12].

Our interactive aggregate signature scheme then works similarly to the Bellare-Neven construction in
the context of Lyubashevsky’s protocol. As above, suppose that there are N number of signers indexed by
i = 1, . . . , N that wish to sign messages m1, . . . ,mN respectively. Each signer i ∈ [N] holds a signing key
si ∈ R` corresponding to its public key vi = aᵀsi. Then, the signers can jointly generate a short signature
that authenticates the messages as follows:

1. Each user i ∈ [N] generates a short vector yi ∈ R` and broadcasts its commitment wi ← aᵀyi ∈ Rq to
other signers.

2. Upon receiving the commitments from other signers, each signer i aggregates the commitments into
a sum w? ←

∑
i∈[N] wi and uses it to proceed with the rest of Lyubashevsky’s protocol. Namely, it

computes zi ← si · ci + yi where ci ∈ R is derived from w?. It broadcasts the component zi to other
signers.

3. Finally, upon receiving the components z1, . . . , zN , each signer aggregates these components z∗ ←∑
i∈[N] zi and defines the final signature to be (w?, z∗).

Taking advantage of the linear verification condition, we can check the validity of an aggregated signature as
before. In our formal protocol, we incorporate the additional round of hash commitments to wi’s at the start
of the protocol as in the Bellare-Neven protocol.

Rejection sampling. Although our construction is analogous to the Bellare-Neven protocol, there is an
additional technical challenge that we have to address in our protocol related to rejection sampling. In the

19

Lyubashevsky’s scheme, the prover at the last step of the protocol (step 3 above) must reject the proof and
output ⊥ with certain probability. This step is called “rejection sampling” and it ensures that no information
about the secret key s is leaked from the last message z = s · ci + y. This step is needed because the vector y
is only a short vector in R` that cannot completely randomized z in the entire space of R`, unlike in the
discrete log setting. The correctness (completeness) of the protocol can still be achieved with either sequential
or parallel repetition of the protocol.

To prove the security of our protocol, we must incorporate rejection sampling in our protocol as well.
Specifically, when a signer computes the aggregated commitments w? and computes zi ← s · ci + yi, it flips a
coin and either broadcasts zi to the other signers or notifies them that it rejected the signature. At the end
of the protocol, if at least one of the signers rejected the signature, the final signature also becomes ⊥.

In Section 6.4, we set the parameter of our protocol such that each signer rejects with a low enough
probability so that the entire protocol rejects with at most a constant probability. If we want the protocol
to produce a valid signature except with negligible probability, we can apply either sequential or parallel
repetition of the protocol. Such repetition does increase the size of the total communication in the protocol,
but the resulting aggregate signature still remains the same size.

6.2 Background on Gaussian Distribution and Rejection Sampling

We define the Gaussian function on Rn with Gaussian parameter s ∈ R+ that is centered at c ∈ Rn as follows:

∀ x ∈ Rn, ρs,c(x) = exp(−π ‖x− c‖2 /s2).

For any c ∈ Rn and Gaussian parameter s ∈ R+, we define the discrete Gaussian distribution over Zn denoted
Ds,c : Zn → R as follows:

∀ x ∈ Zn, Ds,c(x) =
ρs,c(x)

ρs,c(Zn)
.

When c = 0 ∈ Zn, then we simply write Ds in place of Ds,c.
We can naturally extend the discrete Gaussian distribution over Zn to the rings R = Zn×n and R =

Z[X]/(Xn + 1). When R = Zn×n, we define the discrete Gaussian distribution DR,s,c for c ∈ R to be the
distribution where each column of the matrix in Zn×n is distributed as in the discrete Gaussian distribution
over Zn. When R = Z[X]/(Xn + 1), we define the discrete Gaussian distribution DR,s,c for c ∈ R to be
the distribution where the n coefficients of the polynomial in Z[X]/(Xn + 1) are distributed as a discrete
Gaussian vector over Zn. The discrete Gaussian distribution can then be extended to vectors of ring elements
R` for any ` ∈ N in a natural way. We denote this discrete Gaussian distribution over R` as D`R,s,c where

s ∈ R+ and c ∈ R`.
For the proofs for Construction 6.7, we make use of a number of standard facts on the discrete Gaussian

distribution. We recall these facts in this subsection. The following lemma bounds the norm of a discrete
Gaussian sample in R.

Lemma 6.1 ([Lyu12, Lemma 4.4]). Let n and ` be positive integers, s ∈ R+ a Gaussian parameter, and let
R = Zn×n or R = Z[X]/(Xn + 1). Then for any positive integer k > 1, we have

Pr
z←D`R,s

[
‖z‖ > k · s

]
≤ 2e

−k2
2 .

The following lemma bounds the ratio of two discrete Gaussian distributions with different centers. The
lemma applies to both settings of R = Zn×n and R = Z[X]/(Xn + 1).

Lemma 6.2 ([Lyu12, Lemma 4.5 adapted]). Let n, `, and N be positive integers and let R = Zn×n or
R = Z[X]/(Xn + 1). Then, for any v ∈ R` and s = ω

(
‖v‖
√

log n · log
(
N/(N − 1)

))
, we have

Pr
z←D`R,s

[
D`R,s(z)

D`R,s,v(z)
= O

(N

N − 1

)]
= 1− ` · 2−ω(logn).

20

Next, we recall the standard rejection sampling lemma of Lyubashevsky [Lyu12].

Lemma 6.3 (Rejection Sampling Lemma [Lyu12]). Let n and ` be positive integers, R be a ring, V be
any set, and h : V → R, f : R` → R be probability distributions. Suppose that gv : R` → R is a family of
probability distributions indexed by v ∈ V with the following property: there exist M, ε ∈ R such that for all
v ∈ V and z ∈ R`,

Pr
z←f

[
M · gv(z) ≥ f(z)

]
≥ 1− ε.

Then, the output distributions of the following two algorithms have statistical distance at most ε/M :

• Sample v ← h, z← gv, and return (z, v) with probability f(z)/(M · gv(z)).

• Sample v ← h, z← f , and return (z, v) with probability 1/M .

Finally, we recall the leftover hash lemma [HILL99]. For concreteness, we present the leftover hash lemma
applied to each specific rings of R = Zn×n and R = Z[X]/(Xn + 1).

Lemma 6.4 (Leftover Hash Lemma over R = Zn×n). Let n, `, q be positive integers such that ` ≥ 2 log q, let
R = Zn×n be a ring of integer matrices, and let s = ω(

√
log n) be a Gaussian parameter. Then, for a←$ R`q,

y← D`R,s, and u←$ Rq, we have

∆
(
(a,aᵀy), (a, u)

)
≤ n · q−n.

Lemma 6.5 (Leftover Hash Lemma over R = Z[X]/(Xn + 1)). Let n, `, q be positive integers, R =
Z[X]/(Xn + 1) be a ring of polynomials, and let s = ω(

√
log n) be a Gaussian parameter. Furthermore,

suppose that n is power-of-two integer, ` ≥ 2 log q, and q is set such that Rq = Zq[X]/(Xn + 1) is a field.
Then, for a←$ R`q, y← D`R,s, and u←$ Rq, we have

∆
(
(a,aᵀy), (a, u)

)
≤ q−n.

We now state a core lemma that we use in the security proof for Construction 6.7 (Theorem 6.10).

Lemma 6.6. Let n, `, q, βs, β1, and N be positive integers, R = Zn×n or R = Z[X]/(Xn + 1) be a ring,
and s = ω

(
n · βsβ1

√
log n · log

(
N/(N − 1)

))
be a Gaussian parameter such that the conditions of Lemma 6.4

or Lemma 6.5 are satisfied. Then, there exists a constant M ∈ R such that the following two distributions are
within statistical distance N−1

N · 2−ω(logn).

• Real distribution:

1. Sample a←$ R`q, s←$ B`βs
, and set v ← aᵀs ∈ Rq.

2. Sample y← D`R,s, c←
$ Bβ1 , and set z← s · c+ y ∈ R, w ← aᵀy ∈ Rq.

3. Let pacc = min

(
N−1
N

D`R,s(z)

D`R,s,s·c(z)
, 1

)
. Then:

– With probability pacc, return (a, s, w, z). (accept)

– With probability 1− pacc, return (a, s, w,⊥). (reject)

• Ideal distribution:

1. Sample a←$ R`q, s←$ B`βs
, and set v ← aᵀs ∈ Rq.

2. Sample z← D`R,s, c←
$ Bβ1

, and set w ← aᵀz− aᵀs · c.

3. Let pacc = N−1
N . Then:

– With probability pacc, return (a, s, w, z). (accept)

– With probability 1− pacc, return (a, s, w,⊥). (reject)

21

Proof. To prove the lemma, we show the following:

1. Let prealacc = min

(
N−1
N · D

`
R,s(z)

D`R,s,s·c(z)
, 1

)
and pidealacc = N−1

N . Then
∣∣prealacc − pidealacc

∣∣ = N−1
N · 2−ω(logn).

2. Given that the two distributions output accepting tuples, the two distributions have statistical distance
N−1
N · 2−ω(logn).

3. Given that the two distributions output rejecting tuples, the two distributions have statistical distance
2n · q−n.

Conditions 1 and 2 follow from Lemmas 6.2 and 6.3. Namely, using Lemma 6.2 and the bound s =
ω
(
‖s · c‖

√
log n · log

(
N/(N − 1)

))
= ω

(
n · βsβ1

√
log n log

(
N/(N − 1)

))
, there exists a constant M ∈ R such

that
Pr

z←D`R,s

[
M · D`R,s(z) ≥ D`R,s,s·c(z)

]
= 1− ` · 2−ω(logn).

Then, letting the set V to be B`β1
, distribution f to be D`R,s, and the function gv to be D`R,s,s·c in Lemma 6.3,

conditions 1 and 2 follow.
To show condition 3, we use the leftover hash lemma (Lemmas 6.4 and 6.5). Given that the real and ideal

distributions output rejecting tuple, the two distributions are identical except for the way the element w is
generated.

• In the real distribution, the element w is set to be w = aᵀy for y← D`R,s. Then, by the leftover hash

lemma, the element w is within n · q−n distance from a uniformly random element in Rq.

• In the ideal distribution, the element w is set to be w = aᵀz − aᵀs · c where z ← D`R,s and the
components s and c are independent of z. Therefore, by the leftover hash lemma, the vector w is within
n · q−n distance from a uniformly random element in Rq.

Combining conditions 1, 2, and 3, the lemma follows.

6.3 Formal Construction Description

In this section, we provide the formal description of our interactive aggregate signature construction. We
provide the main intuition behind the construction in Section 6.1.

Construction 6.7. Let `, q, r, βs, β1, and βver be positive integers and s ∈ R+ be a Gaussian parameter.
LetM be a message space and let H0 : R`q → {0, 1}r, H1 : {0, 1}∗ → Bβ1

be hash functions that are modeled
as random oracles. We construct an interactive aggregate signature scheme as follows:

• PrmsGen(1λ): On input a security parameter λ, the parameter generation algorithm samples a random
vector a←$ R`q and sets pp = a.

• KeyGen(pp): On input the public parameters pp = a, the key generation algorithm samples a short
vector s←$ B`βs

and defines v ← aᵀs ∈ Rq. It sets

sk = s, pk = v.

• Sign↔
〈
(PK, ski,mi)i∈[N]

〉
: Each signer i ∈ [N] has access to a list of public keys PK = (vj)j∈[N], its

own signing key ski = si, and a message mi ∈M that it seeks to sign. It proceeds in each round of the
protocol as follows:

– Round 1: Signer i samples a vector yi ←$ D`R,s and computes wi ← aᵀyi ∈ Rq. It computes a
hash commitment hi ← H0(wi) and sends hi ∈ {0, 1}r to each cosigners.

– Round 2: Signer i receives the hash commitments (hj)j∈[N]\{i} from the cosigners. It sends the
committed value wi to each cosigners.

22

– Round 3: Signer i receives (wj)j∈[N]\{i} from the cosigners. It proceeds as follows:

1. It verifies that hj = H0(wj) for all j ∈ [N]. It aborts the protocol and returns ⊥ if any of
these checks fail.

2. It computes wag ←
∑
j∈[N] wj and computes the hash ci ← H1(pki, wag,PK,mi).

3. It sets zi ← si · ci + yi. It sends zi to each cosigners with probability

(
N−1
N

D`R,s(zi)
D`R,s,s·ci (zi)

, 1

)
.

Otherwise, it sends abort to the signers to signal that it aborted.

If there exists at least one signer that aborted during the protocol, each signer returns ⊥. Otherwise,
at the end of the protocol, each signer i ∈ [N] holds the element wag ∈ Rq as well as the set of
vectors {zj}j∈[N]. Each signer sets zag ←

∑
j∈[N] zj and returns

σag =
(
wag, zag

)
.

• Verify(PK,M, σ): On input a set of public keys PK = (pki)i∈[N], messages M = (mi)i∈[N], and a signature
σ = (wag, zag), the verification algorithm computes ci ← H1(pki, wag,PK,mi) for i ∈ [N], and defines
vag ←

∑
i∈[N] vi · ci. It accepts the signature if both of the following conditions hold:

– aᵀzag = vag + wag,

– ‖zag‖ ≤ βver.

We now state the compactness, correctness, and security theorems for Construction 6.7.

Theorem 6.8 (Compactness). Let n = poly(λ) be a positive integer, R = Zn×n or R = Z[X]/(Xn + 1), and
suppose that the parameters `, q, βs, β1 = poly(λ) are set as polynomial functions over λ. Then, the aggregate
signature scheme in Construction 6.7 is compact (Definition 5.2).

Theorem 6.9 (Correctness). Suppose that the parameters of Construction 6.7 are set such that the ring R
is instantiated as either R = Zn×n or R = Z[X]/(Xn + 1) for a positive integer n, and that the inequality
N · (nβsβ1 + λ · s) ≤ βver holds. Then, Construction 6.7 is correct (Definition 5.3).

Theorem 6.10 (Security). Suppose that the parameters of Construction 6.7 are instantiated such that the ring
R is instantiated with either R = Zn×n or R = Z[X]/(Xn + 1) for a positive integer n, s = ω(n · βsβ1

√
log n)

such that Lemma 6.6, and that the parameters satisfy the conditions of the leftover hash lemma (Lemma 6.4
and 6.5). With these parameter settings, assume that the SIS problem SISR,`,q,β? for β? = 2βver + 2nβsβ1 is
hard. Then, the interactive aggregate signature scheme in Construction 6.7 satisfies unforgeability (Defini-
tion 5.4).

More precisely, suppose that there exists an adversary A in the unforgeability experiment ExptAS↔ [λ,A] that
makes at most Q0 random-oracle queries to H0, Q1 random-oracle queries to H1, and Qsign signing queries
such that

ε = Pr[ExptAS↔ [λ,A] = 1].

Then, there exists an SIS algorithm B such that

ε ≤ γ +
Q1 +Qsign

|Bβ1 |
+

√
(Q1 +Qsign) · AdvSISR,`,q,β? [λ,B] +

1

Bβs

,

where

γ =
N ·Qsign + (Q0 +N ·Qsign)

2

2r
+

2n ·Qsign

qn
+

1

|Bβ1
|

+
Qsign · 2−ω(logn)

M
.

23

We provide the formal proofs of the statements above in Appendix C.

Security proof overview. The proof of Theorem 6.10 uses the similar ideas that are used in the proof
of Construction 4.1. We construct a reduction algorithm B that given an SIS challenge a ∈ R`q runs two
executions of the unforgeability experiment for an adversary A. Algorithm B simulates A’s views of the two
experiments as follows:

• During the first execution, algorithm B generates a secret-public key pair (s∗, v∗) following the real
key-generation algorithm. It simulates the unforgeability experiment exactly as in Definition 5.4 using
its signing key.

• Suppose that at the end of the experiment, adversary A produces a valid forgery that consists of a set
of public keys PK = (pki)i∈[N], messages M = (mi)i∈[N], and signature σag = (wag, vag). For simplicity,
suppose that pk1 = pk∗.

• Since the hash function H1 is modeled as a random-oracle, A must have submitted a random-oracle
query on input (pk1, wag,PK,m1) to H1 during the first execution of the experiment to have any
non-negligible probability of succeeding in a forgery. Algorithm B rewinds the experiment to the point
when A makes this query. Starting from this point, algorithm B re-runs the unforgeability experiment
with fresh randomness.

• At the end of the second execution of the protocol, algorithm B receives another valid forgery that
consists of a set of public keys PK′ = (pk′i)i∈[N], messages M′ = (m′i)i∈[N], and signature σ′ag = (w′ag, v

′
ag).

Now, suppose that the two forgeries that B receives from A in the two executions are on the same set of
public keys and messages: PK = PK′ and M = M′. Then similarly to the proof of Construction 4.1, algorithm
B can deduce a potential solution to the SIS challenge a. Assuming that A’s two forgeries are valid, we have

aᵀzag = v1 · c1 +
∑

i∈[N]\{1}

vi · ci + wag,

aᵀz′ag = v1 · c′1 +
∑

i∈[N]\{1}

vi · c′i + w′ag,

where vi = pki for i ∈ [N] are the public key components, ci ← H1(pki, wag,PK,mi) for i ∈ [N] are the hash
outputs of H1 during the first execution of the experiment, and c′i ← H1(pki, w

′
ag,PK,mi) for i ∈ [N] are the

outputs of H2 during the second execution. Then as long as ci = c′i for all i ∈ [N]\{1} and wag = w′ag, the
verification relation above can be combined into a simple relation

aᵀ(zag − z′ag) = v1 · (c1 − c′1).

Since v1 = v∗ = aᵀs∗, algorithm B can now deduce a potential solution to the SIS challenge:

aᵀ
(
zag − z′ag − s∗(c1 − c′1)

)
= 0.

Using similar arguments as in the proof of Theorem 4.4 in combination with the rejection sampling lemma
(Lemma 6.6), we can bound the probability that the vector zag − z′ag − s∗(c1 − c′1) is a short non-zero vector.

The technical part of the proof is in the way algorithm B manipulates the two executions of the experiment
such that ci = c′i for i ∈ [N] and wag = w′ag. For this, we rely on the properties of the random-oracle in
combination with rewinding. Due to the hash commitments in the first round of each protocol, adversary
A is forced reveal any of its round 1 and round 2 messages of a protocol instance to B before the protocol
actually starts. This allows algorithm B to program the random-oracle H1 such that ci = c′i for i ∈ [N]\{1}
and wag = w′ag. We refer to Appendix C for the full details.

24

6.4 Setting the parameters

We can set the parameters similarly to Section 4.1 with the precise requirements on Theorems 6.8, 6.9
and 6.10.

• We can first set n to be large enough to prevent existing attack on the SIS or Ring-SIS problem. As was
the case for Construction 4.1, n = 640 (classical security) or n = 768 (quantum security) are reasonable
choices for the SIS instantiation of the construction. For the Ring-SIS instantiation, n = 1048 can be
reasonable for both classical and quantum security.

• Next, we can set the modulus q according implementation considerations and the maximum number of
signers N for an instance of the signing protocol. Compared to Construction 4.1, the signing protocol
in Construction 6.7 does not involve weighted sums of signatures and therefore, the norm of the
final signature can be smaller. However, the requirements for the rejection sampling lemma enforces
additional lower bound on the modulus q. As in Section 4.1, we can reasonably set q to be either a
24-bit prime or a 32-bit prime according to an upper bound on the number of signers in a particular
application.

• As in Section 4.1, we can set β1 = 1 for efficiency. The parameter r that determines the output of the
hash function H0 can be set to be 256. Then, it is reasonable to set ` = 2dlog qe, and then set βs and σ
to be the smallest positive integers such that Theorem 6.10 is satisfied.

• Finally, once all the parameters above are set, the signature norm bound βver can be set to be large
enough such that the correctness condition in Theorem 6.9 is satisfied, but still smaller than the
modulus q.

References

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC, 1996.

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive composition and
bootstrapping for SNARKS and proof-carrying data. In STOC’13, pages 111–120, 2013.

[BCJ08] Ali Bagherzandi, Jung-Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under the
discrete logarithm assumption and a generalized forking lemma. In CCS, 2008.

[BDE+13] Johannes Buchmann, Erik Dahmen, Sarah Ereth, Andreas Hülsing, and Markus Rückert. On
the security of the winternitz one-time signature scheme. International Journal of Applied
Cryptography, 3(1):84–96, 2013.

[BDN18a] Dan Boneh, Manu Drijvers, and Gregory Neven. Bls multi-signatures with public-key aggregation.
https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html, 2018.

[BDN18b] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller
blockchains. In ASIACRYPT, 2018.

[BGLS03] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In EUROCRYPT, 2003.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–
36, 2014.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In
ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, 2001.

25

https://crypto.stanford.edu/~dabo/pubs/papers/BLSmultisig.html

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In CCS, 2006.

[BNN07] Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Unrestricted aggregate signatures.
In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP 2007,
pages 411–422, 2007.

[BNPS03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-
more-rsa-inversion problems and the security of chaum’s blind signature scheme. Journal of
Cryptology, 16(3), 2003.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-diffie-hellman-group signature scheme. In PKC, 2003.

[BS08] Mihir Bellare and Sarah Shoup. Two-tier signatures from the fiat-shamir transform, with
applications to strongly unforgeable and one-time signatures. IET Information Security, 2(2):47–
63, 2008.

[BS16] Rachid El Bansarkhani and Jan Sturm. An efficient lattice-based multisignature scheme with
applications to bitcoins. In CANS 2016, pages 140–155, 2016.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained prfs for nc1 from lwe. In EURO-
CRYPT, 2017.

[CHK04] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-based
encryption. In EUROCRYPT 2004, pages 207–222, 2004.

[DDN03] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM Review,
45(4):727–784, 2003.

[DEF+19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory Neven, and
Igors Stepanovs. On the security of two-round multi-signatures. In 2019 IEEE S&P, pages
1084–1101. IEEE, 2019.

[DGNW19] Manu Drijvers, Sergey Gorbunov, Gregory Neven, and Hoeteck Wee. Pixel: Multi-signatures
for consensus. IACR Cryptol. ePrint Arch., 2019:514, 2019.

[DHSS20] Yarkın Doröz, Jeffrey Hoffstein, Joseph H. Silverman, and Berk Sunar. Mmsat: A scheme for
multimessage multiuser signature aggregation. Crypto ePrint Archive, Report 2020/520, 2020.
eprint.iacr.org/2020/520.

[EGM96] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital signatures. J. Cryptology,
9(1):35–67, 1996.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO, 1986.

[GR01] Rosario Gennaro and Pankaj Rohatgi. How to sign digital streams. Inf. Comput., 165(1):100–116,
2001.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HKW15] Susan Hohenberger, Venkata Koppula, and Brent Waters. Universal signature aggregators. In
EUROCRYPT, 2015.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. Ntru: A ring-based public key cryptosys-
tem. In ANTS, 1998.

26

eprint.iacr.org/2020/520

[IN83] Kazuharu Itakura and Katsuhiro Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC Research & Development, 71:1–8, 1983.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. Technical report,
Technical Report CSL-98, SRI International Palo Alto, 1979.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision
resistant. In ICALP, 2006.

[LM08] Vadim Lyubashevsky and Daniele Micciancio. Asymptotically efficient lattice-based digital
signatures. In TCC, 2008.

[LOS+06] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Sequential aggregate
signatures and multisignatures without random oracles. In EUROCRYPT, 2006.

[Lyu08] Vadim Lyubashevsky. Lattice-based identification schemes secure under active attacks. In
International Workshop on Public Key Cryptography, pages 162–179. Springer, 2008.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, 2012.

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way
functions. computational complexity, 16(4):365–411, 2007.

[MOR01] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures. In CCS,
pages 245–254. ACM, 2001.

[MPSW18a] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr multi-
signatures with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068, 2018.
https://eprint.iacr.org/2018/068.

[MPSW18b] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple schnorr multi-
signatures with applications to bitcoin. Cryptology ePrint Archive, Report 2018/068, 2018.
https://eprint.iacr.org/2018/068.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[Oka92] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding
signature schemes. In CRYPTO, 1992.

[OO99] Kazuo Ohta and Tatsuaki Okamoto. Multi-signature schemes secure against active insider
attacks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, 82(1):21–31, 1999.

[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions
on cyclic lattices. In TCC, 2006.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of cryptology, 13(3):361–396, 2000.

[RY07] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Securing multiparty
signatures against rogue-key attacks. In EUROCRYPT, 2007.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174,
1991.

27

https://eprint.iacr.org/2018/068
https://eprint.iacr.org/2018/068

A Proofs for Bellare-Shoup Signatures

A.1 Proof of Theorem 3.7

By construction, any signature that is output by the signing algorithm Sign or the signature aggregation
algorithm SigAgg consists of a single field element in Zp. Therefore, the size of an aggregate signature depends
only on the security parameter and is independent of the number of signatures that were aggregated.

A.2 Proof of Theorem 3.8

Fix a security parameter λ ∈ N, number of signers N ∈ N, and any set of messages M = (mi)i∈[N]. Let

pp ← PrmsGen(1λ), (ski, pki) ← KeyGen(pp) for i ∈ [N], and σi ← Sign(ski,mi) for i ∈ [N]. By definition,
each signing key consists of two field elements ski = (xi,0, xi,1) ∈ Z2

p, each public key consists of two group
elements pki = (hi,0, hi,1) ∈ G2, and each signature has the form σi = ci · xi,0 + xi,1 for i ∈ [N] and
ci ← H0(mi) for i ∈ [N]. The signature aggregation algorithm computes (t1, . . . , tN)← H1(PK,M) and sets
σag =

∑
i∈[N] ti · σi. Therefore, by linearity, the aggregated signature satisfies the relation

gσag = g
∑
i∈[N] ti·σi =

∏
i∈[N]

(
gσi
)ti

=
∏
i∈[N]

(
hcii,0 · hi,1

)ti
,

and the verification algorithm always accepts σag. The correctness follows.

A.3 Proof of Theorem 3.9

To prove Theorem 3.9, we first define a selective variant of the one-time unforgeability experiment of
Definition 3.5 where an adversary is forced to commit to its signing query at the start of the experiment. We
show that an adversary that wins in original experiment of Definition 3.5 can be converted into an adversary
that wins in the selective experiment with only a small loss in its winning advantage. Finally, we show that
an adversary that wins in the selective unforgeability experiment can be converted into an algorithm for
discrete log (Definition 2.1).

We first define the selective one-time unforgeability experiment. This security experiment is identical
to Definition 3.5 except that the adversary must commit to its signing query m̂ before the start of the
experiment.

Definition A.1 (Selective Unforgeability for OTS). Let ΠAS be an aggregate signature scheme for a message
space M. For a security parameter λ ∈ N and an adversary A = (A1,A2), we define the selective one-time
signature unforgeability experiment EXPsel

AS,OT[λ,A] as follows:

1. (m̂, state)← A1(1λ),
2. pp← PrmsGen(1λ),
3. (sk∗, pk∗)← KeyGen(pp),
4. σ̂ ← Sign(sk∗, m̂),
5. (PK,M, σag)← A2(state, pk∗, σ̂),
6. Output Verify(PK,M, σag).

We say that A is an admissible adversary for the selective unforgeability experiment if for any execution of
the experiment, the following holds: for any forgery (PK = (pki)i∈[N], M = (mi)i∈[N], σag) that it returns at
the end of the experiment, we have pki∗ = pk∗ for some i∗ ∈ [N], and mi∗ 6= m̂. We say that an aggregate
signature scheme ΠAS satisfies selective unforgeability if for all efficient and admissible adversaries A, we have

Pr
[
EXPsel

AS,OT[λ,A] = 1
]

= negl(λ).

We show that an adversary that wins in Definition 3.5 also wins in Definition A.1 without too much loss in
its winning probability. The following lemma follows by a simple guessing argument.

28

Lemma A.2. Let A be an adversary in EXPAS,OT[λ,A] (Definition 3.5) that makes at most Q0 random-oracle

queries to H0 and Q1 random-oracle queries to H1. Then, there exists an adversary B in EXPsel
AS,OT[λ,B]

(Definition A.1) that makes at most a single random-oracle query to H1 such that

Pr
[
EXPAS,OT[λ,A] = 1

]
≤ Q0 ·Q1 · |M| · Pr

[
EXPsel

AS,OT[λ,B] = 1
]

+
1

p
.

Proof. We construct an algorithm B, which uses A to break EXPsel
AS,OT[λ,B]. Algorithm B simulates the

experiment EXPAS,OT[λ,A] as follows:

• At the start of the experiment, B sample a random message m̂′ ←$ M and commits to m̂′ in
EXPsel

AS,OT[λ,B]. It receives a public key pk∗ = (h∗0, h
∗
1) and a signature σ̂ from the challenger. It

provides pk∗ to A. Then, it initializes two tables

– T0 :M→ Zp - used to answer A’s random oracle queries to H0 consistently.
– T1 : {0, 1}∗ → (Zp)∗ - used to answer A’s random oracle queries to H1 consistently.

Finally, B samples random indices j0 ←$ [Q0], j1 ←$ [Q1].

• Algorithm B simulates the responses to A’s queries as follows:

– Query to H0: For A’s jth
0 query mj0 to H0, algorithm B uses its challenger to simulate H(mj0).

Namely, it submits m̂′ (which it generated at the start of the experiment) as an oracle query to
H0 in EXPsel

AS,OT[λ,B], receives a response ĉ ∈ Zp, sets T0[mj0]← ĉ, and provides ĉ to A.

For the rest of A’s random oracle queries m to H0, algorithm B first checks if T0[m] = ⊥. If this
is the case, it samples a random element c ←$ Zp itself, sets T0[m] ← c, and provides c to A. If
T0[m] 6= ⊥, it simply provides c← T0[m] to A.

– Query to H1: For A’s jth
1 query (P̃K = (pki)i∈[N], M̃ = (mi)i∈[N]) to H1, algorithm B verifies

whether there exists an index i∗ such that pki∗ = pk∗. If no such index exists, then B aborts and
returns ⊥. Otherwise, it submits (P̃K, M̃) to its challenger, receives a response (t1, . . . , tN) ∈ ZNp ,

sets T1[P̃K, M̃]← (t1, . . . , tN) ∈ ZNp , and provides (t1, . . . , tN) to A.

For the rest of A’s random oracle queries (PK,M) to H1, algorithm B first checks if T1[PK,M] = ⊥.
If this is the case, then it samples a random vector (t1, . . . , tN)←$ ZNp , sets T1[PK,M]← (t1, . . . , tN),
and provides (t1, . . . , tN) to A. If T1[PK,M] 6= ⊥, it simply provides (t1, . . . , tN) ← T1[PK,M]
to A.

– Signing query : For A’s single signing query m̂, algorithm B provides σ̂ to A.

• At the end of the experiment, adversary A returns a forgery (PK,M, σ). Algorithm B first parses the
public keys PK = (pki)i∈[N] and messages M = (mi)i∈[N], and then verifies the following conditions:

– The message that A submitted to the signing oracle is equal to its jth
0 query to H0: m̂ = mj0 .

– The set of public keys and messages that A submitted as part of its forgery is equal to its jth
1

query to H1: (PK,M) = (P̃K, M̃).

– Let PK = (pki)i∈[N], M = (mi)i∈[N]. Then, there exists i∗ ∈ [N] such that pki∗ = pk∗. Furthermore,
m̂ 6= mi∗ .

If any of these conditions are not satisfied, then it outputs fail. Otherwise, algorithm B returns (PK,M, σ)
as its own forgery in EXPsel

AS,OT[λ,B].

To prove the lemma, we show that as long as B does not output fail at the end of the experiment:

1. Algorithm B correctly simulates the experiment EXPAS,OT[λ,A] for A.

2. If A successfully forges a signature in EXPAS,OT[λ,A], then B successfully forges a signature in

EXPsel
AS,OT[λ,B].

29

Then, we bound the probability that B does not output fail and that A successfully returns a forgery to
complete the proof.

Correctness of simulation. Suppose that B does not output fail at the end of the experiment. We note
that the way a challenger generates the public keys in EXPAS,OT[λ,A] and EXPsel

AS,OT[λ,B] are identical.
Furthermore, the way a challenger answers an adversary’s queries in the two experiments are also identical.
Therefore, the only component of B’s simulation that we must verify correctness of is B’s simulation of A’s
queries to H0 and H1 excluding its jth

0 and jth
1 queries to these hash functions respectively. By specification,

algorithm B provides A with uniformly sampled outputs c←$ Zp for H0 and (t1, . . . , tN)←$ ZNp for H0. Since
the hash functions H0 and H1 are modeled as random oracles and the outputs of these hash functions are
independent of the rest of A’s queries in the experiment assuming that m̂ = mj0 and (PK,M) = (P̃K, M̃), this
is a correct simulation.

Correctness of forgery. Suppose that B does not output fail at the end of the experiment and that A
returns a valid forgery (PK,M, σ) for PK = (pki)i∈[N], M = (mi)i∈[N]. Then by definition of a forgery in
EXPAS,OT[λ,A], it must be the case that

1. Verify(PK,M, σ) = 1,
2. pki∗ = pk∗ for some i∗ ∈ [N],
3. m̂ 6= mi∗ ,

where pk∗ is the public key that B provided to A during the query phase and m̂ is the single signing query
that A submitted during the signing query. To prove that (PK,M, σ) is also a valid forgery in EXPsel

AS,OT[λ,B],
we must show that

1. Verify(PK,M, σ) = 1
2. pki∗ = pk∗ for some i∗ ∈ [N],
3. m̂′ 6= mi∗ ,

where pk∗ is the public key that B receives from its challenger and m̂′ is the message that it commits at the
start of the experiment. Conditions 1 and 2 follows simply by specification of B. Furthermore, assuming that
B does not output fail, we have m̂′ 6= m̂ and therefore, condition 3 is also satisfied. Hence, assuming that B
does not output fail and that A returns a valid forgery for EXPAS,OT[λ,A], algorithm B also returns a valid

forgery for EXPsel
AS,OT[λ,B].

Probability of success. We bound the probability that B does not output fail and A succeeds in forging
a signature. Let PK = (pki)i∈[N], M = (mi)i∈[N], and σ be a forgery that A submits at the end of the
experiment. Let us define the following random variables:

• Let X0 denote the event that the message that A submits as its signing oracle, is equal to its jth
0 query

to H0: m̂ = mj0 .

• Let X1 denote the event that the set of public keys and messages, which A submits as part of its forgery,
is equal to its jth

1 query to H1: (PK,M) = (P̃K, M̃).

• Let X2 denote the event that m̂′ 6= mi∗ .

• Let Y denote the event that the adversary A outputs a valid forgery (PK,M, σ) for EXPAS,OT[λ,A].

• Let Z be the event that each message mi for i ∈ [N] is queried to H0 and (PK,M) is queried to H1

before the end of the experiment.

30

Then, we must bound the following probability:

Pr
[
X0 ∧X1 ∧X2 ∧ Y

]
= Pr

[
X0 ∧X1 ∧X2 ∧ Y ∧ Z

]
+ Pr

[
X0 ∧X1 ∧X2 ∧ Y ∧ Z̄

]
= Pr

[
X0 ∧X1 ∧X2 ∧ Y ∧ Z

]
≥ Pr

[
X0 ∧X1 ∧X2 | Y ∧ Z

]
· Pr

[
Y ∧ Z

]
= Pr

[
X0 ∧X1 ∧X2 | Y ∧ Z

]︸ ︷︷ ︸
q0

·
(

Pr
[
Y
]
− Pr

[
Y ∧ Z̄

]︸ ︷︷ ︸
q1

)
We bound each of the probabilities q0 and q1 as follows:

• q0: Algorithm B samples the indices j0 and j1 uniformly at random from [Q0] and [Q1] respectively.
Furthermore, the message m̂′ that B commits to in EXPsel

AS,OT[λ,B] is sampled uniformly at random
from M. Since the hash functions H0 and H1 are modeled as random oracles, the indices j0, j1, and
message m̂ that B samples during the setup phase of the experiment is independent of the views of
EXPAS,OT[λ,A] that B provides. Therefore, given the fact that mi for i ∈ [N] is queries to H0 and
(PK,M) is queried to H1, we have

q0 =
1

Q0 ·Q1
· 1

|M|
.

• q1: Since H0 and H1 are modeled as random oracles it is impossible for A to generate a valid forgery
with probability greater than 1/|Zp| = 1/p. Hence, q1 ≤ 1/p.

Combining the probabilities q0 and q1, we have

Pr
[
X0 ∧X1 ∧ Y

]
≥ 1

Q0 ·Q1
·
(

Pr
[
Y
]
− 1

p

)
,

and the lemma follows.

Lemma A.3. Let A be an adversary in EXPsel
AS,OT[λ,A] that makes at most a single random-oracle query to

H1 and let
εA = Pr[EXPsel

AS,OT[λ,A] = 1].

Then, there exists an algorithm B with DLogG advantage

ε2
A − εA/p ≤ AdvDLog[λ,A].

Proof. Let A be an adversary in the EXPsel
AS,OT[λ,A] that makes at most a single random-oracle query to H1.

To simplify the analysis of the proof, we make the following assumption on the adversary A:

• A makes the single oracle query to H1 (as opposed to making no oracle query to H1).

• Let PK = (pki)i∈[N], M = (mi)i∈[N] be A’s single oracle query to H1. Then, there exists some index i∗

such that pki∗ corresponds to the challenge public key that was generated by the challenger.

• A forges on PK and M.

If A violates any of these conditions, then it must inevitably have at most 1/p probability of forging a
signature as it cannot predict the output of the random oracle H1.

We construct an algorithm B that uses A to solve discrete log. Algorithm B simulates two instances of
the experiment EXPsel

AS,OT[λ,A]. After one execution of EXPsel
AS,OT[λ,A], it rewinds A to the point it makes

the single oracle query to H1 and executes the experiment once again. From the two forgeries that it receives
from A in the two executions of the experiment, B solves its discrete log challenge. Formally, algorithm B
simulates the two executions of the experiment EXPsel

AS,OT[λ,A] as follows:

31

• At the start of the experiment, algorithm B receives a discrete log challenge ĥ ∈ G as well as A’s
committed message m̂ ∈M. It first samples random elements σ̂, ĉ←$ Zp. Then, it sets the public key
pk∗ = (h∗0, h

∗
1) as follows:

– h∗0 ← ĥ,

– h∗1 ← gσ̂/(h∗0)ĉ,

and provides pk∗ to A. Finally, B initializes a table T : M → Zp that will be used to answer A’s
random oracle queries to H0 consistently.

• For each of A’s queries, algorithm B responds as follows. By assumption, adversary A makes a single
random-oracle query to H1.

– Queries to H0: When A submits m̂, algorithm B returns c0. For all other messages, it responds
with a random element in Zp. Namely, on a query m, algorithm B checks if T[m] 6= ⊥. If this is
the case, then it returns T[m]. Otherwise, it samples c←$ Zp, sets T[m]← c, and returns c to A.

– Query to H1: Let PK = (pki)i∈[N], M = (mi)i∈[N] be A’s single query to H1. Let i∗ ∈ [N] be the
index for which pki∗ = pk∗. Algorithm B samples elements t1, . . . , tN ←$ Zp and t′i∗ ←

$ Zp. On the
first execution of the experiment, it provides (t1, . . . , ti∗−1, ti∗ , ti∗+1, . . . , tN) to A. On the second
execution of the experiment, it provides (t1, . . . , ti∗−1, t

′
i∗ , ti∗+1, . . . , tN) to A.

– Signing query : For A’s single signing query m̂, algorithm B provides σ̂ for both executions of the
experiment.

• At the end of the two executions of EXPsel
AS,OT[λ,A], algorithm B holds two forgeries that are output

by A: (PK0,M0, σ0), (PK1,M1, σ1). It checks the following conditions:

– PK0 = PK1 and M0 = M1,

– Verify(PK0,M0, σ0) = 1 and Verify(PK1,M1, σ1) = 1,

– ti∗ 6= t′i∗ .

If any of the conditions above are not satisfied, then B outputs Fail. Otherwise, it looks up ci∗ ← T[mi∗]
and returns (

(σ0 − σ1)(ti∗ − t′i∗)−1 − σ̂
)
(ci∗ − ĉ)−1 ∈ Zp,

as the solution to the discrete log challenge ĥ.

To prove the lemma, we first show that as long as B does not output Fail at the end of the experiment:

1. Algorithm B correctly simulates an execution of EXPsel
AS,OT[λ,A] for A.

2. If A successfully forges signatures in EXPsel
AS,OT[λ,A], then B successfully solves the discrete log of ĥ.

Then, we bound the probability that B does not output Fail and that A successfully forges the signatures in
the two executions of the experiment to complete the proof.

Correctness of simulation. The correctness of the simulation follows straightforwardly from the specifica-
tion of algorithm B and experiment EXPsel

AS,OT[λ,A]. Each of the public key components h∗0, h∗1 in pk∗ are
distributed uniformly in G. Furthermore, the signature σ, and the hash value c0 ← H0(m̂) are distributed
uniformly in Zp under the condition that gσ = (h∗0)c0 ·h∗1 exactly as in EXPsel

AS,OT[λ,A]. Therefore, B simulates
A’s queries to H0 and the signing oracle for the message m̂ correctly. For the rest of A’s queries to H0 and
H1, the correctness of B’s simulation follows immediately from its specification.

Correctness of forgery. Suppose that A successfully generates a forgery in the two executions of the
experiment,(PK0,M0, σ0), (PK1,M1, σ1), and that B does not return Fail at the end of its simulation. Then,
by definition, we have

32

• PK0 = PK1 and M0 = M1,

• Verify(PK0,M0, σ0) = Verify(PK1,M1, σ1) = 1.

Let PK0 = PK1 = (hi,0, hi,1)i∈[N] and M0 = M1 = (mi)i∈[N]. Let i∗ ∈ [N] be the index for which
(hi∗,0, hi∗,1) = (h∗0, h

∗
1). Then, by the definition of the verification algorithm Verify, we have

gσ0 = (hci∗i∗,0 · hi∗,1)ti∗
∏

i∈[N]\{i∗}

(hcii,0 · hi,1)ti ,

gσ1 = (hci∗i∗,0 · hi∗,1)t
′
i∗

∏
i∈[N]\{i∗}

(hcii,0 · hi,1)ti ,

where ci ← H0(mi) for i ∈ [N] and the values (t1, . . . , ti∗−1, ti∗ , ti∗+1, . . . , tN) and (t1, . . . , ti∗−1, t
′
i∗ , ti∗+1,

. . . , tN) are the outputs of H1(PK,M) in each of the two executions of EXPsel
AS,OT[λ,A]. Combining these two

relations, we have

gσ0−σ1 =
(
(h∗0)ci∗ · h∗1

)ti∗−t′i∗ ,
and hence,

g(σ0−σ1)·(ti∗−t′i∗)−1

= (h∗0)ci∗ · h∗1.

Now, using the fact that gσ̂ = (h∗0)ĉ · h∗1, we have

g(σ0−σ1)·(ti∗−t′i∗)−1−σ̂ = (h∗0)ci∗−ĉ.

Therefore,
(
(σ0 − σ1) · (ti∗ − t′i∗)−1 − σ̂

)
· (ci∗ − ĉ)−1 is a valid solution to the discrete log challenge ĥ = h∗0.

Probability of success. To bound the abort probability, we use the rewinding lemma (Lemma 2.3). We
first define the following random variables that models an execution of EXPsel

AS,OT[λ,A]:

• Let X be all the quantities that B provides to A up to and including the query to H1 and its response,
but excluding ti∗ and t′i∗ .

• Let Y and Y ′ be ti∗ and t′i∗ respectively.

• Let Z be all the quantities that B provides to A in the first execution of the experiment following A’s
query to H1.

• Let Z ′ be all the quantities that B provides to A in the second execution o the experiment following
A’s query to H1.

The random variables (X,Y, Z) corresponds to the view that B provides to A in the first execution of
EXPsel

AS,OT[λ,A], and (X,Y ′, Z ′) corresponds to A’s view in the second execution of EXPsel
AS,OT[λ,A]. To

bound B’s abort probability at the end of its simulation, let f(X,Y, Z) be the function that outputs 1 if and
only if a forgery (PK,M, σ) that A outputs during an execution of EXPsel

AS,OT[λ,A] is valid. Then, letting
ε = Pr[f(X,Y, Z) = 1], the probability that B aborts the experiment is bounded by

Pr[f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y 6= Y ′] ≥ ε2 − ε/p,

by Lemma 2.3. By definition, we have

Pr[f(X,Y, Z) = 1] = Pr[EXPsel
AS,OT[λ,A] = 1],

and the lemma now follows.

33

B Proofs for Lyubashevsky-Micciancio Signatures

B.1 Proof of Theorem 4.2

Fix a security parameter λ ∈ N, number of signers N ∈ N, and any set of message M = (mi)i∈[N]. Let

pp ← PrmsGen(1λ), (ski, pki) ← KeyGen(pp) for i ∈ [N], and σi ← Sign(ski,mi) for i ∈ [N]. By definition,
each signing key consists of two vectors of ring elements (si,0, si,1) ∈ (B`βs

)2, and each signature has the
form σi = si,0 · ci + si,1 for i ∈ [N] and ci ← H0(mi) in Bβ0 . The signature aggregation algorithm computes
(t1, . . . , tN)← H1(PK,M) in BNβ1

and sets σag =
∑
i∈[N] σi · ti. Therefore, we can bound the norm of σag using

the triangle inequality:

‖σag‖ =

∥∥∥∥∥∥
∑
i∈[N]

σi · ti

∥∥∥∥∥∥
≤ N · n ‖ti‖ ‖σi‖
≤ Nnβ1 ‖si,0 · ci + si,1‖
≤ Nβ1

(
n ‖ci‖ ‖si,0‖+ ‖si,1‖

)
≤ Nnβ1(nβ0βs + βs)

= Nn(nβ0 + 1)β1βs.

Therefore, the bit size of σag is poly(λ, logN).

B.2 Proof of Theorem 4.3

Fix a security parameter λ ∈ N, number of signers N ∈ N, and any set of messages M = (mi)i∈[N]. Let

pp ← PrmsGen(1λ), (ski, pki) ← KeyGen(pp) for i ∈ [N], and σi ← Sign(ski,mi) for i ∈ [N]. By definition,
each signing key consists of two vectors of ring elements (si,0, si,1) ∈ (Bmβs

)2, each public key consists of two

ring elements (vi,0, vi,1) ∈ R2, and each signature has the form σi = si,0 · ci + si,1 for i ∈ [N] and ci ← H0(mi)
in Bβ0 . The signature aggregation algorithm algorithm computes (t1, . . . , tN)← H1(PK,M) in BNβ1

and sets
σag =

∑
i∈[N] σi · ti. Therefore, by linearity, the aggregated signature satisfies the relation

aᵀσag = aᵀ

∑
i∈[N]

σi · ti

 = aᵀ

∑
i∈[N]

(si,0 · ci + si,1) · ti

 =
∑
i∈[N]

(vi,0 · ci + vi,1) · ti.

Therefore, it is sufficient to show that ‖σag‖ ≤ Nn(nβ0 + 1)β1βs. This follows by the same triangle inequality
used in the proof of Theorem 4.2 above. The correctness now follows.

B.3 Proof of Theorem 4.4

As in the proof of Theorem 3.9, we use the selective variant of the one-time unforgeability experiment
(Definition 3.5) where the adversary is forced to commit to its signing query at the start of the experiment.
We can show that an adversary that wins in the original experiment of Definition 3.5 can be converted into
an adversary that wins in the selective experiment with only a small loss in its winning advantage. The proof
of the following lemma is identical to that of Lemma A.2.

Lemma B.1. Let A be an adversary in EXPAS,OT[λ,A] (Definition 3.5) that makes at most Q0 random-oracle

queries to H0 and Q1 random-oracle queries to H1. Then, there exists an adversary B in EXPsel
AS,OT[λ,B]

(Definition A.1) that makes at most a single random-oracle query to H1 such that

Pr
[
EXPAS,OT[λ,A] = 1

]
≤ Q0 ·Q1 · |M| · Pr

[
EXPsel

AS,OT[λ,B] = 1
]

+
1

|Bβ1
|
.

34

Proof. Identical to the proof of Lemma A.2.

As in the proof of Theorem 3.9, we show that an adversary that wins in the selective experiment can be
converted into an algorithm for the SIS problem (Definition 2.2). To do this, we crucially rely on the fact
that when we use Construction 4.1 to instantiate Definition 3.5, there exists at least two signing keys that
can potentially explain the view of the adversary. Before presenting our main security lemma, we state the
properties that we need in the following lemmas.

Integer Lattices. We first state the properties that we need when we instantiate the ring R to be the ring
of integer matrices. The first lemma states that when we use Construction 4.1 to instantiate the one-time
unforgeability experiment, there exist at least two signing keys that can explain an adversary’s view.

Lemma B.2 ([LM08, Lemma 4.4]). Let n, `, q and βs be positive integers, R = Zn×nq be the ring of integer

matrices, and suppose that 2βs + 1 ≥ q1/` · 2λ/n`. Then, for any a ∈ R`q and c ∈ Bβ0
, we have

Pr
s0,s1←rBβs

[
∃ s′0, s

′
1 ∈ B`βs

: aᵀs0 = aᵀs′0 ∧ aᵀs1 = aᵀs′1 ∧ s0 · c+ s1 = ·s′0 · c+ s′1
]

= 1− 2−λ.

The next lemma states that once an adversary comes up with a forgery, there exists only a unique signing
key that can explain both the adversary’s view in the unforgeability experiment and its forgery.

Lemma B.3. Let n, `, q, βs, β0, and β1 be positive integers such that 2βsβ1(nβ0 + 1) < q and R = Zn×n. Let
c, ĉ ∈ Bβ0 , σ, σ̂ ∈ R, t ∈ Bβ1 be any set of ring elements such that det(c− ĉ) and det(t) 6= 0. Then, there is
at most a single set of vectors s0, s1 ∈ B`βs

such that

• s0 · c+ s1 = σ,
• (s0 · ĉ+ s1) · t = σ̂.

Proof. Let (s0, s1), and (s′0, s
′
1) be any two pairs of vectors in B`βs

such that

• s0 · c+ s1 = s′0 · c+ s′1 = σ,
• (s0 · ĉ+ s1) · t = (s′0 · ĉ+ s′1) · t = σ̂.

These relations can be re-written as

• (s0 − s′0) · c+ (s1 − s′1) = 0,
• (s0 − s′0) · ĉ · t+ (s1 − s′1) · t = 0.

We note that since t ∈ Bβ1
, c ∈ Bβ0

, and s0, s
′
0, s1, s

′
1 ∈ Bβ1

, we have ‖(s0 − s′0) · c+ (s1 − s′1)‖ ≤ 2βs(nβ0 +1)
and ‖(s0 − s′0) · c · t+ (s1 − s′1) · t‖ ≤ 2βsβ1(nβ0 + 1). Now, we can rewrite first relation

(s0 − s′0) + (s1 − s′1) · c = 0 =⇒ (s0 − s′0) · c · t+ (s1 − s′1) · t = 0.

The two relations then imply that
(s0 − s′0) · (c− ĉ) · t = 0.

Since 2βsβ1(nβ0 + 1) < q and since det(c− ĉ) 6= 0 and det(t) 6= 0, we have s0 = s′0. This also implies that
s1 = s′1 by the first relation and the lemma follows.

Ideal Lattices. We state the analogous properties as in Lemma B.2 and Lemma B.3 in the following two
lemmas.

Lemma B.4 ([LM08, Lemma 4.9]). Let n, `, q and βs be positive integers, R = Z[X]/(Xn + 1) polynomial
ring, and suppose that βs

`n ≥ 2λβ0
nqn. Then, for any a ∈ R`q and c ∈ Bβ0 , we have

Pr
s0,s1←rBβs

[
∃ s′0, s

′
1 ∈ B`βs

: aᵀs0 = aᵀs′0 ∧ aᵀs1 = aᵀs′1 ∧ s0 · c+ s1 = s′0 · c+ s′1
]

= 1− 2−λ.

35

Lemma B.5. Let `, q, βs, β0, and β1 be positive integers, n a power-of-two positive integer, R = Z[X]/(Xn+1)
polynomial ring, and suppose that q is a prime such that 2βsβ1(nβ0 + 1) < q. Let c, ĉ ∈ Bβ0 , σ, σ̂ ∈ R,
t ∈ Bβ1

be any set of ring elements such that c 6= ĉ and t 6= 0. Then, there is at most a single set of vectors
s0, s1 ∈ Bβs such that

• c · s0 + s1 = σ,
• t · (ĉ · s0 + s1) = σ̂.

Proof. The proof is identical to Lemma B.3. Let (s0, s1), and (s′0, s
′
1) be any two pairs of vectors in B`βs

such
that

• s0 · c+ s1 = s′0 · c+ s′1 = σ,
• (s0 · ĉ+ s1) · t = (s′0 · ĉ+ s′1) · t = σ̂.

These relations can be re-written as

• (s0 − s′0) · c+ (s1 − s′1) = 0,
• (s0 − s′0) · ĉ · t+ (s1 − s′1) · t = 0.

We note that since t ∈ Bβ1
, c ∈ Bβ0

, and s0, s
′
0, s1, s

′
1 ∈ Bβ1

, we have ‖(s0 − s′0) · c+ (s1 − s′1)‖ ≤ 2βs(nβ0 +1)
and ‖(s0 − s′0) · c · t+ (s1 − s′1) · t‖ ≤ 2βsβ1(nβ0 + 1). Now, we can rewrite first relation

(s0 − s′0) + (s1 − s′1) · c = 0 =⇒ (s0 − s′0) · c · t+ (s1 − s′1) · t = 0.

The two relations then imply that
(s0 − s′0) · (c− ĉ) · t = 0.

Since 2βsβ1(nβ0 + 1) < q and since R is an integral domain, we have s0 = s′0. This also implies that s1 = s′1
by the first relation. The lemma follows.

Main lemma. We now prove the main technical lemma, which states that an adversary that wins in the
selective one-time unforgeability experiment can be converted into an algorithm for the SIS problem.

Lemma B.6. Suppose that the parameters of Construction 4.1 is set such that the ring R is instantiated as
either R = Zn×n or R = Z[X]/(Xn + 1) for a positive integer n, and that 2βsβ1(nβ0 + 1) < q. Additionally,
suppose that

• when R = Zn×n, the inequality 2βs + 1 ≥ q1/` · 2λ/n` holds.

• when R = Z[X]/(Xn + 1), the inequality 2βs + 1 ≥ q1/` · 2λ/n` holds.

With these parameter settings, let A be an adversary in EXPsel
AS,OT[λ,A] that makes at most a single random-

oracle query to H1 with advantage

εA = Pr
[
EXPsel

AS,OT[λ,A] = 1
]
.

Then, there exists an algorithm B with SISn,m,q,β? advantage

ε2
A − εA/|Bβ1 | ≤ 2 · SISn,m,q,β? [λ,A],

for β? = 3 · βver + (nβsβ0 + βs) · 2nβ1 + (nβ0 + 1)βs.

Proof. Let A be an adversary in the EXPAS,OT[λ,A] that makes at most a single random-oracle query to H1.
As in the proof of Lemma A.3, we make the following assumption on the adversary A:

• A makes the single oracle query to H1.

• Let PK = (pki)i∈[N], M = (mi)i∈[N] be A’s single oracle query to H1. Then, there exists some index i∗

such that pki∗ corresponds to the challenge public key that was generated by the challenger.

36

• A forges on PK and M.

If A violates any of these conditions, then it must inevitably have at most 1/|Bβ1 | probability of forging a
signature as it cannot predict the output of the random oracle H1.

We construct an algorithm B that uses A to solve the SISn,m,q,β? problem. Algorithm B simulates two
instances of the experiment EXPAS,OT[λ,A]. After one execution of EXPAS,OT[λ,A], it rewinds A to the point
it makes the single oracle query to H1 and executes the experiment once again. From the two forgeries
that it receives from A in the two executions of the experiment, B solves its SISn,m,q,β? challenge. Formally,

algorithm B simulates the two executions of the experiment EXPsel
AS,OT[λ,A] as follows:

• At the start of the experiment, algorithm B receives an SISn,m,q,β? challenge a ∈ R`q. It samples two
vectors s∗0, s

∗
1 ←

$ Bβs and sets the public key pk∗ = (v∗0 , v
∗
1) as follows:

– v∗0 ← aᵀs∗0,

– v∗1 ← aᵀs∗1.

It provides pk∗ to A. Algorithm B then initializes a table T :M→ Bβ0
that will be used to answer A’s

random oracle queries to H0 consistently.

• For each of A’s queries, algorithm B responds as follows. By assumption, adversary A makes a single
random-oracle query to H1.

– Queries to H0: For each of A’s queries m, algorithm B checks if T[m] = ⊥. If this is the case, then
it samples c←$ Bβ0

, sets T[m] = c, and returns c to A. If T[m] 6= ⊥, then it returns T[m] to A.

– Query to H1: Let PK = (pki)i∈[N], M = (mi)i∈[N] be A’s single query to H1. Let i∗ ∈ [N] be
the index for which pki∗ = pk∗. Algorithm B samples elements t1, . . . , tN ← Bβ1

and t′i∗ ← Bβ1
.

On the first execution of the experiment, it provides (t1, . . . , ti∗−1, ti∗ , ti∗+1, . . . , tN) to A. On the
second execution of the experiment, it provides (t1, . . . , ti∗−1, t

′
i∗ , ti∗+1, . . . , tN) to A.

– Signing query : For A’s single signing query m̂, algorithm B queries ĉ ← H0(m̂) and returns
s∗0 · ĉ+ s∗1 to A.

• At the end of the two executions of EXPAS,OT[λ,A], algorithm B holds two forgeries that are output
by A: (PK0,M0, σ0), (PK1,M1, σ1). It checks the following conditions:

– PK0 = PK1 and M0 = M1,

– Verify(PK0,M0, σ0) = 1 and Verify(PK1,M1, σ1) = 1,

– ti∗ 6= t′i∗ .

– σ? = (σ0 − σ1)− (ti∗ − t′i∗)(ci∗s∗0 + s∗1) + (σ̂ − ĉ · s∗0 − s∗1) 6= 0,

If any of the conditions above are not satisfied, then B outputs Fail. Otherwise, it returns σ? as its
solution to the SISn,m,q,β? challenge a.

To prove the lemma, we first show that as long as B does not output Fail at the end of the experiment:

1. Algorithm B correctly simulates an execution of EXPAS,OT[λ,A] for A.

2. If A successfully forges signatures in EXPAS,OT[λ,A], then B successfully solves the SIS challenge A.

Then, we bound the probability that B does not output Fail and that A successfully forges the signatures in
the two executions of the experiment to complete the proof.

Correctness of simulation. The correctness of simulation follows immediately from the specification of B.
Algorithm B generates the signing key sk = (s∗0, s

∗
1) and public key pk = (v∗0 , v

∗
1) exactly as in the specification

of KeyGen, and it simulates the single signing query according to Sign in Construction 4.1. For each of A’s
random-oracle queries, B replies with uniformly random samples from the range of H0 and H1.

37

Correctness of forgery. Suppose that A successfully generates a forgery in the two executions of the
experiment, (PK0,M0, σ0), (PK1,M1, σ1), and that B does not return Fail at the end of its simulation. Then,
we have

• PK0 = PK1 and M0 = M1,
• Verify(PK0,M0, σ0) = Verify(PK1,M1, σ1) = 1,
• σ? = (σ0 − σ1)− (s∗0 · ci∗ + s∗1)(ti∗ − t′i∗) + (σ̂ − s∗0 · ĉ− s∗1) 6= 0.

Let PK0 = PK1 = (vi,0, vi,1)i∈[N] and M0 = M1 = (mi)i∈[N]. Let i∗ ∈ [N] be the index for which
(vi∗,0, vi∗,1) = (v∗0 , v

∗
1). Then, by the definition of the verification algorithm Verify, we have

aᵀσ0 = (v∗0 · ci∗ + v∗1) · ti∗ +
∑

i∈[N]\{i∗}

(vi,0 · ci + vi,1) · ti,

aᵀσ1 = (v∗0 · ci∗ + v∗1) · t′i∗ +
∑

i∈[N]\{i∗}

(vi,0 · ci + vi,1) · ti,

where ci ← H0(mi) for i ∈ [N] and the values (t1, . . . , ti∗−1, ti∗ , ti∗+1, . . . , tN) and (t1, . . . , ti∗−1, t
′
i∗ , ti∗+1, . . . , tN)

are the outputs of H1(PK,M) in each of the two executions of EXPAS,OT[λ,A]. Combining these relations, we
have

aᵀ(σ0 − σ1) = (v∗0 · ci∗ + v∗1)(ti∗ − t′i∗),

and hence, using the fact that v∗0 = aᵀs∗0 and v∗1 = aᵀs∗1, we have

aᵀ
(
(σ0 − σ1)− (s∗0 · ci∗ + s∗1)(ti∗ − t′i∗)

)
= 0.

Now, given that aᵀσ̂ = v∗0 · ĉ+ v∗1 = aᵀ(s∗0 · ĉ+ s∗1), we have

aᵀ
(
(σ0 − σ1)− (s∗0 · ci∗ + s∗1)(ti∗ − t′i∗) + (σ̂ − s∗0 · ĉ− s∗1)

)
= 0.

Therefore, as long as ‖σ?‖ = ‖(σ0 − σ1)− (s∗0 · ci∗ + s∗1)(ti∗ − t′i∗) + (σ̂ − s∗0 · ĉ− s∗1)‖ ≤ β?, the vector σ? is
a valid solution to the SISn,m,q,β? challenge. Since Verify(PK0,M0, σ0) = Verify(PK1,M1, σ1) = 1, we have
‖σ0‖ , ‖σ1‖ ≤ Nn(nβ0 + 1)β1βs = βver. Therefore, we can bound the norm of σ? as follows:

‖σ?‖ ≤ ‖σ0 − σ1‖+ ‖(s∗0 · ci∗ + s∗1)(ti∗ − t′i∗)‖+ ‖σ̂ − s∗0 · ĉ− s∗1‖
≤ 2 · βver + (nβsβ0 + βs) · 2nβ1 + βver − nβsβ0 + βs

= 3 · βver + (nβsβ0 + βs) · 2nβ1 + (nβ0 + 1)βs.

Hence, σ? is a valid solution to SISn,m,q,β? for β? = 3 · βver + (nβsβ0 + βs) · 2nβ1 + (nβ0 + 1)βs.

Probability of success. To bound the abort probability, we use the rewinding lemma (Lemma 2.3). We
first bound the probability that ti∗ 6= t′i∗ with respect to the probability that A successfully generates a
forgery in EXPAS,OT[λ,A]. For this, we define the following random variables that models an execution of
EXPAS,OT[λ,A]:

• Let X be all the quantities that B provides to A up to and including the query to h1 and its response
but excluding ti∗ and t′i∗ .

• Let Y and Y ′ be ti∗ and t′i∗ respectively.

• Let Z be all the quantities that B provides to A in the first execution of the experiment following A’s
query to H1.

• Let Z ′ be all the quantities that B provides to A in the second execution of the experiment following
A’s query to H1.

38

The random variables (X,Y, Z) corresponds to the view that B provides to A in the first execution of
EXPAS,OT[λ,A] and (X,Y ′, Z ′) corresponds to A’s view in the second execution of EXPAS,OT[λ,A]. Let
f(X,Y, Z) be the function that outputs 1 if and only if the forgery (PK,M, σ) that A outputs during an
execution of EXPAS,OT[λ,A] is valid. Then, letting ε = Pr[f(X,Y, Z) = 1], the probability that ti∗ 6= t′i∗ is
bounded by

Pr[f(X,Y, Z) = 1 ∧ f(X,Y ′, Z ′) = 1 ∧ Y 6= Y ′] ≥ ε2 − ε/|Bβ1
|,

by Lemma 2.3. Now, to bound the final abort probability of B, we define the following random variables:

• Let S represent the event that σ? = (σ0 − σ1)− (ti∗ − t′i∗)(ci∗s∗0 + s∗1) + (σ̂ − ĉ · s∗0 − s∗1) 6= 0 after two
executions of EXPAS,OT[λ,A].

• Let T represent the event that A generates valid forgeries in the two executions of EXPAS,OT[λ,A] and
that ti∗ 6= t′i∗ . This corresponds to the event that f(X,Y, Z) = 1, f(X,Y ′, Z ′) = 1 and Y 6= Y ′ as
formulated above.

The probability that B’s does not abort at the end of its simulation can then be bounded by the probability

Pr[S ∧ T] = Pr[S | T] · Pr[T] ≥ Pr[S | T] ·
(
ε2 − ε/|Bβ1

|
)
.

To bound the probability Pr[S | T], suppose that A successfully produces a forgery σ0, σ1 in the two
executions of EXPAS,OT[λ,A] and that ti∗ 6= t′i∗ . Then, by Lemma B.2 and B.4, there exists at least two
possible keys (s0, s1), (s′0, s

′
1) that can explain A’s view of EXPAS,OT[λ,A]. By the specification, algorithm

B generates the signing key (s∗0, s
∗
1) uniformly at random from Bβs . Therefore, the signing key (s∗0, s

∗
1) is

information-theoretically hidden from A in the two executions of EXPAS,OT[λ,A]. By Lemma B.3 and B.5,
there exists a unique key (s̃0, s̃1) that is determined by the signature σ0−σ1 and the signature σ̂ that B provides
to A in response to the single signing query in the two executions of EXPAS,OT[λ,A]. Hence, A has at most 1/2
probability of producing two forgeries σ0, σ1 such that σ? = (σ0−σ1)−(ti∗−t′i∗)(ci∗s∗0+s∗1)+(σ̂−ĉ·s∗0−s∗1) 6= 0.
Therefore, we have

Pr[S | T] ≥ 1/2,

and the theorem statement now follows.

Combining Lemmas B.1 and B.6, Theorem 4.4 now follows.

C Proofs for Construction 6.7

C.1 Proof of Theorem 6.8

Fix a security parameter λ ∈ N, number of signers N ∈ N, and any set of messages M = (mi)i∈[N]. Let

pp← PrmsGen(1λ), (ski, pki)← KeyGen(pp) for i ∈ [N], and let σag = (wag, zag) be a signature that is output
by the signing protocol on these messages and secret-public keys. By the specification of the protocol, the
component wag is a single ring element in Rq. Therefore, its size is dependent only in the security parameter
and independent of N .

Consider the component of the signature zag ∈ R`. By the specification of the protocol, we have
zag =

∑
i∈[N] zi for zi ← si · ci + yi where

• The components si for i ∈ [N] are the signing keys of each user. By definition of the key generation
algorithm, we have ‖si‖ ≤ βs.

• The components ci for i ∈ [N] are the output of the hash function H1. By definition of H1, we have
‖ci‖ ≤ β1.

39

• The components yi for i ∈ [N] are vectors that each signer generates at round 1 of the protocol from
D`R,s. By the tail bound on the discrete Gaussian distribution (Lemma 6.1), we have ‖y‖ ≤ λ · s except

with probability 2e−λ
2/2, which is negligible.

Hence, the norm of each vectors ‖zi‖ for i ∈ [N] is independent of N . Since ‖zag‖ ≤ N maxi∈[N] ‖zi‖, the
bit-size of zag is logarithmic in N . The compactness now follows.

C.2 Proof of Theorem 6.9

To prove correctness, we must show the following two properties:

• If an instance of a signing protocol successfully produces a signature, then the signature verifies under
the corresponding public keys and messages.

• An instance of a signing protocol successfully produces a signature with at least a constant probability.

We prove each of these properties below.

Signature verification. Fix a security parameter λ ∈ N, number of signers N ∈ N, and any set of messages
M = (mi)i∈[N]. Let pp ← PrmsGen(1λ), (ski, pki) ← KeyGen(pp) for i ∈ [N], and let σag = (wag, zag) be a
signature that is output by the signing protocol on these messages and secret-public keys. We must show
that aᵀzag = vag + wag where vag ←

∑
i∈[N] vi · ci for pki = vi, ci ← H1(pki, wag, (pki)i∈[N],mi) for i ∈ [N],

and that ‖zag‖ ≤ βver.
By the specification of the protocol, we have wag =

∑
i∈[N] wi for wi ← aᵀyi, and zag =

∑
i∈[N] zi for

zi ← si · ci + yi. We can verify the algebraic verification condition as follows:

aᵀzag = vag + wag

=
∑
i∈[N]

vi · ci +
∑
i∈[N]

wi

=
∑
i∈[N]

aᵀsi · ci +
∑
i∈[N]

aᵀyi

=
∑
i∈[N]

aᵀ(si · ci + yi)

= aᵀ
∑
i∈[N]

zi.

To show that the norm check on zag succeeds, we can first bound the following individual components:

• The components si for i ∈ [N] are the signing keys of each user. By definition of the key generation
algorithm, we have ‖si‖ ≤ βs.

• The components ci for i ∈ [N] are the output of the hash function H1. By definition of H1, we have
‖ci‖ ≤ β1.

• The components yi for i ∈ [N] are vectors that each signer generates at round 1 of the protocol from
D`R,s. By the tail bound on the discrete Gaussian distribution (Lemma 6.1), we have ‖y‖ ≤ λ · s except

with probability 2e−λ
2/2, which is negligible.

Hence, we can bound the norm ‖zag‖ as follows:

‖zag‖ ≤ N · max
i∈[N]

‖zi‖

= N · max
i∈[N]

‖si · ci + yi‖

≤ N · (nβsβ1 + λ · s)
= βver.

40

Success probability. Consider an instance of a protocol between N signers. Each signer i ∈ [N] com-
putes its individual signature zi ∈ R` and sends this component to the other signers with probability(
N−1
N

D`R,s(zi)
D`R,s,s·ci (zi)

, 1

)
. By Lemma 6.6, this probability is N−1

N · 2−ω(logn) close to the probability N−1
N . Hence,

the probability that all signers in the protocol does not abort is bounded by
(
N−1
N

)N
= O(1) and the

correctness follows.

C.3 Proof of Theorem 6.10

We first define a set of hybrid arguments that we use for the proof. The hybrid Hyb0 corresponds to the
real unforgeability security experiment. We use Hyb1 to capture a set of rare bad events that can cause our
final reduction algorithm to fail. We use Hyb2 to analyze the rejection distribution of the real protocol using
Lemma 6.6.

• Hyb0: This is the original unforgeability security experiment of Definition 5.4 instantiated with
Construction 6.7.

• Hyb1: In this experiment, we introduce a set of abort conditions to bound a set of rare events that are
related to the random oracles H0 and H1.

Let A be an adversary that makes at most Q0 queries to H0, Q1 queries to H1, and Qsign queries to
the signing oracle. The challenger simulates the experiment for A as follows:

– Before the start of the experiment, the challenger samples ν = Q1 +Qsign vectors c′1, . . . , c
′
ν ←

$ Bβ1
.

It also instantiates a set of look-up tables:

∗ Table T0 : Rq → {0, 1}r is used by the challenger to answer A’s random-oracle queries to H0

consistently.

∗ Table T1 : [Q1 +NQsign]×{0, 1}∗ → Bβ1
is used by the challenger to answer A’s random-oracle

queries to H1 consistently.

∗ Table T2 : R`q → [Q1 + NQsign] keeps track of the public keys that A submits as a random
oracle query to H1.

Then, the challenger generates the vector a ←$ R`q and a secret-public key pair sk∗ = s∗ and
pk∗ = v∗ exactly as in Hyb1. It sets T2[pk∗]← 0.

– Before A makes any queries, the challenger initializes flag variables Bad1,Bad2,Bad3,Bad4 initially
set to be false and counters ctr1, ctr2 initially set to be 0:

∗ ctr1: This counter is used to assign a unique index to each input that A submits as a random
oracle query to H1.

∗ ctr2: This counter is used to assign a unique index to each new public keys that A submits as
a random oracle query to H1.

The challenger then answers each of A’s queries as follows:

∗ H0(w): If T0[w] is empty, the challenger sets T0[w]← {0, 1}r. It returns T0[w] to A.

∗ H1(pk‖str): If T2[pk] is undefined, then the challenger sets ctr2 ← ctr2 + 1 and T2[pk]← ctr2.
If T1[ctr2, str] is undefined, then it sets T1[j, str] ←$ B`β1

for all j ∈ [Q1 +NQsign]. Finally, it
sets ctr1 ← ctr1 + 1 and T1[0, str]← cctr1 .

∗ Signing queries: Let PK = (pkj)j∈[N] and M = (mj)j∈[N] be a valid signing query where
pki = pk∗ for some i ∈ [N]. The challenger answers the query as follows:

Round 1:

1. For each index j ∈ [N]\{i} for which T2[pkj] is undefined, the challenger increases
ctr2 ← ctr2 + 1 and sets T2[pkj]← ctr2.

2. Then, it increases ctr1 ← ctr1 + 1 and sets ci ← c′ctr1 .

41

3. The challenger samples yi ← D`R,s, sets wi ← aᵀyi, and checks if T0[wi] is undefined.

If so, it samples hi ← {0, 1}r and sets T0[wi]← hi. It sends hi to the cosigners.3

Round 2:

1. After receiving (hj)j∈[N]\{i} from the cosigners, the challenger checks the following
abort conditions.

· If there exists an index j ∈ [N]\{i} for which hj is not in T0 (there does not exist
any vector w ∈ Rq such that T0[w] = hj), then it sets Bad1 ← true and aborts the
experiment. This abort condition occurs if A successfully predicts the output of the
random oracle H0.

· If there exists an index j ∈ [N]\{i} for which there exist two distinct vectors w,w′ ∈
Rq such that T0[w] = T0[w′] = hj , then it sets Bad2 ← true and aborts the experiment.
This abort condition occurs if A successfully finds a collision on the random oracle H0.

2. If it does not abort, then there exists a unique vector wj such that T0[wj] = hj for all
j ∈ [N]. It defines wag ←

∑
j∈[N] wj and checks the following abort condition.

· If the entry T1[0, str] for str = (wag,PK,mi) is undefined, then it sets Bad3 ← true

and aborts the experiment. This abort condition occurs if A successfully predicts the
vector wag.

3. Finally, if the challenger does not abort the experiment, then it sets T1[0, str] ← ci,
samples T1[j, str]←$ B`β1

for all j ∈ [N]\{i}, and sends wi to the cosigners.

Round 3:

1. After receiving (wj)j∈[N]\{i} from the cosigners, the challenger checks if T0[wj] = hj for
all j ∈ [N]. If this is not the case, then it aborts and returns ⊥.4

2. If it does not abort, then it sets zi ← s∗ · ci + yi. It sends zi to the cosigners with

probability min

(
N−1
N

D`R,s(zi)
D`R,s,s·ci (zi)

, 1

)
and otherwise, it sends abort to the signers to

signal that it aborted.

∗ Eventually, the adversary A returns a forgery that consists of a set of public keys PK =
(pkj)j∈[N], a set of messages M = (mj)j∈[N], and a signature σag = (wag, zag). The challenger
first checks if T2[pkj] is defined for each j ∈ [N]. If not, then it sets Bad4 ← true and aborts
the experiment. This abort condition occurs if A successfully predicts the output of the
random oracle H1.
If the challenger does not abort, then it computes vag ←

∑
j∈[N] vj · cj for vj = pkj , cj ←

T1[j, strj], and strj = (wag,PK,mj) for j ∈ [N]. It checks the following conditions:

· aᵀ · zag = wag + vag,

· ‖zag‖ ≤ βver.
If both of these conditions are true, then the challenger returns 1. Otherwise, it returns 0.

• Hyb2: This experiment is identical to Hyb1 except for the way the challenger simulates the responses to
A’s signing queries. Namely, in Hyb2, the challenger simulates the responses to A’s queries without
relying on the signing key s∗.

Let PK = (pkj)j∈[N], M = (mj)j∈[N] be a valid signing query made by A. Then there exists an index
i ∈ [N] such that pki = pk∗. The challenger responds to each of these queries as follows. The steps that
are underlined differs from those of the previous experiment Hyb1.

Round 1:

1. For each index j ∈ [N]\{i} for which T2[pkj] is undefined, the challenger increases ctr2 ← ctr2+1
and sets T2[pkj]← ctr2.

3Note that these cosigners are controlled by the adversary A.
4Note that this abort condition is part of the protocol specification and does not correspond to any bad event.

42

2. Then, it increases ctr1 ← ctr1 + 1 and sets ci ← c′ctr1 .

3. The challenger samples z← D`R,s, ci ← c′ctr1 , sets wi ← aᵀz− v∗ci. It sets hi ← H0(wi) and
sends hi to the cosigners.

Round 2:

1. After receiving (hj)j∈[N]\{i} from the cosigners, the challenger checks the following abort
conditions.

– If there exists an index j ∈ [N]\{i} for which hj is not in T0 (there does not exist any
vector w ∈ Rq such that T0[w] = hj), then it sets Bad1 ← true and aborts the experiment.
This abort condition occurs if A successfully predicts the output of the random oracle H0.

– If there exists an index j ∈ [N]\{i} for which there exist two distinct vectors w,w′ ∈ Znp
such that T0[w] = T0[w′] = hj , then it sets Bad2 ← true and aborts the experiment. This
abort condition occurs if A successfully finds a collision on the random oracle H0.

2. The challenger finds unique entries wj such that T0[wj] = hj for each j ∈ [N]\{i} and sets
wag ←

∑
j∈[N] wj . The challenger sets str← (wag,PK,mi), programs the table T1[j, str]← B`β1

for all j ∈ [Q1 +NQsign] and T1[0, str]← ci.

3. Finally, the challenger sets T1[0, str] ← ci, samples T1[j, str] ←$ B`β1
for all j ∈ [N]\{i}, and

sends wi to the cosigners.

Round 3:

1. After receiving (wj)j∈[N]\{i} from the cosigners, the challenger checks if T0[wj] = hj for all
j ∈ [N]. If this is not the case, then it aborts and returns ⊥.5

2. If it does not abort, then it sets zi ← s∗ · ci + yi. It sends zi to the cosigners with probability
N−1
N and otherwise, it sends abort to the signers to signal that it aborted.

The rest of the experiment remains unchanged from Hyb1.

We now bound the probability that an adversary Amakes a successful forgery in each of the hybrid experiments.
For each hybrid experiment Hyb, we use the notation Hyb(A) to denote the probability that A successfully
forges a signature in experiment Hyb.

Lemma C.1. Suppose that the ring R is instantiated as R = Zn×n or R = Z[X]/(Xn + 1) for a positive
integer n, and let s = ω(n · βsβ1

√
log n) be a Gaussian parameter such that the conditions of Lemma 6.4 or

Lemma 6.5 are satisfied. Then, for any (unbounded) adversary A that makes Q0 oracle queries to H0, Q1

oracle queries to H1, and QS signing queries, we have

∣∣Pr
[
Hyb0(A) = 1

]
− Pr

[
Hyb1(A) = 1

]∣∣ ≤ N ·QS
2r

+
(Q0 +N ·QS)2

2r
+

2n ·QS
qn

+
1

|Bβ1
|
.

Proof. The only difference between the two hybrid experiments Hyb0 and Hyb1 is the additional abort
condition in Hyb1 when any of the events Bad1,Bad2,Bad3 and Bad4 occurs. Therefore, the statistical
distance between A’s views in Hyb0 and Hyb1 is bounded by probability that any of these events occur during
an execution of Hyb1. We bound the probability that each of these bad events occur as follows:

• Bad1: The event Bad1 occurs only when A predicts the output of H0. The check occurs at most N
times during each signing query. Therefore, we have

Pr[Bad1] ≤ N ·QS
2r

.

5Note that this abort condition is part of the protocol specification and does not correspond to any bad event.

43

• Bad2: The event Bad1 occurs only when a collision occurs in T0. An adversary A makes at most Q0

random oracle queries to H0 and the challenger makes at most N random oracle queries to H0 per A’s
signing query. Therefore, a collision in T0 occurs with probability at most

Pr[Bad2] ≤ (Q0 +N ·QS)2

2r
.

• Bad3: The event Bad3 occurs only when A successfully predicts wag. By definition, wag =
∑
j∈[N] wj

and wi = aᵀ · y for y ← D`R,s. By the leftover hash lemma (Lemmas 6.4 and 6.5), the element wi is

within n · q−n statistical distance of a uniformly random vector in Rq. Since the check occurs for each
of A’s signing query, the probability that A successfully predicts the output of wag for any of these
signing queries is bounded by

Pr[Bad3] ≤ 2n ·QS
qn

.

• Bad4: The event Bad4 occurs only when A successfully predicts the output of the random oracle H1.
This check occurs once when A submits its final forgery. Therefore, we have

Pr[Bad4] ≤ 1

|Bβ1
|
.

Combining each of these probabilities by a union bound, the lemma follows.

Lemma C.2. Suppose that the ring R is instantiated as R = Zn×n or R = Z[X]/(Xn + 1) for a positive
integer n, and let s = ω(n · βsβ1

√
log n) be a Gaussian parameter such that the conditions of Lemma 6.4 or

Lemma 6.5 are satisfied. Then, for any (unbounded) adversary A that makes QS signing queries, we have∣∣Pr
[
Hyb1(A) = 1

]
− Pr

[
Hyb2(A) = 1

]∣∣ ≤ QS · 2−ω(logn)/M.

Proof. The lemma follows straightforwardly from Lemma 6.6 and the abort conditions. The only difference
between the two hybrid experiments is in the way the challenger responds to A’s signing queries. Let
PK = (pkj)j∈[N], M = (mj)j∈[N] be a signing query made by A such that pki = pk∗. Then, the main
differences in the challenger’s specifications in the two experiments are as follows:

• Rounds 1 and 2: In Hyb1, the challenger first samples yi ← D`R,s and sets wi ← aᵀyi. In Hyb2, the

challenger first samples z← D`R,s and sets wi ← aᵀz− v∗ci where ci ←$ Bβ1 .

• Round 3: In Hyb1, the challenger aborts the protocol with probability min

(
N−1
N

D`R,s(z)

D`R,s(z)
, 1

)
while in

Hyb2, the challenger aborts with probability N−1
N .

Therefore, given the public vector a, public key pk∗ = v∗, and the outputs of the random oracles H0

and H1, the adversary A’s view on a single signing query in Hyb1 is identical to the real distribution
in Lemma 6.6. Furthermore, as long as the random oracle H1 is consistent with ci that the challenger
samples, H1(pk∗, wag,PK,mi) = ci, the adversary A’s view on the signing query in Hyb2 is identical to
the ideal distribution in Lemma 6.6. We have H1(pk∗, wag,PK,mi) 6= ci only when the table T1[0, str] for
str = (wag,PK,mi) is already defined before the challenger computes wag in Round 2 of the protocol. This
event corresponds to the event Bad3 = true in hybrids Hyb1 and Hyb2, and therefore, the challenger returns ⊥
in both experiments. The lemma now follows by the union bound over QS number of A’s signing queries.

Lemma C.3. Suppose that the ring R is instantiated as R = Zn×n or R = Z[X]/(Xn + 1) for a positive
integer n and let A be an adversary in Hyb2 that makes Q1 random oracle queries to H1 and Qsign signing
queries. Then, there exists an adversary B such that

Pr[Hyb2(A) = 1] ≤ Q1 +Qsign

|Bβ1
|

+

√
(Q1 +Qsign) · AdvSISR,`,q,β? [λ,B] +

1

|Bβs |
,

for β? = 2βver + 2nβsβ1.

44

Proof. We use the forking lemma (Lemma 2.6) to prove the lemma. Specifically, we construct an algorithm
B that uses the forking algorithm on a simulator for the experiment Hyb2 to solve an SIS challenge. We
first specify a suitable simulation algorithm (Definition 2.4) that interacts with a forging adversary in Hyb2

and outputs an index and auxiliary output (i, aux). For our proof, the auxiliary output will correspond to
an adversary’s forgery at the end of a successful execution of Hyb2 and the index i will correspond to the
random oracle query associated with the forgery.

Let A be a forging adversary that makes at most Q0 queries to H0, Q1 queries to H1, and Qsign queries
to the signing oracle. We specify a simulation algorithm S for A as follows:

• S(a, c′1, . . . , c
′
ν): The simulation algorithm takes in an SIS challenge a ∈ R`q and a set of ring elements

c′1, . . . , c
′
ν ∈ Bβ1

for ν = Q1 +Qsign. It follows the exact specification of the challenger in Hyb2 except
that it uses the vector a as the public parameter vector and the elements c′1, . . . , c

′
ν as the outputs to

program H1 as specified in Hyb2.

Suppose that A produces a forgery (PK,M, σag) for PK = (pki)i∈[N], M = (mi)i∈[N], and σag = (wag, zag).
If the output of the experiment is 0 (adversary’s forgery is not valid) or it aborted the experiment at
any point, then the simulation algorithm returns (0, ε). If the output of the experiment is 1 (adversary’s
forgery is valid), then it first finds an index i∗ ∈ [N] for which pk∗ = pki∗ and an index j∗ ∈ [N] for
which T1[0, str] = c′j∗ where str = (wag,PK,mi∗). It returns

(
j∗, (wag, zag)

)
.

When the SIS challenge a is generated uniformly at random a←$ R`q as in the SIS problem, and the hash
outputs c′1, . . . , c

′
ν are generaled uniformly at random, then the simulation algorithm S perfectly simulates

Hyb2 by definition. Therefore, the probability that S returns
(
j∗, (wag, zag)

)
for j∗ 6= 0, (wag, zag) 6= ε equates

to the probability that adversary A’s wins in Hyb2:

AdvSim(λ,A) = Pr
[
Hyb2(A) = 1

]
.

Next, we invoke the forking algorithm FS (Definition 2.5) on the simulation algorithm S above. The forking
algorithm takes in an SIS challenge a ∈ R`q and invokes two instances of S. It returns an index and two

forgeries
(
j∗, (wag, zag), (w̃ag, z̃ag)

)
. Using the general forking lemma Lemma 2.6, we can bound the probability

that
(
j∗, (wag, zag), (w̃ag, z̃ag)

)
6= (0,⊥,⊥):

AdvSim(λ,S) ≤ ν

|Bβ1 |
+

√
ν · AdvFork(λ,F ,S).

Finally, we construct a reduction algorithm B that invokes the forking algorithm FS and solves an SIS
challenge.

• B(a): The reduction algorithm takes in an SIS challenge a ∈ R`q and invokes the forking algorithm(
j∗, (wag, zag), (w̃ag, z̃ag)

)
← FS(a). If

(
j∗, (wag, zag), (w̃ag, z̃ag)

)
= (0,⊥,⊥), then it return Fail. Other-

wise, it returns the element zag − z̃ag − s∗(cj∗ − c̃j∗) as a solution to the SIS challenge a.

To complete the proof of the lemma, we show that as long as algorithm B does not output Fail, the solution
zag − z̃ag − s∗(cj∗ − c̃j∗) is a valid SIS challenge except with probability 1/|Bβs |.

Correctness of algorithm B. Suppose that FS on input a ∈ Rq returns
(
j∗, (wag, zag), (w

′
ag, z

′
ag)
)
6=

(0,⊥,⊥) for some j∗ ∈ [ν] after two executions of S. Let us consider these two executions with the following
inputs and outputs:

• S(a, c′1, . . . , c
′
j∗−1, c

′
j∗ , . . . , c

′
ν) returned

(
j∗, (wag, zag)

)
,

• S(a, c′1, . . . , c
′
j∗−1, c̃

′
j∗ , . . . , c̃

′
ν) returned

(
j∗, (w̃ag, z̃ag)

)
,

45

where c′1, . . . , c
′
ν ←

$ Bβ1 and c̃′j∗ , . . . , c̃
′
N ←

$ Bβ1 . Since the forged signatures (wag, zag) and (w̃ag, z̃ag) are A’s
valid forgeries, we have

aᵀ · zag =
∑
j∈[N]

vj · cj + wag. (C.1)

aᵀ · z̃ag =
∑
j∈[Ñ]

ṽj · c̃j + w̃ag, (C.2)

where

• The elements v1, . . . , vN and ṽ1, . . . , ṽÑ correspond to the set of public keys PK = (pkj)j∈[N] and

P̃K = (p̃kj)j∈[Ñ] included in A’s two forgeries of the experiments.

• The vectors c1, . . . , cN and c̃1, . . . , c̃Ñ correspond to the output of the random oracle H1 in the two

experiment executions: cj ← H1(pkj , wag,PK,mj) for j ∈ [N] and c̃j ← H1(p̃kj , w̃ag, P̃K, m̃j) for j ∈ [Ñ].
By specification of the simulation algorithm (the challenger in Hyb2), we have cj∗ = c′j∗ and c̃j∗ = c̃′j∗ .

We now note that the assignment cj∗ = c′j∗ occurs precisely when the adversary A in the first execution of
the experiment makes its first random oracle query to H1 for (pkj , wag,PK,mj) for some j ∈ [N]. Similarly,
the assignment c̃j∗ = c̃′j∗ occurs when the adversary A in the second execution of the experiment makes its

second random oracle query to H1 for (p̃kj , w̃ag, P̃K,mj) for some j ∈ [N]. Therefore, up to this point of the
experiment, the two executions of Hyb2 by S are identical, which means that the arguments to the random
oracle H1 are also identical. This implies that N = Ñ , vj = ṽj for all j ∈ [N], wag = w̃ag, and mj = mj̃ .
Furthermore, since the table entries T1[j, wag,PK,mj] for j ∈ [N] are assigned before A sees the output of H1

on query (pkj , wag,PK,mj) = (p̃kj , w̃ag, P̃K,mj̃) in the two executions, we have cj = c̃j for all j∗ < j ≤ N .
Therefore, combining the two relations in (C.1) and (C.2), we have

aᵀ · (zag − z̃ag) =
∑
j∈[N]

(
vj · cj − ṽj · c̃j

)
− (wag − w̃ag) = v∗ · (cj∗ − c̃j∗).

Using the fact that v∗ = aᵀ ·s∗, we have aᵀ
(
zag− z̃ag−s∗(cj∗− c̃j∗)

)
= 0 and therefore, zag− z̃ag−s∗(cj∗− c̃j∗)

is a potential solution to the SIS challenge with norm

‖zag − z̃ag − s∗(cj∗ − c̃j∗)‖ ≤ 2βver + 2nβsβ1.

What remains is to bound the probability that the element zag − z̃ag − s∗(cj∗ − c̃j∗) is not the zero element
in R.

We note that by the specification of Hyb2, the view of the experiment that S simulates to A is independent
of the signing key s∗ that S generates at the start of the experiment. Therefore, the vectors zag and z̃ag are
independent of the vector s∗. Furthermore, since the forking algorithm FS does not output (0,⊥,⊥), we have
cj∗ 6= c̃j∗ . Hence, given that s∗ ←$ Bβs , the probability that zag − z̃ag − s∗(cj∗ − c̃j∗) = 0 is at most 1/|Bβs |.
The lemma now follows.

46

	Introduction
	Preliminaries
	Discrete Log Problem
	Short Integer Solution Problem
	Forking Lemma

	Aggregatable OTS
	Definitions
	Warm-up: Aggregating Bellare-Shoup OTS

	Aggregatable OTS from Lattices
	Setting the parameters

	Aggregate Signatures with Interaction
	Aggregate Signatures via Interaction from Lattices
	Construction Overview
	Background on Gaussian Distribution and Rejection Sampling
	Formal Construction Description
	Setting the parameters

	Proofs for Bellare-Shoup Signatures
	Proof of thm:dlog-compactness
	Proof of thm:dlog-correctness
	Proof of thm:dlog-security

	Proofs for Lyubashevsky-Micciancio Signatures
	Proof of thm:lwe-ots-compactness
	Proof of thm:lwe-ots-correctness
	Proof of thm:lwe-ots-security

	Proofs for Construction 6.7
	Proof of thm:interactive-compactness
	Proof of thm:interactive-correctness
	Proof of thm:interactive-security

