
ON THE IMPLEMENTATION OF PAIRING-BASED CRYPTOSYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ben Lynn

June 2007

c© Copyright by Ben Lynn 2007

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Dan Boneh Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

John Mitchell

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Xavier Boyen

Approved for the University Committee on Graduate Studies.

iii

Abstract

Pairing-based cryptography has become a highly active research area. We define bilinear

maps, or pairings, and show how they give rise to cryptosystems with new functionality.

There is only one known mathematical setting where desirable pairings exist: hyperellip-

tic curves. We focus on elliptic curves, which are the simplest case, and also the only curves

used in practice. All existing implementations of pairing-based cryptosystems are built with

elliptic curves. Accordingly, we provide a brief overview of elliptic curves, and functions

known as the Tate and Weil pairings from which cryptographic pairings are derived.

We describe several methods for obtaining curves that yield Tate and Weil pairings that

are efficiently computable yet are still cryptographically secure.

We discuss many optimizations that greatly reduce the running time of a naive imple-

mentation of any pairing-based cryptosystem. These techniques were used to reduce the

cost of a pairing from several minutes to several milliseconds on a modern consumer-level

machine.

Applications of pairings are largely beyond our scope, but we do show how pairings allow

the construction of a digital signature scheme with the shortest known signature lengths at

typical security levels.

iv

ON THE IMPLEMENTATION OF PAIRING-BASED CRYPTOSYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Ben Lynn

June 2007

c© Copyright by Ben Lynn 2007

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Dan Boneh Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

John Mitchell

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

Xavier Boyen

Approved for the University Committee on Graduate Studies.

iii

Preface

Pairing-based cryptography is a relatively young area of cryptography that revolves around

a particular function with interesting propreties. It allows the construction of novel cryp-

tosystems that are otherwise difficult or impossible to assemble using standard primitives.

We first define a cryptographic pairing abstractly and show how it can be used to build

a signature scheme that is simple yet has many desirable properties. Next we examine how

a pairing can be implemented in practice. The only known mathematical setting where

suitable pairings exist are groups on certain families of curves. We focus on the simplest

and most well-understood case: elliptic curves.

We discuss methods for finding curves that yield cryptographic pairings, and outline

various optimizations that can be applied. We shall see that pairing-based cryptosystems

are quite practical and compare well against traditional cryptosystems.

It is hoped that this work will be a useful guide to implementing pairing-based cryptog-

raphy to a programmer who has experience with conventional cryptosystems. While not

comprehensive, the information contained herein should be enough to allow one to build

practical pairing-based applications from scratch. Notably absent are in-depth discussion of

the characteristic 3 case, pairings where the subgroup size is necessarily significantly smaller

than the field size, and hyperelliptic curves,

This text is intended to be self-contained. Aside from arithmetic at the lowest level,

algorithms not likely to be found in a basic course in number theory or cryptography are

quoted here, enabling the reader to implement pairings without referring to any other

sources.

Some background is required by the reader as we do not review basic abstract algebra.

On the other hand, we introduce enough elliptic curve theory for cryptographic purposes.

The following publications form the foundation of this thesis:

iv

• D.Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal

of Cryptology, 17(1):297–319, 2004.

• P. S. L. M. Barreto, H. Y. Kim, B. Lynn and M. Scott. Efficient algorithms for

pairing-based cryptosystems. In CRYPTO 2002, pages 354–368.

• P. S. L. M. Barreto, B. Lynn and M. Scott. Constructing elliptic curves with pre-

scribed embedding degree. In Third Conference on Security in Communication Net-

works 2002.

• P. S. L. M. Barreto, B. Lynn and M. Scott. On the selection of pairing-friendly groups.

In Selected Areas of Cryptography 2003.

More polished versions of the above works can be found in the Journal of Cryptology [18, 7].

Most of the described algorithms and optimizations feature in the PBC (Pairing-Based

Cryptography) library, maintained by the author, and available under the GNU Public

License at http://crypto.stanford.edu/pbc/.

v

Contents

Abstract iv

Preface iv

1 Bilinear Maps 1

1.1 Cyclic Groups . 2

1.2 Formal Security Definitions . 2

1.3 Concrete Cyclic Groups . 4

1.4 The Symmetric Pairing . 5

1.5 The BLS Signature Scheme . 6

1.6 New Hardness Assumptions . 6

1.7 Loosening the Pairing Definition . 7

1.7.1 A Problem With Hashing . 8

1.8 The General Bilinear Pairing . 8

1.9 Exponentiation as a Bilinear Pairing . 10

1.10 Choosing a Definition . 10

1.11 Concrete Bilinear Maps . 11

2 Elliptic Curves 14

2.1 Informal Overview of Elliptic Curves . 14

2.2 Points on Elliptic Curves . 15

2.3 Finding Points . 17

2.3.1 Tonelli-Shanks Algorithm . 18

2.3.2 Hashing to Points . 19

2.4 Point Compression and Reduction . 19

vi

2.5 The Chord-Tangent Law of Composition . 19

2.6 Explicit Formulas . 20

2.7 Elliptic Curve Cryptography . 21

2.8 Singular Elliptic Curves . 23

2.9 Security . 24

2.10 Short Signatures . 25

3 The Weil and Tate Pairings 26

3.1 Torsion Points . 26

3.2 Rational Functions . 27

3.3 Curve Endomorphisms . 27

3.4 Zeroes and Poles . 29

3.5 Divisors . 30

3.6 The Weil Pairing . 31

3.6.1 Weil Reciprocity . 32

3.7 The Tate Pairing . 33

3.8 Merging Theory with Practice . 34

3.9 Miller’s Algorithm . 35

3.9.1 The Weil Pairing . 35

3.9.2 The Tate Pairing . 36

3.9.3 Intermediate Poles and Zeroes . 38

3.10 Worked Examples . 38

3.10.1 The Weil Pairing . 39

3.10.2 The Tate Pairing . 40

3.10.3 Remarks . 42

3.11 Restricting Inputs . 42

3.12 The Shipsey-Stange Algorithm . 43

3.12.1 Example . 45

3.12.2 Remarks . 45

4 Curve Selection 47

4.1 The Embedding Degree . 48

4.2 Weil and Tate Pairing Comparison . 49

4.2.1 Composite Group Orders . 50

vii

4.3 Pairing Security . 50

4.4 Lower Bounds on Field and Group Sizes . 51

4.5 Approaches to Finding Curves . 52

4.6 Supersingular Curves . 53

4.7 Type A Curves . 54

4.8 Type B Curves . 55

4.9 Other Embedding Degree 2 Curves . 55

4.10 Type C Curves . 56

4.11 Complex Multiplication . 57

4.12 Type D Curves . 58

4.13 Type E Curves . 60

4.14 Type F Curves . 61

4.15 Type G Curves . 62

4.16 Comparing Pairings . 63

4.17 Pell Equations . 64

4.18 Generalized Pell Equations . 65

4.19 Hilbert Polynomials . 66

4.20 Arbitrary Embedding Degree . 68

5 Optimizing Cryptosystems 71

5.1 Multiprecision Arithmetic . 72

5.2 All or Nothing . 73

5.3 Montgomery Reduction . 73

5.4 Cube Roots . 75

5.5 Random Points . 75

5.6 Dedicated Squaring . 76

5.7 Quadratic Field Extensions . 76

5.8 Finding a Root of a Polynomial . 77

5.9 Projective Coordinates . 78

5.10 Point Multiplication . 79

5.11 Multiexponentiation . 80

5.12 Floating-Point Complex Numbers . 80

viii

6 Faster Pairings 82

6.1 Twist Curves . 82

6.2 Simplified Tate Pairing . 84

6.3 Simplified Weil Pairing . 85

6.4 Twist Curves and the Trace-Zero Group . 85

6.4.1 Remarks on Implementation . 88

6.4.2 Twist Curve Trade-offs . 88

6.5 Denominator Elimination . 89

6.6 Input Restriction . 90

6.7 Miller-Lite Operations . 91

6.8 Last-Second Conversions . 91

6.9 The Final Powering . 92

6.10 Weil Denominator Elimination . 94

6.11 Preprocessing . 95

6.11.1 Precomputation of Lines . 95

6.11.2 Elliptic Net Precomputation . 95

6.12 Compressed Pairings . 95

6.13 Pairing Compression For Even Embedding Degree 97

6.14 Pairing Compression For Embedding Degree Six 97

6.15 Powered Pairings . 99

6.16 Exponentiation Tricks . 100

6.17 Higher Degree Twists . 101

6.18 The Ate and Twisted Ate Pairing . 103

7 Summary of Contributions 104

7.1 Abstract definitions . 104

7.2 The BLS Signature Scheme . 104

7.3 Constructing With Prescribed Embedding Degree 105

7.4 Optimizations . 105

Bibliography 106

ix

List of Tables

4.1 Some Type C pairings [17]. 57

4.2 Pairing comparison. 63

6.1 Twist curves . 102

x

List of Figures

xi

Chapter 1

Bilinear Maps

Asymmetric ciphers, or public-key cryptosystems, are perhaps the most celebrated contri-

bution of modern cryptography. They certainly have had the most impact. It is hard to

imagine what the world would be like without their revolutionary approach to key distri-

bution.

All public-key cryptosystems in wide use today can trace their roots to the Diffie-

Hellman key exchange protocol [27] or the RSA cryptosystem [54]. The former depends

on cyclic groups with particular properties. The latter, though using similar arithmetic

operations, relies on different principles. For example, RSA uses groups that are not cyclic

and requires that the order of the group to be unknown to the attacker.

Roughly speaking, bilinear maps, or pairings, give cyclic groups additional properties.

Initially, in the 1990s, these additional properties were seen as detrimental as they could be

exploited to break cryptosystems [46, 32, 31], but it was later discovered that they could

also be exploited to build cryptosystems. Rather than avoiding pairings, one can seek them

out to construct new schemes.

Boneh and Franklin’s identity-based encryption scheme [13] is perhaps the most famous

early example of what could be achieved using bilinear maps, though not the first [57, 40].

Shamir first discussed identity-based encryption in 1984 [61], but researchers were unable

to build a practical scheme by conventional means for approximately twenty years. Boneh

and Franklin found an elegant solution using bilinear maps [13]. Extending the basic idea

leads to identity-based schemes with additional useful properties such as authenticated

or hierarchical identity-based encryption [45, 39]. More generally, so many cryptographic

applications of the pairing have been identified that this area of research is sometimes

1

CHAPTER 1. BILINEAR MAPS 2

considered its own field called pairing-based cryptography [3].

We note that an identity-based scheme based on quadratic residues and not bilinear maps

has since been proposed [20, 14], albeit one that is signifcantly less practical. However, this

is the exception rather than the rule. In general it is not known how to find conventional

equivalents of a given pairing-based cryptosystem.

1.1 Cyclic Groups

Let G = 〈g〉 of prime order r. Let g be a generator of G and let x, y, z be integers in

[0, r − 1]. Consider the following problems.

Discrete Log Problem. Given g, gx, compute x.

Computational Diffie-Hellman Problem. Given g, gx, gy, compute gxy.

Decisional Diffie-Hellman Problem. Given g, gx, gy, gz , determine if xy = z.

A vast array of cryptosystems including the Diffie-Hellman key exchange protocol can

be built assuming one of these problems, or one of many other related problems, is difficult

to solve.

The discrete log problem is the most important, for if it could be solved, all other related

problems could also be solved.

1.2 Formal Security Definitions

For completeness we include formal definitions of difficult problems commonly used by

cryptographers, even though we do not need them as we do not provide any security proofs.

Our focus is on the implementation of pairing-based cryptosystems, not their correctness.

There are two flavours of definitions. One is asymptotic and the other uses fixed security

parameters.

We first describe the asymptotic definition. Roughly speaking, a problem is hard if there

is no efficient algorithm that can solve it. We say a function f : Z≥0 → R≥0 is negligible

if for all c > 0 there exists a λ0 > 0 such that for all λ ≥ λ0, f(λ) < 1/λc. Intuitively a

function is negligible if it is smaller than any polynomial function for sufficiently large inputs.

Examples of negligible functions are 2−λ and λ− log λ, while λ−10000000 is nonnegligible.

CHAPTER 1. BILINEAR MAPS 3

Let G = {G1, G2, ...} be a family of cyclic groups where the order of Gi is an i-bit

number. For an algorithm A define the advantage of A to be

AdvA(t) = Pr[A(g, gx) = x]

is negligible, where g is randomly chosen (uniformly) from Gt and x from [0, |Gt| − 1].

Then we say that the discrete log problem is hard in G if AdvA is negligible for all

probabilistic expected polynomial-time algorithms A.

Decisional variants of problems must be handled differently. For example, we say the

decisional Diffie-Hellman problem is hard if for all probabilistic expected polynomial-time

algorithms A

AdvA(t) = |Pr[A(g, gx, gy, gz) = B(x, y, z)]− 1/2|

is negligible, where g is randomly chosen from Gt, x, y from [0, r − 1], and z from [0, r − 1]

with probability 1/2 and set to xy otherwise, and where B returns 1 if xy = z and 0

otherwise.

The other kind of definition on the other hand is couched explicitly in terms of running

times and probabilities. It is useful when examining groups of a particular size, and similarly

in cases where there are no families of infinite size. A classic example is the DES cipher,

where an asymptotic definition cannot be used since DES keys are always 56 bits long.

When using fixed security parameters, we say the discrete log problem is (t, ε)-hard in

a given group G if for all probabilistic t-time algorithms A we have

Pr[A(g, gx) = x] < ε

where g is uniformly chosen from G and x from [0, |G| − 1].

The security definitions for other problems in either flavour are similarly constructed

and are omitted here.

Of course, there is always another requirement for cyclic groups used in cryptography.

Efficient algorithms for multiplying group elements, inverting group elements, and hashing

to a group element must exist. Exponentiating and choosing a random element should

be efficient as well, but this is implied by fast multiplication: exponentiation by repeated

squaring is efficient, and for random element generation one can simply choose a random

integer and raise a generator by this power.

CHAPTER 1. BILINEAR MAPS 4

In practice, “efficient” means fast enough so that on the platform that the system is

deployed the user will not notice any slowdown. With pairing-based cryptography, the

bilinear map must also be efficient.

1.3 Concrete Cyclic Groups

There are two mathematical settings to choose from when implementing cyclic groups: finite

fields and elliptic curves. We give a short summary here but will expound on elliptic curves

later.

For finite fields, one picks a prime n and uses a subgroup G of Z∗
n of prime order r,

so the group operation is field multiplication. Note an RSA cryptosystem arises when n is

instead chosen to be the product of two large primes P , Q, in which case computations are

still possible in Z∗
n even if its order is unknown.

For elliptic curves, one takes an elliptic curve E over some finite field K and takes some

subgroup G of the group of points E(K) with prime order r, so the group operation is point

addition. There is no elliptic curve version of RSA, but we shall encounter a case which

may seem confusingly similar to RSA: we sometimes choose a curve whose group of points

has order n = PQ.

Finite fields were proposed first, and much has been published on implementing finite

fields and their potential weaknesses. Of particular interest are subexponential discrete log

algorithms such as index calculus, resulting in recommendations that field sizes be at least

1024 bits.

Elliptic curves were investigated later, and their use in cryptography was at first viewed

as experimental. However, they are now much less controversial thanks to the efforts of

many researchers. A myriad of optimizations and algorithms were discovered for elliptic

curve cryptography, and encouragingly, a specialized elliptic curve discrete log algorithm

has yet to be found. In other words, the fastest known way to break discrete log for a

general elliptic curve is to use a algorithm for a generic cyclic group, such as the Pollard

rho and lambda methods, implying that the security of a 160-bit elliptic curve group and a

1024-bit finite field are roughly equivalent.

Thus currently elliptic curves present many advantages over finite fields. Despite more

complex algorithms for basic operations, they are much faster and more compact due to a

smaller group size.

CHAPTER 1. BILINEAR MAPS 5

In Section 2.8 we find that finite fields can be viewed as a special case of elliptic curves

due to a correspondence between certain singular curves and multiplicative groups of finite

fields.

1.4 The Symmetric Pairing

We begin with the original and simplest abstract definition of the pairing. Let G,GT be

cyclic groups of prime order r. Let g be a generator of G. A bilinear pairing or bilinear

map e is an efficiently computable function

e : G×G→ GT

such that

1. (Nondegeneracy) e(g, g) 6= 1

2. (Bilinearity) e(ga, gb) = e(g, g)ab for all a, b ∈ Z

A symmetric bilinear map is completely defined by the value it takes at e(g, g). Es-

sentially there is always exactly one bilinear map for any given cyclic group: we have the

degenerate case when e(g, g) = 1 while the other r−1 maps are equivalent up to a constant,

in the sense that if e1, e2 are nondegenerate bilinear maps then for some constant c we have

then e1(g, h) = e2(g, h)c for all g, h ∈ G. The difficulty lies in finding such a map that is

efficiently computable.

We can immediately demonstrate power of such a map. Given g, gx, gy, gz , by bilinearity

and nondegeneracy, z = xy if and only if e(g, gz) = e(gx, gy). In other words we can solve

the decisional Diffie-Hellman problem. Thus cryptosystems relying on the intractability of

this problem cannot be constructed on a cyclic group with a symmetric pairing, though

later we present a more general pairing definition where DDH can still be difficult despite

the presence of a bilinear map.

Note it is not known how to solve the computational Diffie-Hellman or discrete log

problem using a pairing.

CHAPTER 1. BILINEAR MAPS 6

1.5 The BLS Signature Scheme

With the abstract definition and some assumptions, we can readily construct cryptosystems.

We have just noted that if cyclic group with such a bilinear map exists, then we have a group

where the computational Diffie-Hellman problem is thought to be hard, yet the decisional

variant is easy to solve. Such groups are sometimes called Gap Diffie-Hellman groups [51],

and imply a signature scheme, often referred to as the BLS Signature Scheme [17]:

Setup. Choose a Gap Diffie-Hellman group G of prime order r. Publish a generator g ∈ G.

Key Generation. Choose a random x in {1, ..., r − 1}. Output the public key gx and the

private key x.

Signing. Given a message h ∈ G, output hx.

Verify. Given a message-signature pair h, σ and public key gx, check that 〈g, h, gx, σ〉 is a

Diffie-Hellman tuple.

It can be shown that under the computational Diffie-Hellman assumption, this signature

scheme is secure against existential forgery under a chosen-message attack in the random

oracle model [17].

Hence an abstract view of the pairing is all that is needed to build a cryptosystem, and

frequently this suffices. However, we shall see that it can be useful to understand pairings

in more detail. For example, we need to know more to show the above signature scheme is

short in length, which in fact was the original motivation for its proposal.

This signature scheme in fact has other useful properties, including batched verifica-

tion and allowing the the simple construction of aggregate, ring and verifiably-encrypted

signatures[15].

1.6 New Hardness Assumptions

Classic problems have natural counterparts in pairing-based cryptography. In the examples

below, let g be a generator for a group G of prime order r, and let e be a bilinear map on

G.

Bilinear Diffie-Hellman Problem [13]. Given g, gx, gy, gz compute e(g, g)xyz . This as-

sumption was implicitly used before it was formally defined [57, 40].

CHAPTER 1. BILINEAR MAPS 7

Decisional Bilinear Diffie-Hellman Problem [10]. Given g, gx, gy , gz , e(g, g)w , deter-

mine if w = xyz. This has also been referred to as BDDH [13].

q-Strong Diffie-Hellman Problem [11]. Given g, gx, ..., g(xq), compute c, g1/(xc) for any

c ∈ {1, ..., r − 1}.

Just as an algorithm that solves discrete log can be used to solve the computational and

decisional Diffie-Hellman problems, security reductions exist between some of these new

problems [41].

The BLS signature scheme does not use any of these new assumptions, and merely

employs the pairing to solve the decisional Diffie-Hellman problem. In contrast, other

pairing-based cryptosystems such as the identity-based encryption scheme of Boneh and

Franklin [13] do rely on the hardness of one or more problems involving pairings.

Sometimes a conventional cryptosystem suggests a pairing-based counterpart. For ex-

ample, the above pairing-based signature scheme and a ring signature scheme due to Rivest

et al. [55] were presented in adjacent sessions at a conference. Someone taking the ideas

from both talks would not have much difficulty in synthesizing their results. Indeed, a

pairing-based ring signature scheme was presented about one year later[15].

As before, both asymptotic and fixed-security-parameter formal security definitions can

be constructed for each of the above problems.

1.7 Loosening the Pairing Definition

In practice, symmetric pairings can be instantiated by using suitable supersingular elliptic

curves. However, in order to allow a wider range of curves to be used, the definition must be

modified. One early pairing-based cryptography publication by Boneh, Lynn and Shacham

suggested the following [17]:

Let G1, G2, GT be cyclic groups of prime order r. Assume the Diffie-Hellman problem

is hard in G1. Let φ : G2 → G1 be an efficiently computable group isomorphism. Let g2 be

a generator of G2. Set g1 = φ(g2) (so g1 generates G1). A bilinear pairing e is an efficiently

computable function

e : G1 ×G2 → GT

such that e(g1, g2) 6= 1 and e(ga
1 , gb

2) = e(g1, g2)
ab for all a, b ∈ Z.

This version of the bilinear map is sometimes called the asymmetric pairing.

CHAPTER 1. BILINEAR MAPS 8

This definition allows a greater variety of pairings to be used, notably those constructed

on ordinary curves. Additionally, because of the map φ security proofs require only minimal

changes. For example, a scheme based on the CDH assumption in G under the symmetric

pairing definition may now be based on the CDH assumption in G2.

However, it is advantageous to further loosen the definition.

1.7.1 A Problem With Hashing

Suppose we have chosen an ordinary curve that does not yield a symmetric pairing, and

suppose that we wish to redesign the cryptosystem to instead use an asymmetric pairing

defined above.

It turns out that there is no known method to hash to an element of G2 such that

its discrete log to some fixed base is unknown. We can hash to elements of G1 and GT ,

and perform all other cryptographically useful operations in G2 such as picking a random

element, multiplication and inversion. We can map an element of G2 to G1. We just cannot

hash a string to an element of G2.

For some cryptosystems, this issue can complicate their design, and in extreme cases we

may have to give up and stick to symmetric pairings only. However, with a more general

pairing definition, we can use ordinary curves and still be able to hash to G2.

1.8 The General Bilinear Pairing

To enable certain optimizations (see Section 6.5) and to permit hashing to any element of

any group including G2, we prefer the following definition. Additionally, its more flexible

nature allows a greater number of assumptions which in turn allow more cryptosystems to

be built.

Let r be a prime. Let G1, GT be cyclic groups of order r. Let G2 be a group where

each element has order dividing r. In particular G2 is not necessarily cyclic. Again we use

multiplicative group notation. A bilinear pairing e is an efficiently computable function

e : G1 ×G2 → GT

such that

1. (Nondegeneracy) e(g1, g2) = 1GT
for all g2 ∈ G2 if and only if g1 = 1G1

, and similarly

CHAPTER 1. BILINEAR MAPS 9

e(g1, g2) = 1GT
for all g1 ∈ G1 if and only if g2 = 1G2

.

2. (Bilinearity) for all g1 ∈ G1 and g2 ∈ G2: e(ga
1 , gb

2) = e(g1, g2)
ab for all a, b ∈ Z

In this setting the hardness assumptions must be altered further. Depending on the

scheme, we may have to assume certain problems are hard in both G1 and G2, or a combi-

nation of the two. For example, we may need to assume that given g1, g
x
1 ∈ G1 and g2 ∈ G2,

there is no efficient algorithm to compute gx
2 . This last example is sometimes referred to as

the computational co-Diffie-Hellman assumption [17].

This definition also allows assumptions that were previously impossible. For example,

some schemes such as the group signature scheme of Boneh, Boyen and Shacham [12] require

discrete log, CDH and co-CDH to be hard in G1, G2 and also DDH to be hard in G1. Other

cryptosystems still require in addition DDH to be hard in G2, require G2 to be cyclic,

or require an efficiently computable group isomorphism φ : G2 → G1, all of which are

variations on this formal definition, and in Section 6.4.2 we learn how to construct pairings

for each case.

We have not required r to be prime. A composite group order is useful for some

cryptosystems[16], but we must be aware that in this case even if g1 and g2 have order

r, e(g1, g2) may not be a generator of GT , but rather a generator of some subgroup of GT

whose order is a factor of r.

When r is composite, it is incorrect to say all nondegenerate pairings are equivalent up to

a constant. Indeed, if d > 1 is a divisor of r and g1, g2 are generators of G1, G2 respectively,

then a bilinear map that takes (g1, g2) to a dth root of unity is still nondegenerate. Since

there is more than one choice for d for a composite r, these maps cannot be equivalent up

to a constant. They are however still completely determined by e(g1, g2) where g1, g2 are

generators. We present a concrete example later in Section 4.2.1.

This also means that e(g1, g2) = 1 does not imply at least one of g1, g2 is the identity

element, in contrast to the case when r is prime.

Thus some care is needed when dealing with composite r. Facts about the pairing that

are true for prime r do not always carry over. We shall encounter a concrete example of

this phenomenon later. Note when r is chosen to be a product of two primes, the resulting

scheme is still substantially different to RSA as the groups are cyclic and of known order.

CHAPTER 1. BILINEAR MAPS 10

1.9 Exponentiation as a Bilinear Pairing

Given some integer r > 1, let us take G1 = GT = Z∗
r and G2 = Z+

r−1. Define e : G1×G2 →
GT by e(g, a) = ga.

Then it is easily seen that if we relax the condition that the groups are cyclic, then

exponentiation satisfies the definition of a bilinear pairing. Thus we may view all discrete

log and RSA cryptosystems as pairing-based cryptosystems, though there are significant

differences in this setting. For example, the discrete log problem is easy in G2, and G1 = GT .

Classic problems can be restated in terms of pairings. For example:

Discrete Log Problem. Given g ∈ G1, c ∈ GT , find a ∈ G2 such that e(g, a) = c.

RSA Problem. Given a ∈ G2, c ∈ GT , find g ∈ G1 with e(g, a) = c.

Strong RSA Problem. Given c ∈ GT , find g ∈ G1, a ∈ G2 with e(g, a) = c

Thinking of conventional cryptosystems as pairing-based cryptosystems can inspire new

ideas.

1.10 Choosing a Definition

The symmetric pairing with cyclic groups into which strings can be hashed is often selected

as it allows simpler and briefer mathematical statements and definitions, and the symmetry

can be useful. However, there are few families of elliptic curves that allow such a pairing.

In practice, one can usually trivially modify symmetric-pairing-based schemes and their

corresponding security proofs to use a more general pairing definition, so that more families

of curves can be used. For example, one may have to replace the the Computation Diffie-

Hellman assumption with the co-Computation Diffie-Hellman problem. Or perhaps a minor

reworking allows the cryptosystem to function when G2 is not cyclic.

Ideally a cryptosystem should use the most general definition when first proposed, allow-

ing maximum choice for the pairing in an implementation. If a more restrictive definition

is necessary, one must pick the extra assumptions carefully and be aware that perhaps only

a few pairing families may satisfy them. For example, there is no known pairing such that

1. Both input groups G1, G2 are cyclic.

CHAPTER 1. BILINEAR MAPS 11

2. One can hash strings to G1 and G2 without knowing the discrete log of the output to

some fixed base.

3. There is an efficiently computable isomorphism φ : G2 → G1 whose inverse is difficult

to compute.

yet for any two of the three conditions, we can find pairings that satisfy both.

Familiarizing oneself with the mathematics behind pairings has several advantages over

merely memorizing valid assumptions and properties of the pairings that correspond to

them. Being ignorant of the inner workings of available pairings means we do not know when

we have made one assumption too many. For instance, it is not obvious that we can only

stipulate up to two of the three conditions in the above list. Knowledge of the computations

being performed also enables us to estimate the time and space taken by cryptographic

operations, which is affected by the pairing choice in subtle ways. For example, if we use a

symmetric pairing, then typically elements will be 512 bits long. If we forgo symmetry and

use two groups G1, G2, then it turns out we may achieve a 160-bit G1 and a 320-bit G2,

though pairings are slower.

1.11 Concrete Bilinear Maps

There is only one known setting for cryptographically useful bilinear maps, namely elliptic

curves with an efficiently computable Tate pairing.

Strictly speaking, one can use hyperelliptic curves where much of the theory generalizes,

but this is beyond our scope. We can find hyperelliptic curves [33, 56, 29] suitable for pair-

ings, and although hyperelliptic curve cryptography appears to be a promising avenue for

future research, there are no compelling reasons to use them yet. To the author’s knowl-

edge, there are no implementations of pairing-based cryptosystems based on hyperelliptic

curves, and in practical terms, G, or G1 and G2 are always groups of points on an elliptic

curve, and GT is always a subgroup of a multiplicative group of a finite field.

Mathematicians have traditionally employed additive notation for the group of points

on an elliptic curve, since it is Abelian. As a result, publications in the area often use

additive group notation along with uppercase letters for elements for the input groups.

We have used multiplicative notation in this chapter to highlight the Diffie-Hellman

heritage of pairing-based cryptography. This notation also suggests the right way to compare

CHAPTER 1. BILINEAR MAPS 12

elliptic curve and finite field operations: point multiplications should be compared with

exponentiations, not integer multiplications. Later we will switch to additive notation

when discussing the underlying mathematics.

When deploying a pairing-based cryptosystem one must select a type of curve to use.

The correct choice depends on several factors, which we discuss in later chapters.

We conclude with a toy example of the BLS signature scheme. Let q = 427211363219.

Consider the curve E : y2 = x3 + x over Fq. Then E(Fq) contains a subgroup G of order

r = 524353 (which is a prime factor of 427211363219 + 1). Take a random generator

g = (359473638793, 293998693014)

for the system parameter, and a random secret key

x = 66995.

Then the corresponding public key is

gx = (166505572345, 357692656519).

Suppose a message hashes to

h = (370499138522, 78458612837).

Then the corresponding signature is

σ = hx = (278647014375, 78919786700).

To verify, we must check that e(g, σ) = e(gx, h) which turns out to be

85791756805 + 99975533880i,

an element of K[i] that has order r. The exact value of the last result may vary from

implementation to implementation since the pairing is only unique up to a constant and

different implementations may result in different constants, but both sides of the equation

always match.

CHAPTER 1. BILINEAR MAPS 13

The order r in the above example is roughly 20 bits in length, while the order q of the

field, and the space required by compressed elements of G1 and G2 is roughly 40 bits. In

real life, one would require a 160-bit r and 512-bit q for secure signatures.

Chapter 2

Elliptic Curves

We review basic facts about elliptic curves. Aside from the problem of generating suitable

elliptic curves and counting the size of the resulting group, we will cover enough theory to

replace finite fields with elliptic curves in cryptosystems based on cyclic groups.

We discuss pairings and algorithms to find pairing-friendly curves in future chapters.

We will not discuss curve-finding and point-counting algorithms geared towards standard

elliptic curve cryptography which necessarily requires curves that are not pairing-friendly,

but instead direct the interested reader to Blake, Seroussi and Smart [9].

2.1 Informal Overview of Elliptic Curves

We present a highly informal overview to elliptic curve theory, which may aid those that

have not encountered them before. This section can be safely skipped.

Consider a polynomial C in two variables X,Y . We are interested in the solutions to

C = 0 which describe a curve on a two-dimensional plane.

We first observe that if C ′ is another curve that is an affine transformation of C, that

is, if we can linearly transform (e.g. rotate, scale, shear) and then translate C to obtain C ′

then a correspondence exists between the solutions to C = 0 and the solutions to C ′ = 0.

Knowing the solutions of one allows us to easily compute the solutions of the other, For

this reason we consider such curves C and C ′ to be equivalent.

If every term in C has combined degree of at most 1, that is, if C = aX + bY + c then

C describes a line. The geometry of lines is too simple to yield anything cryptographically

useful.

14

CHAPTER 2. ELLIPTIC CURVES 15

If every term in C has combined degree at most 2, then C describes a single line, a pair

of lines, an ellipse, a parabola or a hyperbola. The first two possiblities can be viewed as

special cases, occuring when C is reducible or degenerate in some sense.

By adding points of infinity to the plane, we can find affine transformations that change

any ellipse, parabola or hyperbola into the unit circle centred at the origin. Intuitively, the

two ends of the parabola can be thought of as meeting at a point at infinity, forming a

circle, and similarly opposite ends of hyperbolas connect at infinite points.

Thus to study degree 2 curves is essentially to study the unit circle, whose geometry is

again is too simple for our purposes.

However, degree 3 curves, called elliptic curves, are nontrivial (for instance, unlike the

previous two cases we cannot transform any elliptic curve into any other) and have a rich

structure well-suited for cryptography.

For any irreducible elliptic curve C, applying appropriate affine transformations pro-

duces an equation C ′ of a certain form known as the Weierstrass form. In this form, C ′

always contains exactly one point at infinity. Transforming C so that no points are infinite

is possible but leads to more complicated equations. Using an equation that has exactly

one point at infinity simplifies some of the expressions.

2.2 Points on Elliptic Curves

Let Fq be a field for some prime q > 3. Unless otherwise specified we shall always define

curves over a field of prime order and of characteristic greater than three. Elliptic curves

can be implemented over fields of characteristic 2 and 3 and enjoy many optimizations,

but suffer from specialized discrete log attacks [24] and should generally be avoided. We

do consider a certain family of characteristic three curves in Section 4.16, where we also

outline their trade-offs.

An elliptic curve E over such a field Fq is an equation of the form

E : Y 2 = X3 + aX + b

where a, b ∈ Fq. Let ∆ = 4a3 + 27b2, the discriminant of the cubic in x. Then E is singular

if ∆ = 0, i.e. the cubic has a repeated root, and nonsingular otherwise, i.e. the cubic has

distinct roots.

CHAPTER 2. ELLIPTIC CURVES 16

Unless otherwise stated we always consider nonsingular elliptic curves. Later we will en-

counter supersingular curves, a particular breed of nonsingular curves that are not singular

despite their name. The antonym of supersingular is ordinary or nonsupersingular.

For any field Fqk define E(Fqk) to be the set of all solutions of E over Fqk , called the finite

points along with a special point denoted O, that is called the point at infinity. We write

#E(Fqk) or |E(Fqk)| for the number of elements of E(Fqk). Intuitively, the point O can be

thought of as the point where all lines parallel to the Y-axis meet. Mathematically, we solve

the curve equation using projective coordinates [25] and one can show that O = (0, 1, 0) is

always a unique infinite solution to the equation. We shall never need this fact.

We quote two well-known theorems.

Theorem (Hasse). Let t = qk + 1−#E(Fqk). Then |t| ≤ 2
√

qk.

Thus the number of points on an elliptic curve in a given field is on the same order as

the size of the field. The quantity t is called the trace of Frobenius.

Theorem (Weil). Let t = q +1−#E(Fq) where q is a prime power. Factor the polynomial

x2 − tx + q as (x− α)(x− β) over C[x]. Then

#E(Fqk) = qk + 1− (αk + βk).

This last theorem is more practical in the following form. Let t0 = 2, Let t1 = q + 1 −
#E(Fq). Define tn recursively by

tn = t1tn−1 − qtn−2.

Then #E(Fqk) = qk + 1− tk.

For example, consider the curve E given by

Y 2 = X3 + X + 6

over F19, an example used by Balasubramanian and Koblitz [1]. There are 18 points

(0, 5), (4, 6), (2, 4), (3, 6), (14, 3), (12, 13),

(18, 2), (10, 3), (6, 0), (10, 16), (18, 17), (12, 6),

(14, 16), (3, 13), (2, 15), (4, 13), (0, 14), O

CHAPTER 2. ELLIPTIC CURVES 17

thus the trace of Frobenius t = 2.

Over F192 , we have

#E(F192) = 192 + 1− t2

where t2 = 2 · 2− 19 · 2 = −34, thus #E(F192) = 396.

2.3 Finding Points

Let E : Y 2 = X3 +aX + b be an elliptic curve over a field K. There always exists an unique

infinite solution, namely O. We describe a simple method for finding the finite points of E.

For any x ∈ K, we may attempt to solve Y 2 = x3 + ax + b for Y by finding a square

root of the right-hand side. We momentarily postpone describing the details of square root

algorithms. For now, assume we can find square roots.

When solutions for Y do exist for a given x, we have found exactly two points, one

for each square root, except in the rare case when the point lies on the X-axis, which can

happen in at most three places.

Also, recall from an above theorem that the size of K is roughly the same as the number

of points on E(K).

Combining these two facts shows that for approximately half of the choices for x ∈ K,

a square root exists and we can solve E to find a point. Thus we have a fast method of

finding random points on E:

1. Choose x ∈ K at random.

2. Solve Y 2 = x3 + ax + b for Y . If there are no solutions then go to the previous step.

3. Flip a coin to decide which solution of Y to use.

Of course, it is impossible to choose the point at infinity with this method, and points

that lie on the X-axis have a slightly higher probability of been picked than other points.

For cryptography this is of no concern since the point of infinity is usually unwanted, and

the probability of finishing at a point with zero Y -coordinate is negligible since there are at

most three of them. Moreover, it is often unimportant which square root is chosen.

If one insists on choosing all points of E(K) uniformly, one could simply add a step

before choosing x. Let n = #E(K). Then with with 1/n probability, choose O or one of

CHAPTER 2. ELLIPTIC CURVES 18

the points lying on the X-axis, otherwise proceed with the above algorithm, except in the

second step, we also go back to the first step if the only solution is Y = 0.

Before attempting to find a square root of a given element x ∈ K, we can check that one

actually exists first. When K has prime order, one can compute the Legendre symbol before

attempting to square root x. More generally it can be checked that X2 − x is reducible.

Alternatively, one can omit the check, proceed with a square root algorithm, and com-

pare the square of the output with x: if there is a mismatch then x is not a square after

all.

It remains to describe how to take square roots. For a field of prime order one can use

the Tonelli-Shanks algorithm to compute square roots [9, 47], which we quote below.

For a general finite field, one must use a more complex algorithm. Perhaps the simplest

of these Legendre’s method which can be viewed as using the Cantor-Zassenhaus algo-

rithm of Section 5.8 to factor X2 − x. Faster algorithms exist, though sometimes require

precomputation [8].

2.3.1 Tonelli-Shanks Algorithm

Suppose we wish to compute b =
√

a in a field Fq for some prime q. (These paragraphs

should be viewed as self-contained; the notation from earlier paragraphs does not apply

here.)

Algorithm 1 (Tonelli-Shanks) Find b =
√

a in a prime field

1: Find an element g ∈ Fq that is not a square.
2: Since q is odd (unless q = 2 in which case square roots are trivial), we may write

q − 1 = 2st for some odd t.
3: e← 0
4: for i← 2 to s do
5: if (ag−e)(q−1)/2i 6= 1 then
6: e← 2i−1 + e
7: end if
8: end for
9: h← ag−e

10: b← ge/2h(t+1)/2

11: Return b

The first step can be accomplished by choosing random elements g ∈ Fq until g(q−1)/2 =

−1. Clearly this g can be stored for use in future square root computations in the same

CHAPTER 2. ELLIPTIC CURVES 19

field.

We can briefly explain the Tonelli-Shanks algorithm as follows. Observe square roots in

a cyclic group of order t where t is odd can be computed by exponentiating by (t + 1)/2.

Then using F∗
q
∼= Z+

2s × Z+
t for some odd t leads to the above.

2.3.2 Hashing to Points

Finding points by choosing an X-coordinate and solving for Y suggests an efficient algorithm

for hashing to a point in E. The input is hashed to some x ∈ K, and then a corresponding

y is sought. On failure, a new x-coordinate is deterministically generated from x, and again

we attempt to solve E for y. Repeating this process as many times as necessary eventually

yields a valid point (x, y) ∈ E(K).

2.4 Point Compression and Reduction

Another implication of taking square roots to find a Y corresponding to a particular X

value is that a point (x, y) can be represented by x along with a single bit indicating which

solution of y to take. This technique is known as point compression.

Alternatively, for some cases we can simply use x alone, which is sometimes called point

reduction. For example, suppose Alice needs to send Bob a point in some cryptosystem.

She sends Bob x, who guesses the solution y. Bob attempts to proceed normally. If the

protocol fails e.g. the signature does not verify, then Bob tries again with −y. This does

not cost much more since the solutions are related by negation, and in Section 6.13 we show

how to check both possibilities with only one operation.

Trivially we can take this principle further. Alice can omit k bits of x, and leave Bob

to try all 2k possibilities.

2.5 The Chord-Tangent Law of Composition

We define an operation + on E(Fqk). Let P = (a, b), Q = (c, d) ∈ E(Fqk) be finite points.

If P 6= Q, then it is not hard to show that if a 6= c then the line through P and Q must

intersect E at another point (x, y) where x, y ∈ Fqk . Note that (x,−y) also is a solution of

E. Define P + Q = (x,−y) for a 6= c. If a = c (in which case we must have b = −d), then

define P + Q = O.

CHAPTER 2. ELLIPTIC CURVES 20

Now suppose Q = P . In this case, consider the tangent line going through P . It turns

out it must intersect E at another point (x, y) where x, y ∈ Fqk unless b = 0. Define

P + P = (x,−y) for b 6= 0. For b = 0 define P + P = O.

Lastly define P + O = P , O + O = O.

This operation turns E(Fqk) into a group. The point O is the identity, and the inverse

of a point P = (x, y) is the point −P = (x,−y).

As usual, define 0P = O, 1P = P , nP = (n − 1)P + P for integers n > 1 and

nP = −(−n)P for integers n < 0. This operation is termed point multiplication. Point

multiplication can be performed efficiently via carefully chosen point additions, in a process

that mirrors the repeated squaring technique for exponentiation in finite fields.

Recall the previous chapter used multiplicative group notation to emphasize the connec-

tion between discrete log cryptosystems and pairing-based cryptosystems, as we are using

elliptic curve groups where one would use the multiplicative group of a finite field.

Mathematicians use additive group notation for the elliptic curve group since the group

is Abelian, and we will adhere to this convention in this section.

2.6 Explicit Formulas

Let E : y2 = x3 + ax + b be an elliptic curve over Fqk . Let P1, P2 ∈ E(Fqk) and suppose

we wish to find P3 = P1 + P2. Note the case where at least one of P1, P2 is O is trivial, so

assume both P1 and P2 are finite. Then write P1 = (x1, y1), P2 = (x2, y2).

If x1 = x2 and y1 = −y2 then the line V through P1 and P2 is vertical and can be given

by

V : X − x1 = 0.

In this case P3 = O (and P1 = −P2).

Otherwise P3 also must be finite, hence write P3 = (x3, y3). We have two cases. If

P1 = P2 then the tangent line T at P1 has slope

λ =

[

∂E/∂X

∂E/∂Y

]

(x1,y1)

=
3x2

1 + a

2y1
.

and if P1 6= P2 then the line L through P1 and P2 has slope

λ = (y2 − y1)/(x2 − x1).

CHAPTER 2. ELLIPTIC CURVES 21

If we set µ = y1 − λx1 then the equation of L or T is given by:

L, T : Y − (λX + µ) = 0

We can find the x-coordinate of the other point of intersection (x3,−y3) by substituting

Y = λX + µ into E. We find

E(X,λX + µ) = X3 − λ2X2 + a1X + a0 = 0

for some a1, a0 ∈ Fqk , thus the sum of the roots x1 + x2 + x3 = λ2.

This allows us to compute x3, y3. Explicitly we have for P1 6= P2:

λ ← (y2 − y1)/(x2 − x1)

x3 ← λ2 − x1 − x2

y3 ← (x1 − x3)λ− y1

and for P1 = P2:

λ ← (3x2
1 + a)/(2y1)

x3 ← λ2 − 2x1

y3 ← (x1 − x3)λ− y1

The most expensive step is the division in the computation of λ.

The expressions for the lines L, T, V will be used later in the computation of a pairing.

For the curve Y 2 = X3 + X + 6 over F19, using these formulas, it can be verified for

instance that (0, 5) + (0, 5) = (4, 6), and (0, 5) + (2, 15) = (4, 13).

2.7 Elliptic Curve Cryptography

We now possess enough theory to show how elliptic curves may be used in cryptography.

Let E be an elliptic curve over a field K. The group operation described above means that

every point on E generates a cyclic group G. Then we can use G for cyclic group cryptog-

raphy provided that its order is prime, that the basic operations, namely group operation,

inversion, hashing, are efficient, and that problems such as discrete log are difficult.

The formulas above show that only a few operations in K are required for point addition

and negation. We previously saw how to hash to points in E(K). Thus it seems elliptic

curve cryptography can replace cryptography in finite fields by using points in E(K) instead

CHAPTER 2. ELLIPTIC CURVES 22

of elements of some F ∗ for some finite field F , and the group operation is point addition

instead of modular multiplication. The only obstacle is ensuring that randomly chosen

points and hashed points lie in G, and not all of E(K).

Recall that cryptographic schemes in F ∗ for some finite field F often operate within a

subgroup G of a particular order r, so elements chosen at random and hashed to must have

order r, or a factor of r. But an element of F ∗ in general does not have such an order. Thus

after using some algorithm to choose or hash to some element x ∈ F ∗, to obtain an element

of a suitable order one simply exponentiates x by n/r where n = #F ∗. On elliptic curves,

the construction of a point of order r, or a factor of r, from some given point P ∈ E(K)

can be accomplished similarly by multiplying P by n/r where n = #E(K).

Let n = #E(K). Then from Abelian group theory for any prime r dividing n, there

exists a point P ∈ E(K) of order r. and furthermore, if r2 does not divide n then there is

exactly one subgroup G of E(K) of order r.

This suggests the following procedure for implementing any cryptographic scheme based

on cyclic groups of prime order:

1. Choose any curve E(K) and somehow work out n = #E(K).

2. Find a prime r dividing n, such that r2 ∤ n. We shall work in the unique cyclic

subgroup G ⊂ E(K) of points of order r.

3. When a random group element of G is required, first choose a random point of E(K)

and then multiply by n/r. Similarly, when hashing to a point of G, first hash to a

point in E(K) and then multiply by n/r.

4. Other operations are straightforward: every time a group operation is required, we

perform a point addition. To find an inverse of a group element, we negate the y-

coordinate of a point. When an exponentiation is called for we carry out a point

multiplication

This easily generalizes to squarefree r.

In some applications it does not matter if the group is not cylic. For example, many

cryptosystems function equally well in a group isomorphic to Z+
r × Z+

r . In these cases we

allow r2 to divide n.

We quote another well-known theorem which implies that we never have more than two

copies of Z+
r in E(K). Note our most general abstract definition of the pairing in fact

CHAPTER 2. ELLIPTIC CURVES 23

permits groups with at least three copies of a cyclic group, even though this theorem shows

this is impossible for elliptic curves.

Theorem (See Silverman [62]).

E(K) = Z+
r × Z+

s

for some integers r, s with r | s.

In the running example, E : Y 2 = X3 + X + 6 over F19, the order of the group is

n = 18 = 32 × 2, and it so happens that the group is cyclic: it can be checked that (0, 5) is

a generator. Thus this curve can be used for cryptography on a cyclic group of order r = 3.

However, in general, if r2|n there may be more than one subgroup of order r and the above

procedure cannot be followed.

We have yet to describe how to compute #E(K) for a given curve. Fast algorithms

exist for this [9] but it turns out that if a pairing is desired, we must seek out elliptic curves

whose orders satisfy various conditions. As a result, instead of choosing a curve first and

counting the number of points n and hoping for a large prime factor r of n, we must use

families of curves where the size of the group is known in advance and has the requisite

properties, a subject of a later chapter.

For now, we exhibit one case where #E(K) is always easy to determine and furthermore

E(K) is always cyclic.

2.8 Singular Elliptic Curves

Using singular elliptic curves is equivalent to conventional cryptography. It can be shown

that the set Ens of nonsingular points (all but one) of a singular elliptic curve over a field K

also form a group under the chord-tangent law, and Ens
∼= K∗ or Ens

∼= K+ [62, Proposition

2.5]. Furthermore these isomorphisms are efficiently computable in either direction. Note

the latter case is useless for cryptographically as discrete log is easy in K+.

For example, consider the curve

E : y2 = x3 + x2

This has a singular point at (0, 0). Then the other solutions to this curve (including the

CHAPTER 2. ELLIPTIC CURVES 24

point at infinity) form a group Ens(Fqk) for any finite field Fqk .

Furthermore, there is an isomorphism Ens(Fqk)→ F∗
qk given by

(x, y) 7→ y − x

y + x

(and maps O to 1) which is efficienty computable in either direction. A little algebra shows

the reverse map is

z 7→
(

x′,
1 + z

1− z
x′

)

where x′ = 4z/(1 − z)2 for z 6= 1, and 1 7→ O.

This example has little practical value as point additions are slower than modular mul-

tiplications, and keeping both coordinates of a point in memory takes twice as much space.

However, it does suggest that cryptography in finite fields can be viewed as a special case

of elliptic curve cryptography, and strictly speaking, those that complain that elliptic curve

cryptography is controversial, too experimental and untested must qualify their remarks by

making exceptions for singular curves!

Needless to say, it is entirely possible that researchers may one day discover special

discrete log algorithms that work only for singular curves, in which case we are left only with

finite fields for cryptography. Similarly, if a subexponential discrete log algorithm applicable

to any elliptic curve were found, then again finite fields would be the only reasonable choice

because elliptic curves are less efficient for the same field size.

It is clear that if an efficiently bilinear nondegenerate pairing were found for singular

curves then the Decisional Diffie-Hellman problem could be broken in finite fields.

2.9 Security

We have not yet shown any benefits to using elliptic curves instead of finite fields. On

the contrary, although a group inversion is almost free, the group operation, hashing, and

random element generation are considerably more expensive for the same field.

Their strength derives from the fact that no discrete log algorithm for general elliptic

curves that outperforms generic methods has ever been discovered.

The best generic methods are based on the birthday paradox, and have O(
√

n) expected

running time, where n is the group order. A group order around 160 bits in length is

sufficient to defeat such attacks. In contrast, subexponential discrete log algorithms for

CHAPTER 2. ELLIPTIC CURVES 25

finite fields mean that one must use at least 1024-bit finite fields for security.

Hence one may work with fields over six times smaller in length if elliptic curves are

used. The increase in speed in the underlying field arithmetic easily compensates for the

more complex group operations. Thus choosing elliptic curves instead of finite fields results

in savings in both space and time.

The most important attribute of elliptic curves for our purposes is that without them,

we cannot construct a cryptographically useful bilinear map. That elliptic curves happen

to be more efficient than finite fields is a happy coincidence and makes pairings even more

attractive.

2.10 Short Signatures

At this point we can see why the BLS signature scheme introduced in the first chapter

features a short signature length. Recall in abstract terms, a signature is a single element

of a cyclic group G of prime order r and we need a bilinear map to exist on G.

In Section 4.16 we give examples of pairings where one input group is a subgroup of

points on an elliptic curve E over some field Fq where q is about 160 bits long.

A point has two coordinates, both taking about 160 bits to represent. We can use

point reduction, that is, discard the y-coordinate entirely, and represent signatures by their

x-coordinate only if we modify verification as follows:

1. Given an x-coordinate of a signature, find any solution y in the curve equation E.

2. If the signature (x, y) does not verify, check if the signature (x,−y) verifies.

3. If the signature still does not verify then reject it.

Thus signatures are elements of Fq and hence roughly 160 bits in length.

Verification of the signature involves computing e(P,Q) for some points P,Q. By the

bilinearity of the pairing, if we have guessed the point Q wrongly, we can obtain the value of

e(P,−Q) = e(P,Q)−1 by performing an inversion rather than recompute another pairing.

In Section 6.12 we will see we can do better than this by using a technique known as

pairing compression, and in effect check both cases at once.

Instead of discarding the y-coordinate, we can replace it with a single bit signifying

which solution of y to take, a technique known as point compression [9, Section IV.4].

Chapter 3

The Weil and Tate Pairings

The Weil and Tate pairings take r-torsion points as input, and in the case of the Weil

pairing, both inputs are r-torsion points. They can be defined using rational functions.

They output an element of a finite field that is an rth root of unity.

We shall state facts whose proofs can be found in many textbooks on elliptic curves

such as Silverman [62].

3.1 Torsion Points

Let K be a finite field of characteristic q, so that K = Fqm for some natural number m.

Let E be an elliptic curve defined over K. Let n = #E(K) Suppose P ∈ E(K) satisfies

rP = O, so that P has order r or a factor of r. We call P an r-torsion point. We denote

the set of r-torsion points in E(K) by E(K)[r].

For the curves we shall consider, n and q are always coprime thus r is also coprime to q

(since r | n). The case when r is not coprime to q leads to the anomalous attack [9, Section

V.3] which breaks discrete log in linear time.

It can be proved that for some integer k ≥ 1, E(Fqk)[r] contains exactly r2 points and

is in fact the direct product of two cyclic groups of order r, that is, isomorphic to Zr × Zr.

Furthermore, for all k′ ≥ k we have E(Fqk′)[r] = E(Fqk)[r]. Roughly speaking, there are

no other r-torsion points beyond the first r2 points found, no matter how many times we

extend the field. (That is, if K̄ is the algebraic closure of K then #E(K̄)[r] = r2.) We

define E[r] = E(Fqk)[r], the set of r-torsion points of E.

26

CHAPTER 3. THE WEIL AND TATE PAIRINGS 27

Thus the above isomorphism may be written

E[r] ∼= Zr × Zr.

When r = 2 this is easy to see: a point has order 2 if and only if it has a zero y-coordinate.

Since E is nonsingular, x3 + ax + b = 0 has three distinct solutions, thus we can always

find some field Fqk where E has four points of order 2: the point O and three points of

the form (α, 0) where α is a root of the cubic. Since the line through any two of the finite

points is simply the line Y = 0, which certainly intersects E at the other finite point, we

have E[2] ∼= Z2 × Z2. The proof is much less trivial for general r.

The Weil pairing is a bilinear map takes pairs of elements from E[r] and outputs an rth

root of unity in Fqk . The Tate pairing is similar but only the first input is from E(Fq)[r].

3.2 Rational Functions

We study the behaviour of quotients of polynomials in two variables on points on an elliptic

curve. Denote the ring of polynomials in two variables X,Y with coefficients in Fqk by

Fqk [X,Y].

Let E be an elliptic curve Y 2 = X3+aX+b over Fqk . Write E(X,Y) for the polynomial

Y 2 − X3 − aX − b. It can be shown that a polynomial f satisfies f(X,Y) = 0 whenever

E(X,Y) = 0 if and only if f(X,Y) is a multiple of E(X,Y).

Thus define Fqk [E] = Fqk [X,Y]E(X,Y). In other words we look at all possible polynomials

and consider two of them to be equivalent if they take the same values on all points of E.

Every element f(X,Y) in Fqk [E] can be written in the form fx(X)+Y fy(X) for polynomials

fx, fy ∈ Fqk [X] because we may replace Y 2 by X3 + aX + b.

Define Fqk(E) to be the field of fractions of Fqk [E]. Elements of Fqk(E) can be written

in the form f(X,Y)/g(X,Y) where f, g are polynomials in two variables X,Y and g is not

a multiple of E.

3.3 Curve Endomorphisms

Given a point P and integer m consider the ”multiplication-by-m” map [m] given by

P 7→ mP.

CHAPTER 3. THE WEIL AND TATE PAIRINGS 28

If P is viewed as a pair of variables (X,Y), this map can be written as (f(X,Y), g(X,Y))

for some rational functions f, g. Using the explicit formulas for point addition and doubling

given in the previous chapter, we can write down explicit formulas for f and g for any m,

but even for relatively small m the expressions are unwieldy.

This is an example of a curve endomorphism, because points of E(Fqk) are mapped to

points of E(Fqk), and furthermore the map preserves point addition. Another important

example is the qth power Frobenius map Φ, given by (X,Y) 7→ (Xq, Y q). In general one

defines qkth power Frobenius maps but we only define the qth power map, and if we need

higher powers k we shall write Φk.

We shall also need the trace map, which is defined by

tr P = P + Φ(P) + ... + Φk−1(P)

which takes points of E(Fqk) to E(Fq).

We state another well-known theorem from the theory of elliptic curves. Below, f ◦ g

denotes the map defined by P 7→ f(g(P)).

Theorem (Hasse).

Φk ◦ Φk − [t] ◦Φk + [qk] = [0]

where t = qk + 1−#E(Fqk).

Since E[r] ∼= Zr×Zr any curve endomorphism that maps E[r] to E[r] (which is true for

Frobenius and multiplication-by-m maps) can be viewed as a 2× 2 matrix when restricted

to E[r].

In particular for a prime r dividing #E(Fq) the eigenvalues of Φ are the solutions to

x2− tx+ q (mod r). The polynomial factorizes as (x− q)(x− 1) thus any eigenvalues must

be q or 1. We can describe the corresponding eigenspaces.

Clearly E(Fq)[r] is a 1-eigenspace, hence if E[r] ⊂ E(Fq) then Φ is simply the identity.

Otherwise consider the set G = {P | tr P = O}.
We know this set contains more than just the point at infinity since for any P ∈ E[r] \

E(Fq)[r], the point P−Φ(P) is nontrivial and has trace zero. Straightforward computations

show that G is closed under the group laws, and also show that Φ(G) = G. Hence G is an

eigenspace.

As G cannot be the 1-eigenspace (which has already been accounted for; E(Fq)[r] is the

CHAPTER 3. THE WEIL AND TATE PAIRINGS 29

1-eigenspace), G must be the q-eigenspace, which implies |G| = r.

This result is important in Section 6.4, so we restate it:

Theorem. The set of points of trace zero G = {P | tr P = O} is a cyclic group of order r,

and every P ∈ G satisfies Φ(P) = qP .

3.4 Zeroes and Poles

When we study a polynomial f(X), the roots, or zeroes, of f(X) play an important role.

Given the zeroes of a polynomial f , we can instantly write down an expression for f that

is unique up to a constant multiple. Extending this idea, when considering the quotient

of two polynomials f(X)/g(X), we see the zeroes are the roots of f and the poles are the

roots of g, and f/g is completely determined up to a constant by its zeroes and poles and

their multiplicities. Indeed, suppose the zeroes and poles are α1, ..., αn with multiplicites

a1, ..., an where αi is a zero of multiplcity ai. We consider a zero of negative multiplicity ai

to be a pole of multiplicity −ai. Then we may write f(X)/g(X) immediately by multiplying

equations of appropriate vertical lines:

f(X)/g(X) = (X − αi)
ai

One can view roots of a polynomial f as places where the curve Y = f(X) intersects

with the curve Y = 0. We now generalize by replacing Y = 0 with an elliptic curve.

When studying an element f(X,Y) ∈ Fqk [E], we take note of points of intersection between

f(X,Y) and E. Again, we call these points zeroes of f .

Complications occur due to the point at infinity O. We omit the details since we do

not wish to discuss projective geometry, but it turns out that every line αX + βY + γ that

intersects a given elliptic curve E has a pole at O of some multiplicity, though this is not

immediately suggested from its equation. The following two facts are all that we will say

on this topic, and they need not be retained, nor even read. Firstly, if a vertical line X −α

intersects the curve E then it has a pole at O of multiplicity 2. Secondly, if a non-vertical

line αX + βY + γ intersects E then it has a pole of multiplicity 3 at O. From now we will

ignore the behaviour of rational functions at O.

Recall an element of Fqk(E) can be written as f(X,Y)/g(X,Y). In this case the zeroes

are the zeroes of f and the poles of g, and the poles are the poles of f and the zeroes of

CHAPTER 3. THE WEIL AND TATE PAIRINGS 30

g. Just as expressions of the form X − α can be viewed as building blocks of quotients of

polynomials, we view equations of lines αX +βY +γ as building blocks of rational functions

on elliptic curves. As with quotients of polynomials, knowing the zeroes and poles of a

rational function on E allows us to instantly write its equation, up to multiplication by a

constant. We also build the function by multiplying together equations of lines, but need

more than just vertical ones.

In what follows, by abuse of notation we often refer to a single rational function f when

in fact we are considering a whole family of rational functions cf for some nonzero constant

c. To add to the confusion, having arbitrarily chosen a representative of a family, we will

sometimes subsequently insist on using that same representative. The reasons for doing so

will become clear.

3.5 Divisors

Divisors are the standard way to notate zeroes and poles and their multiplicities, or orders.

If we wish to record zeroes and poles P1, ..., Pn of orders a1, ..., an (where Pi is a zero of

order ai if ai > 0 and is a pole of order −ai otherwise), then we may write:

D = a1〈P1〉+ ... + an〈Pn〉.

With this notation, if we add the divisors of two functions together, then the resulting

divisor reflects the zeroes and poles of the product of the two functions.

For this chapter we break with tradition and use multiplicative notation for divisors

instead. In addition, we will omit the number of poles or zeroes at O, as we are ignoring the

behaviour of rational functions at that point. For divisors of rational functions, we actually

do not lose any information because if we cared, we could always recover the order of (O)

simply by negating of the sum of the orders of the finite points.

Let D be the divisor with zeroes and poles P1, ..., Pn of multiplicities a1, ..., an. We shall

write D as

D = (P1)
a1 ...(Pn)an .

Our unusual notation has several advantages. Using additive group notation for the

elliptic curve and multiplicative notation for divisors emphasizes the difference between

them and reduces the likelihood of confusing the two. When rational functions are multiplied

CHAPTER 3. THE WEIL AND TATE PAIRINGS 31

together, their divisors can be multiplied together, which is arguably more natural than

adding them. Leaving out the (O) term allows us to focus less on bookkeeping and more

on the task at hand, and the order of (O) can be readily calculated anyway.

We use (f) to denote the divisor of f , thus in our notation for any rational functions

f, g we have (f)(g) = (fg).

On an elliptic curve, in our unorthodox notation:

Lines: a line L through the points P,Q intersects E at a third point −P − Q by the

chord-tangent composition law, and so has divisor

(L) = (P)(Q)(−P −Q).

Tangents: when Q = P we have a tangent line T at P with divisor

(T) = (P)2(−2P).

Verticals: when Q = −P , we have a vertical line V through the point P with divisor

(V) = (P)(−P).

3.6 The Weil Pairing

Earlier papers on pairing-based cryptosystems advocated the Weil pairing. We shall see

that the related Tate pairing is preferable for our purposes. Nonetheless we first describe

the Weil pairing for historical reasons, and also because its simpler description serves well

as an introduction. The inputs to the Tate pairing come from different groups, and the

definition involves quotient groups, which can obscure the basic idea. However, the actual

computation of the Tate pairing is simpler.

Let E be an elliptic curve containing n points over a field Fq. Let G be a cyclic subgroup

of E(Fq) of order r with r, q coprime. Let k be the smallest positive integer such that E(Fqk)

contains all of E[r].

We define the Weil pairing f : E[r]× E[r]→ Fqk as follows.

For a pair of points P,Q ∈ E[r], choose any R,S ∈ E[Fqk] such that S 6= R,P+R,P+R−
Q,R−Q. Let fP be a rational function with divisor (fP) = (P +R)r/(R)r, (In other words,

CHAPTER 3. THE WEIL AND TATE PAIRINGS 32

we have r zeroes at P + R and r poles at R. In standard notation this is r〈P + R〉− r〈R〉.)
and similarly let fQ be a rational function with divisor (fQ) = (Q + S)r/(S)r .

Define

f(P,Q) =
fP (Q + S)/fP (S)

fQ(P + R)/fQ(R)

It can be shown that this value is independent of the choices for R,S. The conditions

for choosing R,S ensure we never evaluate fP nor fQ at a zero or pole. Also both fP , fQ

are only unique up to a constant, but this has no effect on the final answer since quotients

of these functions are computed and the constants cancel out. This is an example of the

grey area mentioned earlier: at first we are free to choose any function as long as they have

certain zeroes and poles, but we cannot alter it once we have made a choice.

Finding explicit expressions for these functions is infeasible for cryptographically useful

pairings. Instead, we will soon describe an algorithm, known as Miller’s algorithm [48, 49]

that evaluates these functions in a lazy fashion at the required points. This algorithm

resembles a typical exponentiation routine that performs repeating squaring.

One can prove that

1. f(aP, bQ) = f(P,Q)ab for all P,Q ∈ E[r] and all integers a, b.

2. f(P,P) = 1 for all P ∈ E[r].

3. f(P,Q) = 1 for all P ∈ E[r] if and only if Q = O.

4. f(P,Q) = 1 for all Q ∈ E[r] if and only if P = O.

5. f(P,Q) = f(Q,P)−1 for all P,Q ∈ E[r].

6. f(Φ(P),Φ(Q)) = f(P,Q)q for all P,Q ∈ E[r]. where Φ denotes the Frobenius map.

(The last property is usually stated more generally: f(α(P), α(Q)) = f(P,Q)deg α for

any nonzero endomorphism α.)

The second to last property, known as antisymmetry, is a property the Tate pairing does

not have. However it does not yet have any use in cryptography.

3.6.1 Weil Reciprocity

Many of the previous statements, including the fact that the pairing is well-defined (in other

words, the choices of R,S above do not matter) and several of the listed properties, can be

proved using a fact known as Weil reciprocity [13].

CHAPTER 3. THE WEIL AND TATE PAIRINGS 33

First, we define evaluation of a rational function f at a divisor
∏

P P aP by

f(
∏

P

(P)aP) =
∏

P

f(P)aP

Weil reciprocity states that for any rational functions f, g,

f((g)) = g((f)),

that is, evaluating g at the divisor of f produces the same result as evaluating f at the

divsor of g.

Intuitively, Weil reciprocity can be thought of as a generalization of the much simpler

version of this statement for polynomials: given two polynomials p, q, the result of evaluating

p at the zeroes of q and multiplying has the same absolute value as evaluating q at the zeroes

of p and multiplying.

3.7 The Tate Pairing

Let E be an elliptic curve containing n points over a field Fq. Let G be a cyclic subgroup of

E(Fq) of order r with r, q coprime. Let k be the smallest positive integer such that r | qk−1.

For brevity write K = Fqk . An equivalent characterization is that K = Fqk is the smallest

extension of Fq containing the rth roots of unity.

The Tate (or Tate-Lichtenbaum) pairing

e : E[r] ∩ E(K)× E(K)/rE(K)→ K∗/K∗r

is defined as follows.

Let fP be a rational function with divisor (fP) = (P)r. Choose an R ∈ E(K) such that

R 6= P,P −Q,O,−Q. The define

f(P,Q) = fP (Q + R)/fP (R)

It can be shown that the above value is independent of the choice of R, and:

1. f(aP, bQ) = e(P,Q)ab for all P,Q, a, b.

2. f(P,Q) = 1 for all P if and only if Q = O.

CHAPTER 3. THE WEIL AND TATE PAIRINGS 34

3. f(P,Q) = 1 for all Q if and only if P = O.

4. f(Φ(P),Φ(Q)) = f(P,Q)q for all P,Q ∈ E[r], where Φ denotes the Frobenius map.

The output of this pairing is some x ∈ K∗ that represents the coset xK∗r. To standardize

the coset representative, we exponentiate the output of the Tate pairing by (qk−1)/r, which

can take a substantial amount of time.

On the positive side, the second input to the Tate pairing is also a coset representative.

This means it can be any point of E(K) and may be of any order. (For example, if the

order of a point Q is not a multiple of r then Q represents the coset O + rE(K). Otherwise

Q represents some nonidentity element.)

In contrast, the Weil pairing requires that the second input Q satisfies rQ = O.

3.8 Merging Theory with Practice

We have now described the Weil and Tate pairings. It remains to show how they fit the

abstract definitions given in Chapter 1. Let E be some elliptic curve defined over Fq and

let G be some cyclic subgroup of points in E(Fq) of order r. Suppose the embedding degree

of G is k > 1, which is usually the case in practice.

Then by defining G1 = G, G2 = E[r], and GT to be the rth roots of unity in Fqk , the

Weil pairing satisfies the abstract definition of a bilinear map given in Section 1.8. Similarly,

the Tate pairing fits the definition.

With high probability, a random point Q ∈ G2, does not lie in G1, does not have trace

zero, and generates a subgroup H in G2 of order r. Then if we replace G2 with H, we

have now satisfied the asymmetric pairing definition of Section 1.7 because the trace map

nontrivially maps G2 to G1.

We see now why we cannot hash into G2 in general if it is required to be cyclic. In

the case of the Weil pairing, we can easily hash to a point of E[r], but it is not known

how to hash to a point of some designated cyclic subgroup of E[r] of order r that is not G.

For the Tate pairing we have a similar problem. There is one exception that we discuss in

Section 6.4.2: we can hash to the trace zero group. (In fact, the proof in the last section

contains a statement that suggests how we might do this.)

Cryptosystems that require the symmetric pairings of Section 1.4 and require input

groups to which strings can be hashed can only be implemented using supersingular curves

and distortion maps as in Section 6.6.

CHAPTER 3. THE WEIL AND TATE PAIRINGS 35

Some kinds of symmetric pairings can be obtained without resorting to supersingular

curves. We could treat G2 as the first and second input groups and apply the map from G2

to G1 on the first input before a pairing computation. However, one must relinquish the

ability to hash, or the requirement that the input groups be cyclic, or a combination of the

two. Additionally, one must compute more in larger fields for the same level of security.

The details can be found in Section 6.4.2.

3.9 Miller’s Algorithm

For the Weil pairing we need to evaluate some rational function fP with divisor (P +

R)r/(R)r. For the Tate pairing we need to evaluate some rational function fP with divisor

(P)r. In both cases, we can do this using Miller’s algorithm [48, 49].

For any points U, V , let LU,V (X,Y) be an equation for a line through U and V , let

TU (X,Y) be an equation for the tangent through U . let VU (X,Y) be an equation for a

vertical line through U (e.g. X − x, where U = (x, y)).

Since TU = LU,U and VU = LU,−U , defining TU and VU is unnecessary but they aid

comprehension. Note if U = −U then TU is the same as VU .

3.9.1 The Weil Pairing

For an integer k, let fk be a rational function with divisor

(fk) =
(P + R)k

(R)k(kP)
.

Observe fr = fP , since rR = O. It can be checked that

(

fa · fb ·
LaP,bP

V(a+b)P

)

= (fa+b)

via a simple computation on the divisors:

(P + R)a

(R)a(aP)
· (P + R)b

(R)b(bP)
· (aP)(bP)(−(a + b)P)

(a + b)P (−(a + b)P)
=

(P + R)a+b

(R)a+b((a + b)P)
.

This leads to the formula:
(

f2
k ·

TkP

V2kP

)

= (f2k)

CHAPTER 3. THE WEIL AND TATE PAIRINGS 36

A straightforward manipulation of divisors also shows (VP+R/LP,R) = (f1).

Thus we may compute fP (Q) = fr(Q) using Algorithm 2, where the binary representa-

tion of r is rt...r0.

Algorithm 2 Miller’s algorithm for Weil pairing. x = fP (Q)

1: x1 ← VP+R(Q)/LP,R(Q)
2: x← x1

3: Z ← P
4: for i← t− 1, ..., 0 do
5: x← x2 · TZ(Q)/V2Z(Q)
6: Z ← 2Z
7: if ri = 1 then
8: x← x · x1 · LZ,P (Q)/VZ+P (Q)
9: Z ← Z + P

10: end if
11: end for

On termination, we have x = fP (Q) (and Z = rP = O).

Throughout the algorithm we may multipy the equation of any line L, T, V by an arbi-

trary constant, thus more precisely, this algorithm really computes fP (Q) for one possible

choice of fP . In the Weil pairing, this causes no problems provided the same equations are

chosen the second time this algorithm is run, so that the exact same fP is evaluated.

Note that
(

fk ·
LP+R,kP

LR,(k+1)P

)

= (fk+1).

so we could replace step 8 with x ← x · LP+R,Z(Q)/LR,Z+P (Q) and avoid computing and

storing x1, but unless r has very low Hamming weight this is not a good trade because

vertical lines are much cheaper to compute than general lines.

3.9.2 The Tate Pairing

We now consider the Tate pairing. Recall we wish to compute fP (Q) where fP has divisor

(P)r. We can view our current situation as a special case of the above with R = O. Thus

define the intermediate functions fk by

(fk) = (P)k/(kP).

CHAPTER 3. THE WEIL AND TATE PAIRINGS 37

We have (fr) = (fP). The following identities can be obtained by simplifying earlier for-

mulas using R = O, but it is easy enough to check them directly.

For example, we can show

(fk) =

(

k−1
∏

i=1

LiP

V(i+1)P

)

via

(fk) =
(P)(P)

(2P)
· (P)(2P)

(3P)
· · · (P)((k − 1)P)

(kP)
.

We could compute fr(Q) using this formula, but this is clearly impractical for large r.

We find

(f2k) = (f2
kTkP /V2kP)

which can be shown with direct calculation:

(P)2k

(2kP)
=

(P)2k

(kP)2
· (kP)2(−2kP)

(2kP)(−2kP)

and similarly we can show

(fk+1) = (fkLkP,P /V(k+1)P).

leading to the following algorithm that computes fP (Q) given points P,Q (where P has

order r). Let the binary representation of r be rt...r0.

Algorithm 3 Miller’s algorithm for Tate pairing. x = fP (Q)

1: x← 1
2: Z ← P
3: for i← t− 1, ..., 0 do
4: x← x2 · TZ(Q)/V2Z(Q)
5: Z ← 2Z
6: if ri = 1 then
7: x← x · LZ,P (Q)/VZ+P (Q)
8: Z ← Z + P
9: end if

10: end for

When the algorithm finishes we have x = fr(Q) (and Z = rP = O). Note this algorithm

can be viewed as the previous algorithm with x1 = 1.

CHAPTER 3. THE WEIL AND TATE PAIRINGS 38

3.9.3 Intermediate Poles and Zeroes

We have in fact glossed over some complications. The intermediate functions evaluated

during Miller’s algorithm have zeroes and poles that eventually cancel out. If we were

dealing with algebraic expressions for the rational function then we could manipulate them

to remove these zeroes and poles at some stage. But since we are evaluating the function

iteratively, this cannot be done, and attempting to evaluate an intermediate function at a

zero or pole will cause problems.

Recall we have an almost unrestricted choice for the points R,S in the Weil pairing and

also for the point R in the Tate pairing. To use Miller’s algorithm, we choose them to avoid

the zeroes and poles of the intermediate functions. We can simply take points at random

since there are only O(t) bad choices.

Alternatively we may ensure their coordinates do not lie in the field that the functions

are defined in, but rather in some field extension, so that in the case of a Weil pairing,

P + R, R, Q + S, S cannot possibly be a zero or pole in the intermediate functions though

we must still avoid choices such as R = S, and in the case of a Tate pairing, neither R nor

Q + R can be a zero or pole.

We shall see that under some conditions there is a much simpler fix for the Tate pairing.

3.10 Worked Examples

Consider the curve E : Y 2 = X3 + X over F59. This has 60 points. Let G be the subgroup

of size r = 5. One generator of G is P = (25, 30):

G = E(F59)[5] = {P = (25, 30), 2P = (35, 31), 3P = (35, 28), 4P = (25, 29), 5P = O}

Feeding any two of these points as inputs to the Weil pairing is pointless as the output

will be 1 since they are linearly dependent. We must first find other 5-torsion points. The

Tate pairing also does not function at the moment, because 5 ∤ 59− 1,

But 5 | 592 − 1, and we will see that E(F592) contains all 25 points of E[5], so in the

field extension F592 both the Tate pairing and Weil pairing exist and are nontrivial. Note

−1 is a quadratic nonresidue in F59 so we may write F592 = F59[i] where i =
√
−1.

It turns out that the distortion map given by φ(x, y) = (−x, iy) enables us to write

CHAPTER 3. THE WEIL AND TATE PAIRINGS 39

down all of E[5] easily. This map φ takes G to another subgroup G′ in E[5]:

G′ = {Q = (−25, 30i), ..., 4Q = (−25, 29i), 5Q = O}

where Q = φ(P), and every element of E[5] can be written as a sum of an element in G

and an element in G′.

3.10.1 The Weil Pairing

Let us first consider the Weil pairing, which we denote by f . We walk through the com-

putation of f((25, 30), (−25, 30i)). The two inputs points are linearly independent thus the

output is not 1.

Computing f(P,Q) entails evaluating several rational functions at various points that

depend on two picked points R and S. These points R and S must be selected so that we

never encounter a zero or pole while evaluating these functions.

In practice, the probability that randomly chosen R,S are unsuitable is negligible. This

is not the case for our toy example, but it turns out that choosing R = (40, 54) and

S = (48 + 55i, 28 + 51i) will work. Note that R,S do not need to lie in E[5].

We describe in detail how Miller’s algorithm arrives at fP (Q + S) = f5(Q + S):

1. We compute f1 = VP+R/LP,R. Using the point addition formulas we find P + R =

(6, 24) and Q+ S = (19+ 17i, 46+ 18i). Then from the explicit formulas given earlier

we have

VP+R : X + 53

LP,R : 35X + 15Y + 32

Evaluating both equations at Q+S and taking their quotient gives x1 = f1(Q+S) =

25 + 31i.

2. We now enter the main loop. Firstly, f2 = f2
1 TP /V2P where

TP : 12X + Y + 24

V2P : X + 24

. Then we assign x← x2
1TP (Q + S)/V2P (Q + S) which turns out to be (18 + 16i)(3 +

CHAPTER 3. THE WEIL AND TATE PAIRINGS 40

45i)/(43 + 17i) = 33 + 22i.

3. Since the second bit of 5 = 1012 is zero, the condition for the if statement is false and

the next iteration begins. Now f4 = f2
2 T2/V4, where

T2P : 53X + Y + 2

V4P : X + 34

and we compute x← x2T2P (Q+S)/V4P (Q+S). It can be checked x = 58+23i now.

4. The last bit is 1, so this time we do execute the contents of the if block, namely

x =← x · x1 · L4P,P (Q + S)/V5P (Q + S). Since 5P = O we discard the denominator

in this case, and since P = −4P , L4P,P = VP which is given by

VP : X + 34

thus x = (58 + 23i)(25 + 31i)(53 + 17i) = 18 + 2i, and the algorithm stops as we have

exhausted all the bits.

Thus we have found that fP (Q + S) = 18 + 2i, and yet we never derived an algebraic

expression for the rational function fP . We can repeat the above to find fP (S) = 10 + 30i,

but a better way is to compute fP (S) concurrently to avoid repeating the same operations.

In other words, we simultaneously calculate fP (Q+S) and fP (S), and as each equation for

a certain line is found, we evaluate at Q + S and also at S.

The computation of fQ(P +R) and fQ(R) is similar (note since Q does not lie in Fq the

L, T, V equations will involve imaginary numbers), and it can be verified that fQ(P + R) =

27 + 25i and fQ(R) = 10 + 41i. At last we have

f(P,Q) =
fP (Q + S)/fP (S)

fQ(P + R)/fQ(R)
= 46 + 56i.

Thankfully (46 + 56i)5 = 1 as expected.

3.10.2 The Tate Pairing

Let f denote the Tate pairing. Again we walk through the computation of f((25, 30), (−25, 30i)).

CHAPTER 3. THE WEIL AND TATE PAIRINGS 41

In a later chapter we shall show that in this case, for any R we have fP (Q) = fP (Q +

R)/fP (R) thus we only walk through the calculation of fP (Q). Nonetheless, calculating

fP (Q + R) and fP (R) can be done in a similar fashion.

1. f2(Q) = f1(Q)2TP (Q)/V2P (Q). Note f1 = 1, unlike the Weil pairing. From the

formulas given before we can find equations describing the tangent TP = 0 at P and

the vertical line V2P = 0 at 2P :

T1 : 12X + Y + 24

V2 : X − 35

(We may write X + 34 instead, it doesn’t matter.)

As stated before there are other choices for the equations. If we were computing

fP (Q + R) and fP (R) we would need to use the same choices both times. However,

for our current case it can be shown there are no restrictions save that the coefficients

of the functions lie in Fq.

From T1(34, 30i) = 12 × 34 + 30i + 24 = 19 + 30i and V2(34, 30i) = 34 − 35 = 58 we

obtain f2(Q) = (19 + 30i)/58 = 40 + 29i.

2. f4(Q) = f2(Q)2T2(Q)/V4(Q) where

T2 : 53X + Y + 2

V4 : X − 25

We have T2(34, 30i) = 53×34+30i+2 = 34+30i and V4(34, 30i) = 34−25 = 9 Thus

f4 = (40 + 29i)2 × (34 + 30i)/9 = 31 + 32i.

3. f5 = f4L4(Q)/V5(Q) We discard V5 since 5P = O, and L4, the line between P and

4P = −P is in fact a vertical line:

L4 : X − 25

Since L4(34, 30i) = 34− 25 = 9, we have f5 = 9(31 + 32i) = 43 + 52i.

In a larger example we would come across lines L that are not vertical (nor tangents).

CHAPTER 3. THE WEIL AND TATE PAIRINGS 42

4. fP (Q) can be considered the output of the Tate pairing, but it is a coset representative,

and we standardize the representative by raising it to the power of (qk − 1)/r:

fP (Q)(q
k−1)/r = (43 + 52i)(59

2−1)/5 = 42 + 40i

As expected, (42 + 40i)5 = 1.

3.10.3 Remarks

We point out a few peculiarities in the above examples that will have significance later.

In both examples, degenerate cases appear in the last iteration of the main loop.

The vertical line VP appears in the second-last iteration as well as last iteration, effec-

tively canceling itself out. After some thought it can be seen this will always happen for

odd r.

Whenever a vertical line is evaluated in the Tate pairing example, the result is an element

of Fq.

The Weil pairing requires Miller’s algorithm to be run twice, once for fP (Q + S)/fP (S)

and once for fQ(P +R)/fQ(R). In the computation of fP every line equation has coefficients

lying in Fq, where as to compute the equations of the lines, tangents and verticals of fQ we

had to perform arithmetic in the larger field Fq[i].

The Tate pairing needs but one call to Miller’s algorithm, but requires an exponentiation

by (qk − 1)/r. Like the computation of fP in the Weil pairing, to determine the equations

of the lines, tangents and verticals during Miller’s algorithm only requires arithmetic in the

base field Fq.

3.11 Restricting Inputs

We shall have much to say on this topic in Section 6.6, but the above example serves as a

good introduction. Recall we have the Weil pairing f on the curve E : Y 2 = X3 + X over

some field Fq where q = 3 mod 4. We have a distortion map φ(x, y) = (−x, iy), and we

have a group G of r-torsion points in E(Fq) for some r.

In real applications, we wrap the Weil pairing f in another map e : G×G→ Fq2 :

e(U, V) = f(U, φ(V)).

CHAPTER 3. THE WEIL AND TATE PAIRINGS 43

We use e, not f , as our pairing. There are at least two reasons for doing this.

The input points to e have coordinates in Fq and lie on the same curve (that is, e is

symmetrical) and

Both input groups of e are cyclic. Thus the construction of cryptosystems and their

security proofs are simpler. We could work with the Weil pairing directly but then both

input groups would be E[r], which is not cyclic.

As U, φ(V) are always linearly independent, the wrapper function e guarantees a non-

trivial pairing output whenever U and V are nontrivial. This is not the case with the Weil

pairing, where one must be mindful of linearly dependent inputs.

Lastly, the input points have coordinates in the field Fq which is smaller and hence more

efficient to compute on than Fq2.

Similarly, if f now denotes the Tate pairing, we wrap f in the map e : G×G→ Fq2:

e(U, V) = f(U, φ(V))

and use e instead of f in our cryptosystems. Note in the above formula, φ(V) is actually a

coset representative of φ(V) + rG.

3.12 The Shipsey-Stange Algorithm

There is another procedure for computing Tate pairings that takes a completely different

approach. We quote the algorithm as described by Stange [63] but omit explanations of the

mathematical underpinnings.

Let E : Y 2 = X3 +aX + b be an elliptic curve over a field K. Let P = (x, y) ∈ E(K)[r],

Q = (x2, y2) ∈ E(K). (Q represents the coset Q + rE(K).) Define constants

A = (x− x2)
−1, B =

(

(2x + x2)(x− x2)
2 − (y + y2)

2
)−1

, C = (2y)−1

Define the sequence ck by

c−2 = −2y, c−1 = −1, c0 = 0, c1 = 1, c2 = 2y,

CHAPTER 3. THE WEIL AND TATE PAIRINGS 44

c3 = 3x4 + 6ax2 + 12bx− a2,

c4 = 4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3),

c2k−1 = ck+1c
3
k−1 − ck−2c

3
k,

c2k = C(ckck+2c
2
k−1 − ckck−2c

2
k+1).

and the sequence dk by

d0 = 1, d1 = 1, d2 = (2x + x2)−
(

y2 − y

x2 − x

)2

d2k−1 = dk+1dk−1c
2
k−1 − d2

kck−2ck

d2k = dk+1dk−1c
2
k − d2

kck−1ck+1

d2k+1 = A(dk+1dk−1c
2
k+1 − d2

kckck+2)

d2k+2 = B(dk+1dk−1c
2
k+2 − d2

kck+1ck+3)

Then the Tate pairing e : E[r] ∩ E(K)× E(K)/rE(K)→ K∗/K∗r is given by

e(P,Q) = dr+1/cr+1.

We describe a repeated-squaring-like algorithm that uses these sequences to compute the

Tate pairing. Let rt...r0 be the binary representation of r.

Algorithm 4 (Shipsey-Stange) Tate pairing via elliptic nets. Outputs e(P,Q).

1: k ← 1
2: Compute A,B,C and ck−3, ..., ck+4 and dk−1, dk, dk+1 (c−2, ..., c5 and d0, d1, d2).
3: for j = t− 1 to 0 do
4: if rj = 0 then
5: (Double) Compute c2k−3, ..., c2k+4, and d2k−1, d2k, d2k+1 (using the above recur-

rence relations)
6: k ← 2k
7: else {rj = 1}
8: (Double and add) Compute c2k−2, ..., c2k+5 and d2k, d2k+1, d2k+2 (using the above

recurrence relations)
9: k ← 2k + 1

10: end if
11: end for
12: return dr+1/cr+1

CHAPTER 3. THE WEIL AND TATE PAIRINGS 45

3.12.1 Example

We take the same curve and points from the other worked examples, that is E : Y 2 = X3+X

over F59, r = 5, P = (25, 30), Q = (−25, 30i).

1. We find the constants are A = 13, B = 25 + 55i, C = 1, start of the sequence

c−2, ..., c5 = 56, 58, 0, 1, 3, 31, 37, 0 and also d0, d1, d2 = 1, 1, 43 + 31i. We have k = 1.

Note c5 was computed using c5 = c3
2c4 − c3

3.

2. We enter the main loop. As the second bit of the binary representation is zero, we

use the recurrence relations to find c−1, ..., c6. As this is one of the first few iterations,

there is much overlap (which could be optimized away in a real application), and the

only new value is c6 = 53. Similarly we compute d1, d2, d3 and the only new value is

d3 = 2 + 43i. We have k = 2.

3. The last bit is one, hence this time we find c2, ..., c9. Once again there is overlap and

the only new values are c7 = 32, c8 = 37, c9 = 11. We also compute d4, d5, d6 which

turns out to be 55 + 13i, 51 + 26i, 26 + 4i. We exit the loop with k = 5 = r.

4. The algorithm returns d6/c6 = 37 + 42i.

In practice we power the result by (p2 − 1)/r = 696 (to standardize the coset represen-

tative), giving the final answer of 42 + 40i.

3.12.2 Remarks

The above example is artificially small, and we do not in fact need to bother computing

c7, c8, c9. Also, many sequence values are calculated more than once. For realistic sizes, this

only happens in the first few iterations, and the time taken by unnecssary computations is a

small fraction of the total running time. Nonetheless, checks to avoid superfluous operations

can be easily implemented for a slight efficiency gain.

There are many common subexpressions in the above formulas which would be exploited

in an implementation but were omitted above for clarity. Setting

Sk = c2
k, Tk = ck−1ck+1, Uk = d2

k, Vk = dk−1dk+1

CHAPTER 3. THE WEIL AND TATE PAIRINGS 46

yields

c2k−1 = TkSk−1 − Tk−1Sk,

c2k = C(Tk+1Sk−1 − Tk−1Sk+1)

d2k−1 = VkSk−1 − UkTk−1

d2k = VkSk − UkTk

d2k+1 = A(VkSk+1 − UkTk+1)

d2k+2 = B(VkSk+2 − UkTk+2)

though we note sometimes it is better to compute c2k via

c2k = Cck(ck+2c
2
k−1 − ck−2c

2
k+1).

as in some cases, certain Tk subexpressions are only used once.

Chapter 4

Curve Selection

Let E be an elliptic curve defined over a finite field K. Let P ∈ E(K) be a point of prime

order r. Let G = 〈P 〉. We intend to build cryptosystems that operate in G. Hence we

perform field arithmetic in K during cryptographic operations, while the security of the

resulting systems partly depends on the size of r, which is a factor of #E(K). We focus on

the cases when #E(K) is a small multiple of r. Relaxing this condition permits us to use

a wider variety of pairings, and we discuss one such family later.

Recall the size of K is roughly the size of #E(K), thus if both r and #E(K) are about

l-bits in length, we obtain a pairing-based cryptosystem with l-bit security in G whose

running times depend on operations on l-bit numbers. A pairing with this feature is needed

by BLS signatures to achieve short signatures.

Happily, it turns out that among the pairings we cover are symmetric pairings with

cyclic input groups that can be hashed to, and pairings where r can be specified, both of

which can be useful features.

Recall the Tate pairing must be computed in some field extension L of K that contains

the rth roots of unity (so r divides |L| − 1). On the other hand, the Weil pairing is defined

on E[r], the r-torsion points of E, which lie in E(L′) for some field extension L′ of K.

In order for the Tate pairing to be efficiently computable, operations must be efficient in

L. Similarly, for the Weil pairing to be efficiently computable, operations must be efficient

in L′. Thus we seek fields L or L′ that are small enough so that field operations are still

fast.

It turns out that such a field L′ will always contain the nth roots of unity, thus we always

have L ⊆ L′. We will define the embedding degree which can be thought of as measuring

47

CHAPTER 4. CURVE SELECTION 48

the size of L compared to the field K. The converse is not true: it is possible for the subset

inclusion to be strict. In other words, for a field L to contain the rth roots of unity but

at the same time have E[r] contained in E(L′) and not E(L), for some L′ strictly bigger

than L. However, as Balasubramanian and Koblitz have shown [1], the converse is almost

true because this event occurs only in special circumstances. We present a slighly different

proof:

4.1 The Embedding Degree

Theorem (Balasubramanian-Koblitz). Let E be an elliptic curve defined over Fq. Let G

be a subgroup of E(Fq) of order r with r ∤ q − 1. Then for any positive integer k, E(Fqk)

contains all r2 points of order r if and only if r | qk − 1.

Proof. It is well-known that if E(Fqk) contains E[r] then r | qk − 1, even without assuming

r | N or r ∤ q − 1 [1].

Conversely, suppose k > 1 and r | qk − 1. Let Φ denote the Frobenius map. Consider

the subgroup T of E[r] consisting of all points of trace zero, that is

T = {Q ∈ E[r] : tr Q = Q + Φ(Q) + ... + Φk−1(Q) = O}

(The group T may be explicitly constructed by using the map P 7→ P −Φ(P) on points of

E(Fqk).) Now we have Φ(T) = T , and also T is not contained in E(Fq) by assumption.

Hence T is an eigenspace of Φ, but not the 1-eigenspace. Since the eigenvalues of Φ

must be 1 and q, we see that T must be the q-eigenspace of Φ and hence

Φk(Q) = qkQ = Q

since r | qk − 1. Thus T , like E(Fq) is fixed under Φk, and since these groups are linearly

independent they generate all of E[r], implying that all of E[r] is fixed under Φk. Hence

E[r] ⊂ E(Fqk).

Definition. Let E be an elliptic curve defined over K = Fq. Let G ⊆ E(Fq) be a cyclic

group of order r. Let k be the smallest positive integer such that r | qk − 1. Then we say

that the embedding degree of G is k.

CHAPTER 4. CURVE SELECTION 49

As already mentioned, we mostly focus on curves where r and #E(K) are as close as

possible, and we can abuse the terminology a little when talking about embedding degrees.

When we speak of an embedding degree of a curve E(Fq), we mean the embedding degree

of the subgroup of E(Fq) of order r where r is the largest prime dividing #E(Fq) (or in

some applications, the largest factor of #E(Fq) that cannot be efficiently factored).

There is a related subtlety we must mention. Let P ∈ E(K) be a point of order r. Let

G = 〈P 〉. Let n = #E(Fq). We shall often determine the embedding degree of G by finding

the smallest integer k such that n | qk − 1 (a process that does not involve r is any way). If

r is a proper factor of n, then it could be that for some j < k, although n ∤ qj − 1, we have

r | qj − 1, that is, Fqj contains all the rth roots of unity and this subfield of Fqk suffices for

the Tate pairing computation on G.

However, in practice, when we do use such a group G and r is a large prime factor of

#E(Fq) it is almost always the case that Fqk is the smallest field extension that allows the

computation of the pairing. In other words, in general, for a cyclic subgroup G ⊂ #E(Fq)

the embedding degree k of E(Fq) may not be the smallest positive integer such that r | qk−1,

but in practice, when r is a large prime factor of #E(Fq), the probability that k is not the

integer we seek is negligible. Below, we shall make statements about embedding degrees

ignoring the unlikely event that the real embedding degree could be smaller. (Of course,

for small toy examples one must be wary of the existence of some j < k with r | qj − 1.)

At this point, our goal seems to be minimizing this embedding degree, so that L is as

close as possible to K, and if possible, to have K = L and have all computations in a small a

field as possible. Unfortunately, things are not quite this simple, because of pairing security

issues discussed in Section 4.3.

4.2 Weil and Tate Pairing Comparison

The above theorem shows that if the embedding degree k is greater than 1, then both the

Tate pairing and the Weil pairing may be computed by performing field arithmetic in Fqk .

On the other hand, if the embedding degree k is 1, the Tate pairing is always computable

in Fq, but the Weil pairing sometimes cannot be, as we are about to show. Usually this is

not significant because we shall see k > 1 is preferred. Nonetheless, we shall find the Tate

pairing to be the best choice in any case for other reasons.

Consider the curve E : Y 2 = X3 +X +6 which has 18 points over F19, which we borrow

CHAPTER 4. CURVE SELECTION 50

from a publication by Balasubramanian and Koblitz [1]. The point R = (0, 5) generates a

cyclic group of order 18, so the point P = 6R = (12, 13) generates a cyclic group of order 3.

We see E[3] cannot be contained in 〈R〉 = E(F19) since E[3] is not cyclic, thus the Weil

pairing cannot be computed. (In fact, we must move to F193 to do so.)

In contrast, 3 | 19 − 1 hence the Tate pairing can be computed in F19. In fact, in one

program by the author, it was found that e(P,R + 3G) = 11, where e denotes the Tate

pairing. Recall that pairings are only unique up to a constant, so different implementations

may give different results. Since the cube roots of unity in F19 are 1, 7, 11, we expect 7 or

11.

4.2.1 Composite Group Orders

We can also use this curve to exhibit interesting behaviour that can occur with pairings on

cyclic groups with composite order mentioned in Section 1.8.

It can be checked that e(R,R) = 17, a ninth root of unity. If we were to strictly adhere

to the definition of the Tate pairing the second input should be written as R + 18G since

it is supposed to be a coset, but this is superfluous since 18G is the trivial group. Thus we

have a pairing that maps two groups of order 18 to a group that has order 9. This implies,

for example, e(R, 9R) = 1.

In contrast, if the order of R were some prime r, nondegeneracy implies that e(P,Q)

must also be of order r for any P,Q ∈ 〈R〉 \ {O}. In fact, e(P,Q) = 1 would imply at

least one of P,Q is O in this case. Because most pairing-based cryptosystems use groups of

prime order, one may become so accustomed to facts like these that one may erroneously

assume them to be true when working with groups of composite order.

4.3 Pairing Security

Consider a nonsingular elliptic curve E over finie field Fq containing some cyclic group G

of order r with embedding degree k. In some sense, the pairing is a double-edged sword.

Though it bestows additional cryptographically useful properties upon cyclic groups, it also

allows one to break the discrete log problem in E(Fq) by first breaking the discrete log

problem in Fqk , using an algorithm known as the MOV or Frey-Ruck attack [46, 32] which

we now describe.

Suppose we are given P, nP ∈ G and asked to recover n. Let e : G × G → Fqk

CHAPTER 4. CURVE SELECTION 51

be a bilinear, nondegenerate map, such as the Weil or Tate pairing. By bilinearity and

nondegeneracy,

Dlog(e(P,P), e(P, nP)) = Dlog(e(P,P), e(P,P)n) = n = Dlog(P, nP)

for n ∈ {0, ..., r − 1}.
Since e(P,P), e(P, nP) ∈ Fqk , we can use a method like index calculus to recover n, the

solution to the discrete log problem in the elliptic curve group G.

Interestingly, these attacks were the first application of pairings in cryptography to ap-

pear in the literature, predating all publications describing constructive uses of the pairing.

To avoid them, we must ensure qk is large enough so that finite field discrete logarithm

algorithms such as index calculus are infeasible in Fqk .

It may seem we have contradicted ourselves, for in Section 2.9 we touted elliptic curves

over finite fields because we claimed they are only susceptible to generic discrete log attacks,

yet we have just seen we must guard against index calculus.

But although it is true that a pairing exists for every nonsingular elliptic curve, in

general the embedding degree k is on the order of q [1], that is, so large that it is futile

to mount a MOV or Frey-Ruck attack on a typical elliptic curve because Fqk will be too

big for any practical calculations. We shun curves with small k in standard elliptic curve

cryptography and thus can ignore these attacks, which is why they were not mentioned

before.

The newfound utility of pairings has meant we now actively seek out curves with low

embedding degrees so that pairings are efficiently computable, hence we must take these

attacks into account.

Are there any other attacks that concern us? It turns out the curves used in pairing-

based cryptography are special in other senses. They are supersingular, or have complex

multiplication. Fortunately, no specific attacks for either case is known.

4.4 Lower Bounds on Field and Group Sizes

Constructing a pairing is a delicate balancing act. Using the notation of the previous

section, Fq must be large enough so that E(Fq) can foil generic discrete log attacks, while

Fqk must be large enough to resist finite field discrete log attacks. At the same time, Fq

and Fqk should be as small as possible to minimize time and space usage. More precisely:

CHAPTER 4. CURVE SELECTION 52

1. r must be a large enough prime so that generic discrete logarithm attacks in a group

of order r are ineffective. Since q ≈ #E(Fq), this places a similar lower bound on q.

2. q ought to be as small as possible, so that computations in Fq are as fast as possible.

3. qk must be large enough so that finite field discrete logarithm attacks in Fqk are

ineffective. Also q should not have low Hamming weight [64], nor be a power of a

small prime [24].

4. qk must be small enough so that operations in Fqk are efficient. All other things being

equal, qk should be small as possible so that operations are as fast as possible.

Observe the first three statements are true for any cryptographically useful elliptic curve,

not just for pairing-based cryptography. The last condition, requiring Fqk to be small

enough to compute on, is responsible for much of the difficulty in pairing-based cryptography

research, as finding curves with small k is nontrivial.

Currently it is acceptable to have an 160-bit r. As for qk, 1024 bits is adequate for many

applications, and calculations in fields of this size can certainly be performed. Ideally we

have r ≈ #E(Fq) ≈ q and hence q is also about 160 bits. This gives an embedding degree

k around 1024/160 = 6.4.

We later describe how to construct curves of embedding degree 6, 10 and 12. For the

near future, embedding degree 6 should be reasonable if used along with an r that is at least

170 bits long, while embedding degree 10 and 12 curves which currently produce excessively

large finite fields may be more desirable as time passes and index calculus improvements

are discovered.

4.5 Approaches to Finding Curves

A randomly-chosen elliptic curve will have a large embedding degree, which endows it with

resistance to the MOV and Frey-Ruck attacks, but also renders it useless for pairing-based

cryptography. We must take one of two approaches to find curves suitable for pairings:

1. Supersingular curves are guaranteed to have a small embedding degree, and are easy

to construct. They have been completely classified. Operations on some of them can

be highly optimized.

CHAPTER 4. CURVE SELECTION 53

2. By carefully tailoring the complex multiplication method of constructing elliptic curves,

we can produce curves of a certain embedding degree.

We note that supersingular hyperelliptic curves have also been considered [33, 56], and

as well as the hyperelliptic equivalent of the complex multiplication method [29].

Below we survey some types of curves used in practice for pairing-based cryptography.

To make them easier to refer to, we label them with letters. The labelling is arbitrary,

though we try to arrange them in the order they appeared in cryptography publications.

4.6 Supersingular Curves

There are six families of supersingular curves, with embedding degree at most six [46]. Let

q = pm. Let t denote the trace of Frobenius. Then the six classes can be described as

follows.

1. k = 2: t = 0 and E(Fq) ∼= Zq+1.

2. k = 2: t = 0 and E(Fq) ∼= Z(q+1)/2 ⊕ Z2 and q = 3 (mod 4).

3. k = 3: t2 = q and m is even.

4. k = 4: t2 = 2q and p = 2 and m is odd.

5. k = 6: t2 = 3q and p = 3 and m is odd.

6. k = 1: t2 = 4q and m is even.

Some curves in the first two classes are easy to describe, and are extremely useful, as it

is easy to find curves containing a subgroup of any desired order.

The k = 4 case requires p = 2. Many specialized optimizations exist for operations in

characteristic two fields, but unfortunately at the same time specialized discrete logarithm

attacks exist [24], and we must use bigger fields to compensate for this.

The k = 6 case requires p = 3. Again, we may apply a host of specialized optimizations,

but we must also be wary of low-characteristic discrete logarithm algorithms.

CHAPTER 4. CURVE SELECTION 54

4.7 Type A Curves

Let q be a prime satisfying q = 3 (mod 4). Let E be the curve y2 = x3 + ax for any a.

In Section 5.9 we will find a = −3 is a good choice (though a = ±1 is better for the first

step of the Shipsey-Stange algorithm). Then E(Fq) is supersingular, #E(Fq) = q + 1, and

#E(Fq2) = (q + 1)2 [30, §3.2]. Furthermore, for any odd r dividing q + 1 we have that

G = E(Fq)[r] is cyclic and has embedding degree k = 2.

Note −1 is a quadratic nonresidue in Fq since q = 3 (mod 4). Let i be a square root

of −1. Then Fq[i] is a degree 2 extension of Fq. Consider the following map, sometimes

referred to as a distortion map [65]:

Ψ(x, y) = (−x, iy)

Then Ψ maps points of E(Fq) to points of E(Fq2) \ E(Fq). Thus if f denotes the Tate

or Weil pairing, then defining e : G×G→ Fq2 by

e(P,Q) = f(P,Ψ(Q))

gives a bilinear nondegenerate map.

Setup for this type of pairing for a cryptosystem can be done as follows.

1. An order r is chosen, large enough to avoid generic discrete logarithm attacks. Other

properties may be desired. For some cryptosystems r is an RSA modulus. As we will

see, careful choices of r will speed up Miller’s algorithm substantially.

2. Recall we require finite field discrete logarithm attacks on Fq2 to be impractical. Thus

we randomly generate h where where h is a multiple of four and sufficiently large to

guarantee (hr)2 is big enough to resist finite field attacks. For example, if r is 160

bits long, and we want q2 about 1024 bits long, then h must be about 352 bits long.

3. Next it is checked that q = hr− 1 is prime. We have q = 3 mod 4 by choice of h. If q

is not prime, we go back to the previous step and choose another h.

4. For some cryptosystems problems may arise if r | h, but this occurs with negligible

probability for realistic parameters. Nonetheless, when toy examples are constructed,

this may need to be checked.

CHAPTER 4. CURVE SELECTION 55

If h is constrained to be a multiple of 3 as well, then cube roots are extremely easy to

compute in Fq: for all x ∈ Fq we see x−(q−2)/3 is the cube root of x. Observe cube roots are

unique since each element is a cube. This may be desirable in some situations, and hardly

affects the setup algorithm.

4.8 Type B Curves

Let q be a prime satisfying q = 2 mod 3. Let E be the curve y2 = x3 +b for any b. Typically

b = ±1 is chosen.

Then as before, E(Fq) is supersingular, #E(Fq) = q + 1, and #E(Fq2) = (q + 1)2 [30,

§3.2]. Again, for any odd r dividing q + 1 we have that G = E(Fq)[r] is cyclic and has

embedding degree k = 2.

Consider the distortion map Ψ : E(Fq)→ E(Fq2) given by

Ψ(x, y) 7→ (ζx, y)

where ζ is a primitive cube root of unity.

Then Ψ maps points of E(Fq) to points of E(Fq2) \ E(Fq). Thus if f denotes the Tate

or Weil pairing, then defining e : G×G→ Fq2 by

e(P,Q) = f(P,Ψ(Q))

gives a bilinear nondegenerate map.

We shall see cube roots are easy to find since q = 2 (mod 3). For this particular

curve, this means we may quickly generate points from a y-coordinate, yielding simple and

efficient random point generation and hashing-to-point routines. Additionally, points can

be represented by their y-coordinate alone since there is a unique x for each value of y.

Type B have one drawback which we discuss in Section 6.4.2. Unlike the previous type,

there is a certain optimization that only applies if we forgo symmetry of the pairing. One

must choose between symmetry and efficiency in this case.

4.9 Other Embedding Degree 2 Curves

Type A and B curves require a prime q > 3 satisfying q = 2 mod 3 or q = 3 mod 4.

CHAPTER 4. CURVE SELECTION 56

We note the remaining case q = 1 mod 12 can also lead to supersingular embedding

degree 2 curves [30, §3.2] but we do not bother with it here. The construction is more

involved as it uses the CM method of Section 4.11, and these pairings are usually less

desirable as no distortion maps are available and the resulting curves are harder to optimize.

4.10 Type C Curves

Define the curves E+ : y2 = x3 + 2x + 1 over F3l and E− : y2 = x3 + 2x− 1, also over F3l .

Unlike all the other curves we consider, we are working in a low characteristic field. Thus

these pairings are susceptible to certain discrete log attacks due to Coppersmith [24] and

are perhaps better avoided. We describe them here for completeness.

One can show

#E+(F3l) =

{

3l + 1 + 3(l+1)/2 when l = ±1 mod 12

3l + 1− 3(l+1)/2 when l = ±5 mod 12

and #E−(F3l) + #E+(F3l) = 2(3l + 1), that is

#E−(F3l) =

{

3l + 1− 3(l+1)/2 when l = ±1 mod 12

3l + 1 + 3(l+1)/2 when l = ±5 mod 12

and it is easily checked that both types of curve have embedding degree 6 (that is, the order

divides 36l − 1 in all cases).

For an l = ±1,±5 and a curve E : y2 = x3+2x±1 over F3l let t be a root of t3+2t±2 = 0,

and let i be a square root of −1. These both exist in F36l . Define the distortion map Ψ by

Ψ(x, y) = (−x + t, iy)

where x, y are elements of F36l . Then Ψ maps points of E(F3l) to points of E(F36l).

We arrive at a curve selection algorithm as described by Boneh, Lynn and Shacham [17]:

1. Choose l = ±1,±5 mod 12. To avoid algorithms known as Weil descent attacks [34,

35], l should not have any small prime factors (say 3, 5, 7).

2. Compute 3l + l ± 3(l+1)/2 and check if either has a large prime factor r.

3. If so, set E to the corresponding curve equation.

CHAPTER 4. CURVE SELECTION 57

Curve l Field Size Group Size Finite Field Security
⌈lg2 q⌉ ⌈lg2 r⌉ ⌈lg2 q6⌉

E− 79 126 126 752

E+ 97 154 151 923

E+ 121 192 155 1151

E+ 149 237 220 1417

E+ 163 259 256 1551

E− 163 259 259 1551

E+ 167 265 262 1589

Table 4.1: Some Type C pairings [17].

Table 4.1 shows the first seven cryptographically useful curves found by this algorithm.

Evidently they are few and far between. Note the third entry has l = 112. Although this is

a fairly low prime, there has been some evidence suggesting that Weil descent attacks are

still ineffectual for this case [26].

4.11 Complex Multiplication

Blake, Seroussi and Smart outline the complex multiplication, or CM, method and provide

a brief explanation and many references [9]. We only quote the algorithm itself. Suppose

we have integers D,V, q, t satisfying the CM equation

DV 2 = 4q − t2

such that q is prime and we require D > 0, no square of an odd prime divides D and

D = 0, 3 mod 4. The conditions on D are necessary because −D represents a fundamental

discriminant, the formal definition of which is beyond our scope.

For every such D, there exists a polynomial HD(x) ∈ Z[x] called the Hilbert class field

polynomial, the computation of which will be described in Section 4.19. View this Hilbert

polynomial HD(x) as a polynomial in Fq[x], and let j ∈ Fq be any root. For now assume

j 6= 0, 1728, and set k = j/(1728 − j). Then consider the elliptic curves given by

E : y2 = x3 + 3kc2x + 2kc3

for any nonzero c ∈ Fq.

CHAPTER 4. CURVE SELECTION 58

Set c = 1. Then E has order q + t + 1 or q − t + 1. Generate a random point P of E

and check if (q − t + 1)P = O. If not, then the order must be q + t + 1, and if we set c to

be some quadratic nonresidue in Fq the curve will have order q − t + 1. In Section 6.1 we

find that the two cases are quadratic twists of the same curve.

For j = 0 the curve has the form y2 = x3 +k for some k. For j = 1728 the curve has the

form y2 = x3 + kx for some k. In these cases one can try different values of k until a curve

with the correct order is found. In Section 6.17 we enumerate all possible orders that could

arise, and learn that these are caused by the existence of cubic, quartic and sextic twists.

Thus given a solution the above equation, we may easily write down a curve of order

q + t− 1 or q − t− 1.

4.12 Type D Curves

Miyaji et al. describe a method for constructing ordinary elliptic curves with embedding de-

gree 3, 4 or 6 [50]. Moreover, they show that in a sense, there are no other parametrizations

that lead to curves with these embedding degrees.

We first examine the embedding degree six case, which is the most useful. The embed-

ding degree three and four cases may also be useful in special circumstances and we briefly

describe them.

Consider the polynomials q = x2 +1, t = ±x+1. It can be checked that q(x)+1− t(x) |
q(x)6 − 1.

The CM equation becomes DV 2 = 3x2±2x+3. If we make the substitution U = 3x±1

then we have the generalized Pell equation, or a Pell-type equation, the solution of which is

given in Section 4.17.

U2 − 3DV 2 = −8

We can now give a procedure for constructing embedding degree 6 curves.

1. Choose D and solve

U2 − 3DV 2 = −8

2. We have U = ±1 (mod 3). Set x = (−1± U)/3

3. Check that q = x2 + 1 is prime

CHAPTER 4. CURVE SELECTION 59

4. Recall t = ±x + 1. Check that q − t + 1 = q ∓ x has a large prime factor r. Ideally r

is also prime.

5. Check that r does not divide qj = 1 for any positive integer j < k. This can be

omitted in practice as it is extremely unlikely this will occur.

6. Use the CM method to construct a curve E with order q ∓ x.

The resulting curve E will have embedding degree 6.

Though not how the method was discovered, we can explain the MNT algorithm via

cyclotomic polynomials Φk(x). Suppose t = x + 1. Recall Φ6(x) = x2 − x + 1, thus

q = x + Φ6(x). Then the order n of the resulting curve E is n = Φ6(x), thus

q6 − 1 = x6 − 1 mod n

Recall Φ6(x) | x6 − 1, hence n must also divide q6 − 1 giving an embedding degree of 6.

Now suppose t = −x + 1. Recall Φ3(x) = x2 + x + 1, thus q = −x + Φ3(x). The order

n of E is n = Φ3(x), hence

q6 − 1 = (−x)6 − 1 = x6 − 1 mod n

Since Φ3(x) | x6−1 the embedding degree of E is 6. Of course Φ3(x) | x3−1 but x3 6= (−x)3

in general thus the embedding degree is not 3 (with high probability).

For embedding degree k = 4, we may also use cyclotomic polynomials. Recall Φ4(x) =

x2 + 1. Then set q = ±x + Φ4(x) so that t = ±x + 1. Since n = Φ4(x) we have

q4 − x = (±x)4 − 1 mod n

thus n | q4 − 1. When the minus sign is chosen and x replaced by x + 1 we match the

notation of Miyaji et al.[50].

For k = 3 Miyaji et al. give q = 3x2 − 1, t = −1± 3x where x is even.

Scott and Barreto discovered a procedure that finds more curves of these types than the

original MNT algorithm [60] which can be viewed as a generalization of a method due to

Barreto, Lynn and Scott to be described in Section 4.20.

We quote their algorithm without proof. The CM method is used to construct curves

from the algorithm’s output. The embedding degree k must be chosen to be 3, 4 or 6. The

CHAPTER 4. CURVE SELECTION 60

choices hmax = 4 and Dmax ≈ 108 or so are reasonable.

Algorithm 5 Scott-Barreto generalization of MNT method.

1: for h← 1 to hmax do
2: for m← 1 to 4h− 1 do
3: for all fundamental discriminants D ≤ Dmax do
4: solve DV 2 = 4hΦk(x)/m− (x− 1)2 for x, V (generalized Pell equation)
5: r ← Φk(x)/m
6: n← hr
7: q ← n + x
8: if q, r are both primes then
9: output q, r, h,D

10: end if
11: end for
12: end for
13: end for

Scott and Barreto also concisely state how to transform the CM equation into a gener-

alized Pell equation:

If k = 3, set a← 2h + m.

If k = 4, set a← m.

If k = 6, set a← −2h + m.

Note these three statements can be condensed into a← (−2⌊k/2⌋ + 4)h + m.

Set b ← 4h −m. Then the variable substitution defined by x = (y − a)/b transforms

the CM equation into the generalized Pell equation

y2 − (mbD)V 2 = (a2 + b2).

After solving this equation, we must have b|y − a otherwise x will not be an integer.

4.13 Type E Curves

A cursory inspection of the CM method reveals that curves of embedding degree 1 are

easily constructed. For example, Let t = 2, D = 7. Let r be a positive integer and suppose

q = 28r2h2 + 1 is prime for some h. Then the CM equation

7V 2 = 4(28(rh)2 + 1)− 4

CHAPTER 4. CURVE SELECTION 61

is satisfied when we take V = 4rh.

As H7(x) = x + 3375, if we take k = −3375/(1728 − 3375) in Fq then the curve

y2 = x3 + 3kx + 2k

has order q− 1 or q + 3. If it has order q + 3, choose some quadratic nonresidue c ∈ Fq, and

use the following curve instead:

y2 = x3 + 3kc2x + 2kc3

This is the quadratic twist of Section 6.1.

Note r | q − 1 hence the Tate pairing on this curve can be computed in Fq. For most

applications we choose r to be prime but composite orders can be chosen instead.

We can do better by using a result due to Koblitz and Menezes [43]. If q = n2 + 1 is a

prime for some n, then define the elliptic curve E over Fq by

E : y2 = x3 − x

if 4 | n and

E : y2 = x3 − 4x

otherwise (that is n = 2 mod 4).

Then E(Fq) = Z+
n × Z+

n and the map Ψ : E(Fq)→ E(Fq) defined by

(x, y) 7→ (−x, ny)

is a distortion map.

4.14 Type F Curves

By considering cyclotomic polynomials, Barreto and Naehrig discovered a parametrization

yielding embedding degree 12 curves.

Let q(x) = 36x4 + 36x3 + 24x2 + 6x + 1. Let t(x) = 6x2 + 1. Then if D = 3, the CM

equation always has the solution V = 6x2+4x+1. Furthermore, it turns out q(x)+1−t(x) |
q(x)12 − 1. This suggests the following algorithm to generate curves:

CHAPTER 4. CURVE SELECTION 62

1. Pick an integer x of a desired magnitude. It may be negative.

2. Check if q(x) is prime.

3. Check if n = q(x)− t(x) + 1 has a large prime factor r. (Ideally it should be prime.)

4. Try different values of k until a random point of y2 = x3 + k has order n

Barreto and Naehrig recommend the last step be done as follows: starting from k = 1,

keep incrementing k until k + 1 is a quadratic residue and n(1, g) = O, where g is a square

root of k + 1.

4.15 Type G Curves

Freeman unified many approaches for finding curves in a single framework [28], and also

showed how to construct curves with embedding degree 10, with r and q around the same

size. Freeman also notes that it seems unlikely that curves with embedding degrees other

than the ones described in this chapter can be constructed using these techniques.

We summarize an algorithm due to Freeman and Scott:

Set q(x) = 25x4 + 25x3 + 25x2 + 10x + 3 and t(x) = 10x2 + 5x + 3.

1. Choose D such that D is squarefree and D = 43, 67 mod 120.

2. Find solutions (u, v) to the equation u2 − 15Dv2 = −20.

3. We have u = ±5 mod 15. Set x = (−5± u)/15.

4. Check q(x) is prime.

5. Check n = q(x)− t(x) + 1 has a large prime factor r.

6. Construct the corresponding curve E using the CM method.

It can be shown that n | q10 − 1 thus the resulting curve has embedding degree 10.

CHAPTER 4. CURVE SELECTION 63

Type Supersingular k Min Input Size Min Output Size
⌈lg2 q⌉ ⌈lg2 qk⌉

A yes 2 512 1024

B yes 2 512 1024

C yes 6(≈ 3.53) ≈ 305 ≈ 1080

D no 6 171 1026

E no 1 1024 1024

F no 12 160 1920

G no 10 160 1600

Table 4.2: Pairing comparison.

4.16 Comparing Pairings

Assuming that 160 bits are sufficient to defeat generic discrete log attacks and that 1024

bits are sufficient to defeat index calculus, we can use the embedding degree k to determine

a lower bound for q. The results are shown in Table 4.2. In all cases, for the input we would

use a subgroup of the elliptic curve group with order r around 160 bits.

The exact efficacy of the Coppersmith attack on characteristic 3 fields of cryptographically-

useful sizes has yet to be thoroughly investigated. One conservative estimate by Page, Smart

and Vercauteren [52] suggests that the low characteristic effectively changes the embedding

degree k from 6 to about 5.6 log 2/ log 3 ≈ 3.53, suggesting the approximate numbers given

in the table. Incidentally, they correspond to an E− type C curve with l = 193 (which does

not appear in Table 4.1).

Of course, size is not the only factor. If one must have a symmetric pairing, one is

limited to using A, B, C or E pairings.

If speed is the top priority, then A or B pairings should be used. If symmetry is not

needed, then B pairings are the better choice because they also allow faster random point

generation and point compression.

When asymmetric pairings are required, for example when DDH must be intractable in

at least one of the input groups, one must use D, F, or G pairings. Depending on the needed

assumptions, one must also select the second input group carefully as in Section 6.4.2.

If a particular group order r is required, one must use A, B or E pairings.

If input size length is important, type D pairings are a good choice. Type F and G

pairings allow only slightly shorter inputs, but are slower. On the other hand, they guard

CHAPTER 4. CURVE SELECTION 64

against future improvements to finite field discrete log algorithms.

4.17 Pell Equations

For completeness we describe how to solve the Pell-type equations that arise when searching

for some of the above pairing types. First we must learn how to solve a standard Pell

equation.

A Pell equation is an equation of the form

x2 −Dy2 = 1

where D,x, y are integers and D is not a square. We solve such an equation by examining

the continued fraction expansion of
√

D. Recall a continued fraction expansion of a real

number x is obtained by finding an integer a0 and positive integers a1, a2, ... such that

x = a0 +
1

a1 + 1
a2+...

which we also denote by x = [a0, a1, a2, ...]. Consulting any text on basic number theory

reveals that this sequence of integers can be found by computing the following.

P0 = 0

Q0 = 1

a0 =
⌊√

D
⌋

P1 = a0

Q1 = D − a2
0

an =
⌊

a0+Pn

Qn

⌋

Pn = an−1Qn−1 − Pn−1

Qn = D−P 2
n

Qn−1

One can show for some k we must have ak+1 = 2a0, and after this point the an sequence

begins repeating. That is
√

D = [a0, a1, ..., ak+1, a1, ..., ak+1, ...].

The convergents are given by

p0 = a0, p1 = a0a1 + 1, pn = anpn−1 + pn−2

CHAPTER 4. CURVE SELECTION 65

and

q0 = 1, q1 = a1, qn = anqn−1 + qn−2.

These satisfy

p2
n −Dq2

n = (−1)n+1Qn+1.

It turns out that (x, y) = (pk, qk) is the smallest positive integer equation of the Pell

equation for odd k, and (x, y) = (p2k+1, q2k+1) is smallest for even k. Denote this minimal

positive solution by (t, u). Then all positive solutions (x, y) to the Pell equation can be

found via

x + y
√

D = (t + u
√

D)n

for all positive integers n. We never need the negative solutions, but these are trivial to

find from the positive solutions in any event.

4.18 Generalized Pell Equations

Now suppose we are to solve the generalized Pell equation

x2 −Dy2 = N

where D is not a square, x, y are integers.

When N2 < D we first solve the Pell equation

x2 −Dy2 = 1

using the above method, that is, computing convergents pn, qn until the minimal positive

solution is found. However, while doing so, we check if p2
n −Dq2

n = N/f2 for some positive

integer f . If so, then we append (fpn, fqn) to the list of solutions of the generalized Pell

equation.

If no such convergents are found by the time we have reached the minimal positive

solution for the Pell equation, then the generalized Pell equation has no solution.

Otherwise let (t, u) be the minimal positive solution of the above Pell equation. Then

for each (r, s) on the list of solutions we have a family of solutions (x, y) given by

(x + y
√

D) = (r + s
√

D)(t + u
√

D)n

CHAPTER 4. CURVE SELECTION 66

(for all positive integers n). These families account for all positive integer solutions to the

generalized Pell equation.

When N2 ≥ D there are possibly other fundamental solutions to the generalized Pell

equation we must add to the list before generating families of solutions. We can use brute

force to find them if the numbers are small enough.

For positive N set L1 = 0, L2 =
√

N(t− 1)/2D. For negative N set L1 =
√

−N/D,L2 =
√

−N(t + 1)/2D). For all integers y satisfying L1 ≤ y ≤ L2 check if there exists any integer

x such that x2 −Dy2 = N . Append any solutions (x, y) to our list. Also append (x,−y) if

it does not appear in the family of solutions generated by (x, y).

4.19 Hilbert Polynomials

We quote an algorithm to compute Hilbert class polynomials as described by Cohen [23,

section 7.6.2]. We need roots of these polynomials over certain fields in order to generate

some of the above pairing types, a procedure we shall describe in Section 5.8.

Let τ ∈ C lie in the upper complex plane. Set q = e2iπτ . Define

∆(τ) = q



1 +
∑

n≥1

(−1)n
(

qn(3n−2)/2 + qn(3n+1)/2
)





24

and

f(τ) =
∆(2τ)

∆(τ)

and finally

j(τ) =
(256f(τ) + 1)3

f(τ)

Then the Hilbert class polynomial for the discriminant −D is given by

HD(x) =
∏

(X − j(α)

where α runs over all complex numbers such that

α =
−b +

√
−D

2a

where ax2 + bxy + cy2 is a primitive reduced positive definite binary quadratic form of

CHAPTER 4. CURVE SELECTION 67

discriminant −D, or in other words, b2 − 4ac = −D, |b| ≤ a ≤
√

|D|/3, gcd(a, b, c) = 1 and

if |b| = a or a = c then b ≥ 0.

Hence the following algorithm computes Hilbert class polynomials. Here, P is a poly-

nomial variable, and D is a fundamental discriminant. Recall this means D > 0, D = 0,−1

(mod 4) and no odd square divides D.

Algorithm 6 Hilbert class polynomial computation: P ← HD(X)

1: P ← 1
2: b← D (mod 2)

3: B ←
⌊

√

|D|/3
⌋

4: repeat
5: b← b + 2
6: t← (b2 + D)/4
7: a← max(b, 1)
8: repeat
9: if a2 | t then

10: u← j((−b +
√

D)/(2a))
11: if a = b or a2 = t or b = 0 then
12: P ← P (X − u)
13: else
14: P ← P (X2 − 2ℜ(u)X + |u|2)
15: end if
16: end if
17: a = a + 1
18: until a2 > t
19: b = b + 2
20: until b > B
21: round coeffcients of P to nearest integer
22: return P

It remains to specify the precision of the floating point operations. Cohen recommends

using at least k + 10 significant digits where

k = π

√

|D|
ln 10

∑ 1

a

the sum running over all reduced forms (a, b, c) of discriminant D, which can be computed

using the following algorithm [23, Algorithm 5.3.5]:

CHAPTER 4. CURVE SELECTION 68

Algorithm 7 Counting reduced forms: s← #forms of discriminant D

1: s← 1, b← D (mod 2), B ←
⌊

√

|D|/3
⌋

.

2: repeat
3: repeat
4: q ← (b2 −D)/4, a← b
5: if a ≤ 1 then
6: a← 1
7: else if a | q then
8: if a = b or a2 = q or b = 0 then
9: s = s + 1/a

10: else
11: s = s + 2/a
12: end if
13: end if
14: a← a + 1
15: until a2 > q
16: b← b + 2
17: until b > B
18: return s

4.20 Arbitrary Embedding Degree

What if other embedding degrees are desired? It turns out that given any positive integer

k we can in fact construct pairings with embedding degree k, but the subgroup size r will

have far fewer bits than q, the size of the field.

Define ρ = lg q/ lg r. The quantity ρ is in some sense a measure of inefficiency: although

we only have r-bit (generic group) discrete log security, we must perform our computations

on ρr-bit numbers.

Our main focus is ρ ≈ 1 pairings, but we now take a small detour and describe an

algorithm to find pairings with any given embedding degree k due to Barreto, Lynn and

Scott [5]. In fact, this algorithm is relevant to the previous section. A variation of this

approach leads to ρ ≈ 1 type D curves of Scott and Barreto [60].

Lemma. Let E(Fq) be an elliptic curve and suppose it has n = q − t + 1 points, where

t is the trace of Frobenius. Let n = hr where r is prime. Then the embedding degree (of

the subgroup of order r) of E(Fq) is k if and only if r | Φk(t − 1) and r ∤ Φi(t − 1) for all

1 ≤ i < k, where Φi denotes the ith cyclotomic polynomial.

CHAPTER 4. CURVE SELECTION 69

Proof. Then q = t − 1 (mod r). Given any integer i, exponentiating both sides and sub-

tracting 1 gives

qi − 1 = (t− 1)i − 1 (mod r)

hence if E has embedding degree k for the subgroup of E(Fq) of order r then r | (t−1)k−1

and r ∤ (t− 1)i − 1 for 1 ≤ i < k.

Thus r ∤ Φi(t − 1) for 1 ≤ i < k otherwise the embedding degree would be strictly less

than k. Since r is prime we must have r | Φk(t− 1).

This suggests the following general strategy to finding a curve with a subgroup of order

r with given embedding degree k:

Theorem. Choose an integer x with |x| > 1 and any factor r of Φk(x). Choose an integer

d. Choose any positive integer h. Let n = hr, q = n + xd, t = xd + 1 (thus n = q − t + 1).

Suppose r ∤ Φi(x
d) for 1 ≤ i < k.

Then if q is prime and E(Fq) is a (nonsingular) elliptic curve of order n, then any cyclic

subgroup of E(Fq) of order dividing r has embedding degree k.

Proof. By construction, t− 1 = xd, hence Φi(t− 1) | xid − 1 for any positive integer i. By

choice of r we have r | Φk(x) thus r | xk − 1 | xkd − 1 and r ∤ Φi(t− 1).

Applying the previous lemma completes the proof.

Alternative parametrizations are possible. For example, when k is twice an odd number,

and d is even, we may use t = −xd + 1, q = n− xd.

An obvious generalization for the t = xd + 1 case is q = n + Φk(x)g(x) + xd for any

polynomial g(x), though care must be taken to stay within the Hasse bound: we require xd

to cancel out the term of highest degree in Φk(x)g(x) and that the remaining terms have

sufficiently low degree. For example, for k = 9 we can pick g(x) to obtain q = n− x3 − 1.

In practice we choose d satisfying 1 ≤ d ≤ deg Φk/2, otherwise the Hasse bound is

broken so such a curve E(Fq) cannot exist and the theorem becomes an empty statement.

Also r is usually taken to be the largest prime dividing Φk(x), which almost never divides

Φi(x
d) for 1 ≤ i < k.

It remains to show how to construct a curve given these parameters. We shall employ

the CM method. Recall r | Φk(x), so write mr = Φk(x). The CM equation becomes

DV 2 = 4hΦk(x)/m− (xd − 1)2.

CHAPTER 4. CURVE SELECTION 70

If k = 3, 4, 6 then deg Φk = 2. Set m = 1. Picking some small value for h and fixing

D yields a Diophantine equation that can be transformed into a Pell-type equation, which

can be solved to find x and V . With luck, Φk(x) will be prime or a small number times a

prime, giving a ρ ≈ 1 pairing. When h = 1 we have the equivalent of the MNT method.

Fixing h and D for higher degree cyclotomic polynomials Φk result in higher degree

Diophantine equations which are not easily solved. Instead, if D is now viewed as a variable

and x if fixed, (and h is still fixed) we can find integer solutions for D and V easily.

Unfortunately, for cryptographically useful choices of x, the integer D is too large to allow

the Hilbert class field polynomial HD to be computed. However, by using small x we can

exhibit toy examples of high embedding degree curves with ρ ≈ 1.

Now consider fixing D and x. In particular, D is small enough so that HD can be

computed and x is large enough to be cryptographically useful.This gives a Diophantine

equation of the form

DV 2 = Ah−B

where D,A,B are integer constants. We can solve for V and h and obtain a curve containing

a cyclic subgroup of order r with embedding degree k. There is a drawback however: h

tends to be close in size to r, giving ρ ≈ 2.

We have set m = 1 above. More generally, when k = 3, 4, 6, if m is allowed to be some

small integer then one can find curves with low h that are not found using the MNT method

as originally described [60].

Freeman, Scott and Teske [30] note the approach of Barreto, Lynn and Scott is a special

case of a more recent construction by Brezing and Weng [19], which in turn can be thought

of as a specific application of a general strategy suggested by Cocks and Pinch [21]. They

also outline other methods to construct pairings of arbitrary embedding degree, some of

which with ρ substantially less than 2.

Chapter 5

Optimizing Cryptosystems

Improving the efficiency of a pairing-based cryptosystem can be quite involved:

1. Much effort must be devoted to speeding up integer and finite field arithmetic op-

erations, as they are present in large amounts at the lowest level. For best results,

platform-dependent hand-coded assembly should be used. Fortunately a lot of re-

search has been conducted in this area [42], and numerous implementations exist,

many of them freely available [37, 58].

2. Elliptic curve operations should also be fast. Though a newer subject, much research

has been conducted on this area [9].

3. Speeding up the pairing has only been a high priority relatively recently, and is the

main topic of the next chapter.

4. Sometimes high-level modifications to a scheme, such as tolerating the loss of a few

bits, choosing a different group to contain a key, and so on will garner savings by

permitting one to exploit other pairing properties, move exponentiations or multipli-

cations to cheaper groups, precompute more elements, compress or reduce points or

pairings, and so on.

5. Needless to say, each of these classes of optimizations cannot be viewed in isolation.

An optimization that may not usually help could be beneficial when the behaviour of

the whole system is taken into account. Another possibility is that one optimization

could adversely affect another.

71

CHAPTER 5. OPTIMIZING CRYPTOSYSTEMS 72

We have concentrated optimizations from all aspects of a pairing-based cryptosystem

into a couple of chapters, rather than introduce each technique along with the algorithm

that it affects. Presenting shortcuts in one go as a big bag of tricks is preferable to sprinkling

them throughout the text. One motivation is the last item of the above list.

Secondly, an optimization buried in the middle of a section on another topic may be

overlooked or forgotten. This may be less likely when it is found in a section dedicated to

optimizations.

Also, optimizations from different areas can have much in common. For example, sliding

windows and multiexponentiation apply to every repeated-squaring-like algorithm. Seeing

all variants at once can provide a deeper understanding of a principle, and may even inspire

the application of the same principle to a different situation.

Lastly, the organization of these chapters reflects good software engineering practices.

When developing a pairing-based cryptography library from scratch, the initial goal should

be to write finite field arithmetic routines. The next step is to implement elliptic curve

groups. Once the code for this has been tested satisfactorily, a simple pairing algorithm

should be built. Only when the pairing is correctly functioning should one at last consider

efficiency improvements. The slowest parts of the system should be attacked first. Educated

guessing can meet with some success, but ideally profiling should be employed to identify

the bottlenecks.

5.1 Multiprecision Arithmetic

In the author’s pairing implementations, to avoid the drawbacks of assembly code (including

loss of portability, the need to learn platform-specific low-level tricks, frequent rewrites

due to new hardware, fewer potential developers, increase in debugging difficulty, longer

development time), pre-existing arbitrary-precision arithmetic libraries were utilized.

One can easily graft finite field routines to any such library, though there are costs. For

example, the GMP library has a highly optimized modular exponentiation routine that uses

Montgomery reduction, but expects the input not to be in Montgomery form, and also out-

puts normal integers. Hence if numbers are already internally stored in Montgomery form,

they must be converted to a normal integer first, and then converted back to Montgomery

form afterwards. Including the unwanted conversions in GMP itself gives a total of four

unnecessary conversions.

CHAPTER 5. OPTIMIZING CRYPTOSYSTEMS 73

Another example is that an external library may be able to handle integers of arbitrary

length, but a particular deployment of a cryptosystem is concerned only with integers in

a certain range. Routines that know in advance how many bytes their input integers take

can be faster than their more general counterparts.

Designers of libraries for arbitrary-precision integers should be aware of these issues,

and should consider providing access to fairly low-level routines in the library interface.

5.2 All or Nothing

The nature of cryptography in a finite field requiring n bytes per element leads to the value

of an integer data structure often containing either zero, or an integer roughly n bytes

in length. This is because many cryptographic operations can be viewed as a series of

arithmetic operations on n-byte numbers uniformly chosen at random.

One approach to exploit this is to attach a flag to every integer variable that signifies

when the variable contains the zero value. Then operations such as addition and multipli-

cation check this flag: if one of the input variables is zero, the output is trivial to determine

and no looping is required, otherwise the computation should proceed on all n bytes as with

high probability each of the n bytes will be nonzero and thus contribute to the result.

In some cases it may help to test for one as well.

5.3 Montgomery Reduction

For RSA or a discrete-log system in a finite field, it is recommended only to use Mont-

gomery reduction during an exponentiation as the time lost from switching back and forth

between representations does not compensate for the savings gained for individual multi-

plications [47].

Pairing-based cryptosystems on the other hand can benefit from having all coordinates

of points stored in Montgomery representation, with conversion only during input and

output. This is because during point additions and multiplications, as well as pairing

computations, we must perform many finite field operations but never need to convert the

coordinates back to its normal representation. In fact, we could take this idea further and

avoid conversion completely by storing keys and such in Montgomery representation, though

this does requires choosing some fixed machine word size.

CHAPTER 5. OPTIMIZING CRYPTOSYSTEMS 74

Division is slower using Montgomery representation, but this drawback is of no concern

if projective coordinates are used (Section 5.9), where each division is replaced by a few

multiplications in any case.

The following algorithms can be found in several textbooks in the field [9, 47].

Suppose we are implementing the finite field Fp for some prime p. Let b be the word

size of the machine. Let R = bt be the smallest power of b greater than p. Let p′ = −p−1

(mod b). Since b is a power of 2, one can use a specialized procedure to find p′ [9, Algorithm

II.5]. However this is usually unimportant because p′ can be precomputed once and stored.

Expressions modulo b should obviously be implemented as operations on machine words.

Similarly, multiplications and divisions involving R and b are simply bit shifts.

Then we represent an element x ∈ Fp as xR. We only convert back for input/output

operations.

The first algorithm allows us to convert quickly from Montgomery representation. It

applies to any nonnegative integer y < pR. The ith most significant machine word of y is

denoted by yi.

Algorithm 8 Montgomery Reduction: z ← yR−1

1: for i = 0 to t− 1 do
2: u← yip

′ (mod b)
3: y ← y + upbi

4: end for
5: z ← y/R
6: if z ≥ p then
7: z ← z − p
8: end if

The next algorithm shows why multiplication is faster. Note there is only one step

requiring the product of a multiprecision integer and a single word: the other multiplications

are single precision.

Inversion is slower: given xR, we use a standard inversion algorithm to find x−1R−1.

Then performing a Montgomery multiplication with R3 (mod p) (which has been precom-

puted) yields x−1R.

CHAPTER 5. OPTIMIZING CRYPTOSYSTEMS 75

Algorithm 9 Montgomery Multiplication: Z = XY R−1 (mod p)

1: Z ← 0
2: for i = 0 to t− 1 do
3: u← (z0 + siy0)p

′ (mod b)
4: Z ← (Z + xiy + up)/b
5: end for
6: if Z ≥ p then
7: Z ← Z − p
8: end if

5.4 Cube Roots

When q = 2 (mod 3), for any x ∈ Fq we have (x−(q−2)/3)3 = x1−(q−1) = x/xq−1 = x, thus

cube roots can be quickly found via exponentiaton by −(q− 2)/3. Observe this also means

every element of Fq has a cube root, which implies cube roots are unique.

Thus with curves of the form Y 2 = X3 + b over such fields, a better way of finding

random points is to choose Y randomly and solve for X, which involves taking a cube

root. Additionally, point reduction and compression can be achieved by discarding the x-

coordinate and only recording the y-coordinate. In particular, for point compression there

is no need to store an extra bit and for point reduction no information is lost.

5.5 Random Points

Let E : Y 2 = X3 + aX + b be an elliptic curve and suppose we are working within a cyclic

subgroup G of order r of the points of E.

To find a random point in G, one can randomly choose an x-coordinate and attempt to

solve the equation E for the y-coordinate, which involves a finite-field square root algorithm.

If no solution exists, more x-coordinates are chosen until a solution for y can be found.

As soon as valid coordinates are obtained, point multiplication by an appropriate factor

ensures the resulting point P lies in G.

In certain curves noted above, there are advantages to choosing y and solving for x

instead.

In either case, once such a point is found, future random points can be generated by

picking a random k ∈ {0, ..., r − 1} and returning kP . This can be faster in some curves,

though it is an inferior method on others.

CHAPTER 5. OPTIMIZING CRYPTOSYSTEMS 76

To ensure that the point is uniformly chosen from G, the point P must have order r,

though in most cases (i.e. when r is a large prime or a product of large primes) this happens

with high probability.

When G is not cyclic, but each point has order dividing r, we may of course extend this

technique by finding a linearly independent basis of G and form some linear combination

using them, where the coefficients are chosen randomly.

However, in this case, many pairing-based cryptosystems still function even if random

points are picked from a cyclic subgroup of G only, and we merely need one point of G of

order r.

One could consider a hashing to a group by hashing to an integer k in {0, ..., r − 1}
and returning kP for some fixed point P , but for most cryptosystems this cannot be done.

In many applications, security is compromised if the discrete log of the outputs of a hash

function with respect to some fixed base are always known.

5.6 Dedicated Squaring

A relatively painless way to improve running times is to implement squaring routines for

every field, ring or group.

In the next section we describe squaring tricks for Fq2 when q is a prime satisfying q = 2

(mod 3) or q = 3 (mod 4).

For other low degree extensions (e.g. 3, 6), one can write special cases of generalized

Karatsuba squaring and multiplication algorithms [66].

5.7 Quadratic Field Extensions

For primes q = 3 (mod 4), a degree two field extension of Fq can be implemented as Fq[i]

where i is a square root of −1.

We have

(a + ib)2 = (a− b)(a + b) + i(2ab)

and

(a + ib)(c + id) = (ac− bd) + i[(a + b)(c + d)− ac− bd]

As mentioned in the previous chapter, in Fq[i], exponentiation by q can be performed

CHAPTER 5. OPTIMIZING CRYPTOSYSTEMS 77

by simply negating the imaginary part:

(a + ib)q = a− ib

which in turn implies computing expressions such as xz−yzq only costs four multiplications

in Fq, where x, y, z ∈ Fq[i].

For primes q = 2 (mod 3), the polynomial X2 +X +1 is irreducible in Fq, thus its roots

form an optimal normal basis of Fq2 allowing several shortcuts [44].

In other words, we compute in Fq[α]α2+α+1 (viewing α as an indeterminate) and repre-

sent elements as tuples (a, b) ∈ Fq × Fq (which means aα + bα2). Note α3 = 1 and x ∈ Fq

may be written as −xα− xα2.

Then

(aα + bα2)2 = b(b− 2a)α + a(a− 2b)α2

and

(aα + bα2)(cα + dα2) = (bd− ad− bc)α + (ac− ad− bc)α2

We also have

(aα + bα2)q = bα + aα2

which again implies computing expressions such as xz− yzq only costs four multiplications

in Fq, where x, y, z ∈ Fq2.

5.8 Finding a Root of a Polynomial

When computing parameters for curves using the CM method, we need to find a root of

a Hilbert polynomial modulo a prime. As we only want a single root, we may use the

Cantor-Zassenhaus method and skip many steps. For example, we do not care about the

multiplicity of the factors, nor the factors of degree higher than 1. Thus we may do the

following to find a root of a degree n polynomial f(x) in Fq.

1. Compute g(x) = gcd(xq − x, f(x)).

2. If deg g = 1 then output the root and stop.

3. Pick a random r ∈ Fq. If r is a root then stop.

CHAPTER 5. OPTIMIZING CRYPTOSYSTEMS 78

4. Compute s(x) = (x− r)(q−1)/2 mod g(x).

5. Compute g′(x) = gcd(s(x) + 1, g(x)). This is a proper factor of g with probability

1− 2n−1. So if g′(x) 6= 1 set g = g′ and goto step 2.

6. Goto step 3.

5.9 Projective Coordinates

Instead of using a pair of numbers to represent a point, we can use Jacobian projective

coordinates: the triplet (x, y, z) represents the point (x/z2, y/z3).

This allows us to replace inversions with several multiplications in a finite field, which

is usually worth the trouble though the savings vary from implementation to implementa-

tion. Note that Montgomery reduction complements projective coordinates as it speeds up

multiplication at the expense of inversion.

We quote algorithms for point addition and doubling using projective coordinates from

Blake, Seroussi and Smart [9]:

Algorithm 10 Projective Point Addition, (x3, y3, z3) = (x1, y1, z1) + (x2, y2, z2)

1: λ1 ← x1z
2
2

2: λ2 ← x2z
2
1

3: λ3 ← λ1 − λ2

4: λ4 ← y1z
3
2

5: λ5 ← y2z
3
1

6: λ6 ← λ4 − λ5

7: λ7 ← λ1 + λ2

8: λ8 ← λ4 + λ5

9: z3 ← z1z2λ3

10: x3 ← λ2
6 − λ7λ

2
3

11: λ9 ← λ7λ
2
3 − 2x3

12: y3 ← (λ9λ6 − λ8λ
3
3)/2

Note when one input is projective and the other affine fewer multiplications are required.

This is called mixed addition.

We see the computation of 3x2 + az4 in general requires three squarings and one multi-

plication. Obeserve we consider multiplication by a small constant to be negligible.

For a = 0 the only one squaring is required.

CHAPTER 5. OPTIMIZING CRYPTOSYSTEMS 79

Algorithm 11 Projective Point Doubling, (x3, y3, z3) = 2(x1, y1, z1)

1: λ1 ← 3x2
1 + az4

1

2: z3 ← 2y1z1

3: λ2 ← 4x1y
2
1

4: x3 ← λ2
1 − 2λ2

5: λ3 ← 8y4
1

6: y3 ← λ1(λ2 − x3)− λ3

For small a or fairly small a with low Hamming weight we can ignore the cost of the

multiplication.

For a = −3 we may compute λ1 = 3(x + z2)(x − z2) which requires one multiplication

and one squaring.

For a = −3d2 where d is small or fairly small with low Hamming weight, we may

compute λ1 = 3(x + dz2)(x− dz2) which has almost the same cost.

In the following chapter, we shall learn how to transform a given curve. Doing so allows

us to obtain an a that is faster than the general case.

Cohen, Miyaji and Ono [22] investigate other variants of projective coordinates, where

point doubling or multiplication can be even faster.

5.10 Point Multiplication

Point multiplication is the elliptic curve equivalent of modular exponentiation, thus opti-

mizations that apply to one often apply to the other.

One difference is that group inversion is much cheaper in elliptic curves: one simply

negates the y-coordinate, an operation that is essentially free, whereas in finite fields one

must spend time running the extended Euclidean algorithm.

This allows one work with addition-subtraction chains instead of addition chains, that

is, use signed sliding windows [47, Chapter 14] [9, Section IV.2.5].

If it is known in advance that a particular point P will feature in several point multipli-

cations, preprocessing can be employed, namely multiples of P used often in the exponen-

tiation routine are computed and stored.

CHAPTER 5. OPTIMIZING CRYPTOSYSTEMS 80

5.11 Multiexponentiation

When computing expressions of the form aP + bQ (the equivalent of gxhy in finite fields),

rather than computing aP and bQ separately and adding the results, one can use a multi-

exponentiation trick, sometimes referred to as vector addition chains [47, Chapter 14], to

roughly halve the number of point doublings (if a and b are about the same length). In

its simplest form, P + Q is precomputed and stored, then a double-and-add algorithm is

used to compute the final result. Instead of describing the algorithm in full, we present an

example:

To compute 12P + 7Q one precomputes P + Q, then:

1. R← P

2. R← 2R

3. R← R + (P + Q)

4. R← 2R

5. R← R + Q

6. R← 2R

7. R← R + Q

Of course vector-chain-addition exponentiation generalizes to computing any expression

of the form a1P1 + ...+atPt. Multiexponentiation can also be combined with sliding window

techniques. One drawback is the amount of precomputation needed, which worsens as t

increases, and also as the size of the sliding window is increased in which case one must

store mP + nQ for several m,n.

Note the Tonelli-Shanks algorithm contains a multiexponentiation that benefits from

this optimization.

5.12 Floating-Point Complex Numbers

Though not part of any cryptosystem, ideally code that finds suitable curves should also

be fast. For type D and G curves, we must find Hilbert polynomials. This requires high

precision floating point complex arithmetic.

CHAPTER 5. OPTIMIZING CRYPTOSYSTEMS 81

Packages that provide arbitrary precision floating point numbers may not include rou-

tines for complex arithmetic. When implementing complex numbers using such a library,

one should be aware of a few basic facts.

Multiplication should use the tricks for quadratic field extensions described earlier.

To minimize underflow, overflow or precision loss [53], one should compute the norm as

|a + ib| =
{

|a|
√

|1 + (b/a)2| if |a| ≥ |b|
|b|
√

|1 + (a/b)2| if |a| < |b|

and divide using

a + ib

c + id
=







(a+b(d/c))+i(b−a(d/c))
d+d(d/c) if |c| ≥ |d|

(a(c/d)+b)+i(b(c/d)−a)
c(c/d)+d if |c| < |d|

Chapter 6

Faster Pairings

We now focus on optimizing pairings. Firstly, one can improve the running time of the

rational function computation by a factor of 2 by applying a theorem due to Barreto, Kim,

Lynn and Scott [4]. This running time can be halved again by using a method described

by Barreto, Lynn and Scott [6].

Barreto, Kim, Lynn and Scott [4] also give techniques for speeding up the final powering.

The efficiency gain depends on the embedding degree, but for k = 2 curves we halve the

running time and for k = 6 the final powering is three times as fast. (Recall the output of

the Tate pairing is a coset representative and we need the final powering to standardize it.)

Because Miller’s algorithm has features in common with an exponentation routine, op-

timizations that improve powering routines can often be tailored to improve pairings.

We mention other optimizations such as preprocessing and pairing compression, though

most of these techniques either depend on certain properties of the cryptosystem, or require

it to be modified.

6.1 Twist Curves

Let E be an elliptic curve Y 2 = X3 + aX + b in Fq where q is a prime power. Let v be a

quadratic nonresidue in Fq. Consider the curve E′ given by Y 2 = X3 + av2X + v3b, which

we call the (quadratic) twist of the curve E.

Theorem. Let t = q + 1−#E(Fq). Then #E′(Fq) = q + 1 + t.

The proof is straightforward. Let g(X) = X3 + aX + b, and h(X) = X3 + av2X + v3b.

82

CHAPTER 6. FASTER PAIRINGS 83

Note h(X) = v3g(Xv−1).

There are three cases.

1. If g(xv−1) = 0 then v3g(xv−1) = h(x) = 0 thus Y = 0 is the unique solution to both

the equations Y 2 = g(xv−1) and Y 2 = h(x).

2. If g(xv−1) is a quadratic residue then Y 2 = g(xv−1) has exactly two solutions, and

Y 2 = v3g(xv−1) = h(x) has no solutions (since v3 is a quadratic nonresidue).

3. If g(xv−1) is a quadratic nonresidue then the situation is reversed: Y 2 = g(xv−1) has

no solutions and and Y 2 = h(x) has exactly two solutions.

As x runs through all the elements of Fq, so does xv−1, and we see that total number

of solutions to either equation E and E′ over Fq is 2q. Since O is always a solution of any

elliptic curve we have #E(Fq) + #E(Fq) = 2q + 2, proving the theorem.

On the other hand if v is a quadratic residue then v = c2 for some c ∈ Fq. Then we

have a map Ψ : E′(Fq)→ E(Fq) given by

Ψ(x, y) = (c2x, c3y)

hence in some sense E and E′ are the same curve, so the choice of quadratic nonresidue v

does not matter as they all lead to the same twist.

Note a quadratic nonresidue v becomes a quadratic residue in Fq2 (that is, we can find

a square root c of v) and we have a map between E′(Fq2) and E(Fq2). Roughly speaking,

curves that are twists of each other become the same curve when considered in a quadratic

extension of the field within which they are defined.

For example, since 2 is a quadratic nonresidue in F19, the curve E : Y 2 = X3 + X + 6

(over F19) has the twist E′ : Y 2 = X3 + 4X + 10, and E′(F19) contains 22 points.

In F192 , both E and E′ contain 396 points, and we can map points of E′ to points of E

via (x, y) 7→ (2x, 2
√

2y).

We can use quadratic residues to transform the equation of a given elliptic curve E

into a form that allows certain optimizations. We would like a = 0 to reduce the amount

of multiplications needed for a projective point doubling, but for a general curve this an

impossible transformation. Recall from Section 5.9 that a reasonable alternative is a = −3.

Then from above, a curve Y 2 = X3 + aX + b can be transformed into one of the form

Y 2 = X3 − 3X + b′ if we can find v ∈ Fq satisfying av2 = −3.

CHAPTER 6. FASTER PAIRINGS 84

When no such c exists, a compromise is to have a = 1 or a = −3d2 for some small

integer d (or d of low Hamming weight), which can be achieved in a similar manner, again

to reduce the number of multiplications required by a projective point doubling.

6.2 Simplified Tate Pairing

A result due to Barreto, Kim, Lynn and Scott states that when the embedding degree is

greater than 1 we may simplify the Tate pairing as follows [4, 6].

Theorem. Let E be an elliptic curve over Fq. Let P ∈ E(Fq) be a point of prime order r.

Let G = 〈P 〉, and let k be the embedding degree of G.

If k > 1 then

e(P,Q) = fP (Q)(q
k−1)/r

is a bilinear nondegenerate map, where fP is a function with divisor r〈P 〉 − r〈O〉.

Proof. Choose any point R ∈ E(Fq) that is not one of O,−P,Q,−Q,Q − P , and consider

the function f ′
P that satisfies (f ′

P) = r〈P + R〉 − r〈R〉. The Tate pairing can be computed

by

(f ′
P (Q)/f ′

P (O))(q
k−1)/r

We have f ′(O) ∈ F∗
q since it does not have a zero or pole at O. Hence f ′(O)(q

k−1)/r = 1 by

Fermat’s Little Theorem (we know q − 1 must divide (qk − 1)/r since r ∤ q − 1) thus

e(P,Q) = f ′
P (Q)(q

k−1)/r.

Let VR(X,Y) be the equation of a vertical line through R, let VP (X,Y) be the equation of

a vertical line through P , and let L(X,Y) be the equation of a line through P + R and −R

(and hence −P). Then we have

(f ′
P V r

RV r
P /Lr) = r〈P 〉 − r〈O〉 = (fP)

None of VR, VP , L have zeroes or poles at Q by choice of R. Since each of VR(Q), VP (Q), L(Q)

is ultimately exponentiated by qk − 1 we have f ′
P (Q) = fP (Q). (Alternatively we could

appeal to Fermat’s Little Theorem again, since the lines can be chosen to have coefficients

in Fq.) Hence

e(P,Q) = fP (Q)(q
k−1)/r.

CHAPTER 6. FASTER PAIRINGS 85

6.3 Simplified Weil Pairing

We may also simplify the Weil pairing in a similar fashion. Recall that two points R,S are

needed in addition to the input points P,Q. We show that we can pick R = O and compute

the Weil pairing as

f(P,Q) =
fP (Q + S)/fP (S)

fQ(P)

where fP is a rational function satisfying (fP) = (P)r (reminiscent of a rational function

defined for the Tate pairing), and fQ is a certain rational function with divisor (fQ) =

(Q + S)r/(S)r.

In our original definition, the choice of rational function for fQ did not matter. They

are all equivalent up to a constant, which cancels itself out during a division. In the above

formula, we never divide fQ by itself so we build fQ carefully as follows.

During Miller’s algorithm each iteration consists of finding an equation of a line and

evaluting it at a certain point before multiplying it to the running product. We compute

fQ(P) in the same way, except we ensure the lines, tangents and verticals have a particular

form. For lines and tangents, we pick the equation where the coefficient of Y is unity. For

verticals, we pick the equation where the coefficient of X is unity.

For this particular construction of fQ, we can check that fQ(O) = 1, proving that we

can indeed simplify the Weil pairing as claimed.

We can instead choose S = O and compute

f(P,Q) =
fP (Q)

fQ(P + R)/fQ(R)

with similarly defined fP , fQ.

Note we cannot simultaneously have R = S = O for this would imply both fP and fQ

have poles at O hence cannot be evaluated at O.

6.4 Twist Curves and the Trace-Zero Group

Let E : y2 = x3 + ax + b be an elliptic curve over Fq, and P be a point of prime order r.

Suppose the embedding degree k of G = 〈P 〉 is even.

CHAPTER 6. FASTER PAIRINGS 86

Let d = k/2. Let v be a quadratic nonresidue in Fqd , so that Fqk = Fqd[
√

v]. Let E′ be

the twist of E hence E′ : y2 = x3 + v2ax + v3b.

Define the map Ψ : E′ → E(Fqk) by

Ψ(x, y) = (v−1x, v−3/2y).

Theorem. Let E : y2 = x3 + ax+ b be an elliptic curve over Fq, and P be a point of prime

order r. Suppose the embedding degree k of G = 〈P 〉 is even. Write k = 2d. Let E′ be the

twist of E in Fqd.

Then r | #E′(Fqd).

Proof. If #E(Fqd) = qd + 1− c then

#E′(Fqd) = qd + 1 + c

and

#E(Fqk) = (qd + 1 + c)(qd + 1− c).

The group E(Fqd) only contains r points of E[r] otherwise the embedding degree would be

at most d, and similarly E(Fqk) contains all r2 points of E[r], hence

r | qd + 1 + c = #E(Fqd).

Let P be any point of order r in E(Fq) and Q′ be any point whose order is a multiple

of r in E′(Fqd). In practice a randomly chosen point of E′(Fqd) will do.

Let G = 〈P 〉,H = 〈Q′ + rE′(Fqd)〉. Note H is a subgroup of E′(Fqd)/rE′(Fqd).

Let f be the Tate pairing. Then e defined by

e(P,Q′) = f(P,Ψ(Q′))

is a bilinear map. We may subsitute the Weil pairing if we ensure rQ′ = O by suitable

premultiplication.

In practical terms, this means most operations are performed in Fqd or Fq. The Ψ map

and other computations in Fqk are only performed when a pairing is being evaluated. Also

CHAPTER 6. FASTER PAIRINGS 87

note G2 is cyclic, and that we can hash into G2, features useful to some cryptosystems.

We can view this trick as a generalization of type A pairings. Observe we have k =

2, d = 1, and that the curve E : y2 = x3 + x is equivalent to E′ : y2 = x3 + v2x because

either v or −v is a quadratic residue, thus a type A curve is the quadratic twist of itself. In

this case, the pairing is symmetric as well.

We can say more about this particular group selection.

Theorem. Let E : y2 = x3 + ax+ b be an elliptic curve over Fq, and P be a point of prime

order r. Suppose the embedding degree k of G1 = 〈P 〉 is even. Then write d = k/2. Let v

be a quadratic nonresidue in Fqd, Let E′ be given by y2 = x3 + v2ax + v3b. Define the map

Ψ : E′ → E(Fqk) by

Ψ(x, y) = (v−1x, v−3/2y).

Then G2 = Ψ(E′(Fqd)[r]) is precisely the subgroup of trace zero points in E(Fqk)[r].

Proof. Given Q′ = (X,Y) ∈ E′(Fqd) we have Ψ(Q′) = (a, b) where a ∈ Fqd , and b has the

form b = c
√

v for some c ∈ Fqd .

Now Φd(
√

v) = −√v, which can be verified using v(qd−1)/2 = −1 since v is a quadratic

nonresidue, or with Galois theory:
√

v must be mapped to some other root of its minimal

polynomial as Φd fixes Fqd but not Fqk . Thus Φd(a) = a and Φd(b) = −b, whence

Φd(Ψ(Q′)) = Φd(a, b) = (a,−b) = −Ψ(Q′)

But it can be easily checked that any point Q ∈ E(Fqk) satisfying Φd(Q) = −Q also

satisfies tr Q = O, hence Ψ(Q′) is a point of trace zero.

Conversely, suppose Q is a point of trace zero in E(Fqk)[r]. From Section 3.3 we have

Φ(Q) = qQ, thus Φd(Q) = qdQ.

Since qk = 1 mod r, we have qd = −1 mod r (we cannot have qd = 1 mod r since k > d

is the embedding degree). Hence Φd(Q) = −Q.

If we write Q = (a, b) then this implies a ∈ Fqd and b = c
√

v for some c ∈ Fqd , thus

Ψ−1(Q) lies on E′(Fqd).

Alternatively we may employ a counting argument to show the converse, as there are

exactly r points in E′(Fqd)[r] and exactly r points in E(Fqk)[r] of trace zero.

One consequence is that, aside from type A pairings, this group selection leads to an

CHAPTER 6. FASTER PAIRINGS 88

asymmetric bilinear pairing

e : G1 ×G2 → GT

with no known efficiently computable group isomorphism φ : G2 → G1. Cryptosystems

relying on the existence of such a map must be modified accordingly if they are to use this

trick.

Recall for a randomly chosen Q in E(Fqk)[r] we have tr Q 6= O with overwhelming

probability, and one can take φ to be the trace map as an efficiently computable isomorphism

between 〈Q〉 and E(Fq)[r]. However, as our second input is always a point of trace zero,

this choice of φ no longer applies, thus we must use the more general definition of a bilinear

pairing.

6.4.1 Remarks on Implementation

Observe that all cryptosystem operations except for the bilinear map can be computed in

Fq or Fqd . One only needs to compute in Fqk for a pairing operation.

In particular, when k = 2 all cryptosystem operations except for the pairing can be

computed in Fq. More generally, for k = 2d where d > 1, if Fqk is implemented as an

extension of Fq using a minimal polynomial consisting only of terms of even degree (that is

as sparse as possible), then the elements of Fqd are also polynomials containing only terms

of even degree.

We have in fact encountered this optimization before. Given a Type A curve

E : y2 = x3 + x,

its distortion map can be thought of as the map φ above that takes points on the twist

curve E′(Fq) to E(Fq2), since E′ = E in this case.

A dilemma arises with type B curves however:

6.4.2 Twist Curve Trade-offs

Recall a type B curve is given by E : y2 = x3 + 1 over a field Fq. Its twist E′ is given by

E′ : y2 = x3 + v3 for some quadratic nonresidue v and also over Fq. Elements of G1 are

points on E(Fq). We have two choices for G2:

1. Take elements of G2 from E(Fq), and feed them into the distortion map Ψ (Section 4.8)

CHAPTER 6. FASTER PAIRINGS 89

to obtain elements of E(Fq2) for the pairing. Recall the distortion map is given by

Ψ(x, y) 7→ (ζx, y) where ζ is a primitive cube root of unity.

Then we have symmetry as elements of either input group are chosen from E(Fq).

Unfortunately, we cannot use the important optimization of the following section.

2. Use the twist curve, that is, take elements of G2 from E′(Fq), and feed them into the

twist map φ to obtain elements of E(Fq2) for the pairing.

This allows us to eliminate denominators as described in the following section, but

also means we lose symmetry, since the points from G2 lie in a different curve.

More generally, for other curves, whether or not to use the twist curve trick depends on

if particular properties of the pairing are needed.

Some cryptosystems require DDH to be difficult in both input groups. In such cases we

must use the trace zero group for the second input group, otherwise the trace map enables

the pairing to break DDH in G2. Other schemes want DDH hard in G1 only, but also a

surjective map from G2 to G1, in which case we cannot use the trace zero group.

Suppose G2 must be cyclic in an asymmetric pairing. Then if we want the ability to hash

to G2, we must use the trace zero group, and thus cannot have an efficiently computable

isomorphism from G2 to G1. Note we can hash to a point of trace zero by first hashing to

a point Q ∈ E(Fq2) and returning Φ(Q) − Q. Otherwise, if hashing is not needed for G2,

we may pick any point Q ∈ E(Fq2) and use G2 = 〈Q〉.

6.5 Denominator Elimination

When using twist curves, we can halve the running time of a pairing by applying a technique

due to Barreto, Lynn and Scott [6]. We use the same notation and assumptions as the

previous section. In other words, again let E : y2 = x3 + ax + b be an elliptic curve over

Fq, and P be a point of prime order r. Suppose the embedding degree k of G = 〈P 〉 is even

and write k = 2d.

The Tate pairing requires us to find fP (Q). In Miller’s algorithm, calculating the de-

nominator of fP (Q) involves evaluating the equation of various vertical lines at a point.

In other words, we compute x − a where a is the x-coordinate of the line and x is the

x-coordinate of Q.

CHAPTER 6. FASTER PAIRINGS 90

Recall we eventually exponentiate the output of Miller’s algorithm by (qk − 1)/r to

standardize the coset representative. Observe qd − 1 divides (qk − 1)/r because if r divides

qd − 1 then the embedding degree is at most d, not k.

Thus if both x and a lie in Fqd then we have (x − a)q
d−1 = 1 so they can be omitted

during Miller’s algorithm. This occurs when twist curves are used, hence we may simplify

the computation of fP (Q) as follows. Recall that TZ denotes the equation of the tangent

at Z and LZ denotes the equation of the line between Z and P .

Algorithm 12 Miller’s Algorithm with Denominator Elimination: f ← fP (Q)

1: Let the binary representation of r be bt...b0.
2: f ← 1
3: Z ← P
4: for i← t− 1 to 0 do
5: f ← f2 · TZ(Q)
6: Z ← 2Z
7: if bi = 1 then
8: f ← f · LZ(Q)
9: Z ← Z + P

10: end if
11: end for

Assuming r is odd, which holds for all practical applications, the if condition is true

during the last iteration and the last multiplication is

f ← fL(r−1)P (Q).

Since (r− 1)P = −P , this is equivalent to f ← fVP (Q) and hence can be skipped since no

vertical line computations are needed. In other words, we have fr = fr−1 and the logic can

be simplified.

6.6 Input Restriction

We have already covered most of the facts of this section, but we wish to emphasize that,

from an efficiency standpoint, choosing the input groups to be certain subgroups is desirable

for all pairings.

Consider a supersingular type A, B or C curve E over Fq containing a cyclic group

of order r of embedding degree k. Recall a distortion map φ exists for this curve. Let f

CHAPTER 6. FASTER PAIRINGS 91

be the Weil or Tate pairing for this curve. We can instantiate the symmetric pairings of

Section 1.4 (i.e. the input groups are the same, cyclic and lie over smaller fields) by defining

G = E(Fq)[r], GT to be the group of rth roots of unity in Fqk . and e : G × G → GT by

e(P,Q) = e(P, φ(Q)).

More generally let E(Fq) be an elliptic curve containing a cyclic group of order r of

embedding degree k. Distortion maps might not exist for our curve E. However, we can

always restrict the first input to E(Fq)[r], which is cyclic when k > 1, and we have just seen

that for even k = 2d, the other input can be restricted to some curve over Fqd .

This is faster to compute in than Fqk and allows denominator elimination. Moreover,

the second input group is now cyclic and we can hash into it. The only potential drawback

is that there is no known efficient method for mapping elements of one input group to

the other, which could complicate security proofs or even render the pairing unsuitable for

certain cryptosystems.

For certain pairings, the higher degree twists of Section 6.17 can be used for greater

savings.

6.7 Miller-Lite Operations

One advantage of restricting the first input P of a pairing to E(Fq)[r] is that during Miller’s

algorithm, we perform point additions and doubling involving P and also compute equations

of lines that pass through various multiples of P . Thus if P ∈ E(Fq)[r] all the arithmetic

involved for these operations, which form the bulk of Miller’s algorithm, can be performed

in Fq rather than Fqk .

This has been dubbed a Miller-Lite operation in the literature. When P does not lie in

the base field but rather is some element of E(Fqk) then we refer to an iteration of Miller’s

algorithm with first input P as a full Miller, or Miller-Full, operation.

6.8 Last-Second Conversions

One easy optimization is also easy to overlook as it is hidden by notation. In a Miller-Lite

operation, at some point we must encounter Fqk arithmetic. Distortion maps or twist maps

must be applied on the second input point Q to obtain a point on E(Fqk), which in turn is

fed to line equations.

CHAPTER 6. FASTER PAIRINGS 92

However this should be done carefully. We wish to avoid computing in Fqk until abso-

lutely necessary. We describe the procedure in detail for type A pairings. Similar statements

can be made for other pairing types.

Let e : E(Fq) × E(Fq) → Fq2 be a type A pairing and suppose we have chosen to use

Fq[i] to represent Fq2 where i =
√
−1.

During the computation of the pairing, we evaluate g(Q′) where g = aX + bY + c is an

equation of some line and Q′ = φ(Q), where φ is defined by (X,Y) 7→ (−X, iY) and Q is

some point (x, y) in E(Fq).

If we follow the notation blindly, we would first compute the point Q′ which takes twice

as much storage as Q (as the field it lies over is twice as big), and perform operations on

elements of Fq[i] to arrive at g(Q′).

It is wiser to never explicitly compute Q′ and instead do

Re(R)← c− ax, Im(R)← by.

Now R = g(Q′), and we have only computed in Fq.

6.9 The Final Powering

The last step of a Tate pairing computation is to exponentiate some quantity a by

qk − 1

r
= r−1

∏

d|k

Φd(q)

Since k is the embedding degree, we have r | Φk(q) (and no cyclotomic polynomial of smaller

degree).

The following method for computing a(qk−1)/r is faster than the obvious approach [4].

1. Compute b = ad where

d =
∏

d|k,d<k

Φd(q),

exploiting the identity xq = x for all x ∈ Fq.

2. Since

c =
Φk(q)

r

CHAPTER 6. FASTER PAIRINGS 93

is an integer, compute the output bc using a standard exponentiation algorithm.

We describe the steps in detail for k = 2. Suppose Fq2 has been implemented as Fq[α].

Typically α = i =
√
−1. Then q2−1 = Φ2(q)(q−1) and r | Φ2(q) = q+1. Write a = u+αv

where u, v ∈ Fq. We have

b = aq−1 = (u + αv)qa−1 =
u + αqv

a
.

The constant αq can be precomputed. Usually α is a square root of some quadratic non-

residue in Fq, so αq = −α and this step is essentially a single division.

Then compute b(q+1)/r using a standard exponentiation algorithm to obtain a(q2−1)/r.

We have effectively halved the size of the exponent.

Let us also work through the k = 6 case. Suppose we have Fq6 implemented as Fq[α].

Then

q6 − 1 = Φ6(q)(q
4 + q3 − q − 1)

(where Φ6(q) = q2 − q + 1). If a = u0 + u1α + ... + u5α
5 we have

b = aq4+q3−q−1 =
(u0 + u1α

q4

+ ... + u5α
5q4

)(u0 + u1α
q3

+ ... + u5α
5q3

)

(u0 + u1αq + ... + u5α5q)a

where each power of αq can be precomputed. Then exponentiate b by (q2 − q + 1)/r using

a standard algorithm. In this case we have shrunk the exponent to roughly one third its

original size.

The k = 12 case (which occurs for the type F pairing) is similar. We need to compute

a(q12−1)/r for some a ∈ Fq12 for some prime q and group order r. This is best done by

computing b = aq8+q6−q2−1 followed by exponentiating b by Φ12(q)/r = (q4 − q2 + 1)/r.

Suppose k is even but not divisible by four. Let k = 2d where d is odd. Suppose Fqd

has been implemented as Fq[α], and Fqk as Fqd [β] = Fq[α, β]. where β is some quadratic

nonresidue in Fq.

Then every element a ∈ Fqk can be written in the form

a = (u0 + v0β) + (u1 + v1β)α + ... + (ud−1 + vd−1β)αd−1

CHAPTER 6. FASTER PAIRINGS 94

Note βq = −β. Thus for even m we have

aqd+m

= (u0 − v0β) + (u1 − v1β)αq + ... + (ud−1 − vd−1β)αqm−1

and for odd m we have

aqd+m

= (u0 + v0β) + (u1 + v1β)αq + ... + (ud−1 + vd−1β)αqm−1

allowing the following simplifications.

When k = 6 then any a ∈ Fqk can be written in the form

a = (u0 + v0β) + (u1 + v1β)α + (u2 + v2β)α2.

Then b = aq4+q3−q−1 can be computed via

(

(u0 + v0β) + (u1 + v1β)αq + (u2 + v2β)α2q
) (

(u0 − v0β) + (u1 − v1β)α + (u2 − v2β)α2
)

((u0 − v0β) + (u1 − v1β)αq + (u2 − v2β)α2q) ((u0 + v0β) + (u1 + v1β)α + (u2 + v2β)α2)

A similar formula applies when k = 10 (type G pairings). In this case we compute

b = aq6+q5−q−1, before exponentiating by Φ5(q)/r = (q4 − q3 + q2 − q + 1)/r.

6.10 Weil Denominator Elimination

Let f be a Weil pairing

f : E[r]× E[r]→ Fqk

for some curve E over Fq with embedding degree k > 1, and for some r.

For pairing-based cryptography, any nondegenerate bilinear map can be used. Thus we

may replace f by fn where n is prime to r. The map fn is still nondegenerate and bilinear;

it merely differs from the Weil pairing by a constant factor.

In particular, if we choose n = q − 1 then denominator elimination also applies to the

Weil pairing. Additionally, the above powering trick makes the exponentiation cheap.

CHAPTER 6. FASTER PAIRINGS 95

6.11 Preprocessing

We previously discussed preprocessing for exponentiation in a group. In general opportu-

nities for calculating and storing certain results ahead of time frequently arise.

One trivial application of this principle is generating and storing random points and

number needed for certain pairing computations long before they are needed, reusing them

when possible. Another is the caching of quadratic nonresidues that are key ingredients in

a number of algorithms.

In many pairing-based cryptosystems, a group element such as a system parameter or

a key that rarely changes is fed to the pairing over and over again in typical use, behaviour

that we can exploit with precomputation.

For example, in the BLS signature scheme, a system parameter and signer’s public key

are given to the pairing during verification, thus an application that verifies many BLS

signatures from the same sender will be a good candidate for this optimization.

6.11.1 Precomputation of Lines

During Miller’s algorithm, the coefficients in equations of the form aX+bY +c are calculated.

These lines are derived entirely from one of the input points, hence much time can be saved

every time the same input point is encountered if we precompute and store a, b, c for every

line [4].

6.11.2 Elliptic Net Precomputation

One of the two sequences in the Shipsey-Stange algorithm, which we denoted by ck is

completely determined by the first input. Thus caching c2
k and ck−1ck+1 for later pairings

will improve the running time substantially.

6.12 Compressed Pairings

In the next few sections we quote without proof observations due to Scott and Barreto [59]

that speed up pairings and reduce their output size, though in some cases at the cost of

losing a few bits.

We first examine the simplest case. Suppose we have constructed a pairing with an

elliptic curve E over a field Fq with embedding degree 2, so that the output of the pairing

CHAPTER 6. FASTER PAIRINGS 96

is an element of order r in Fq2, where r is the order of the cyclic subgroup being used.

Suppose Fq2 has been implemented as Fq[α]. A typical choice is α = i(=
√
−1).

From above, the last step of the optimized Tate exponentiation consists of exponentiating

a number of the form a + αb by (q + 1)/r.

It can be shown a + αb must be unitary (the proof applies to any element of Fq2 whose

order divides q + 1), which is to say a2 − α2b2 = 1. This in turn implies Lucas sequences

can be used to compute powers. Let P = 2a.

Define

V0 = 2, V1 = P, Vn+1 = PVn − Vn−1.

It turns out that (a + αb)n = Vn/2 + αbU , where U = (PVn − 2Vn−1)/(P
2 − 4) =

(2Vn+1−PVn)/(P 2−4), and that the following algorithm computes v0 = Vn and v1 = Vn+1

for even n, and v0 = Vn−1 and v1 = Vn otherwise. We can easily compute U in either case.

Algorithm 13 Lucas sequence: v0 = Vm and v1 = Vm+1, where m = n for even n and
m = n− 1 for odd n
1: Let nt...n0 be the binary respresentation of n.
2: v0 ← 2, v1 ← P, j ← t
3: while j > 0 do
4: if nj = 1 then
5: v0 ← v0v1 − P, v1 ← v2

1 − 2
6: else
7: v1 ← v0v1 − P, v0 ← v2

0 − 2
8: end if
9: j ← j − 1

10: end while
11: v1 ← v0v1 − P, v0 ← v2

0 − 2

Every pairing-based cryptosystem yet proposed requires r to be an odd prime or a

product of two odd primes, thus we assume r is odd. As we avoid characteristic 2 fields, we

also assume q + 1 is even, so we can assume n = (q + 1)/r is even.

Clearly the above is faster than a standard Fq2 exponentiation procedure as all operations

take place in the smaller field Fq.

This method applies to any curve of even embedding degree, but we shall find that for

embedding degree k = 6 an even better algorithm exists. However, before describing it, we

first discuss pairing compression.

CHAPTER 6. FASTER PAIRINGS 97

6.13 Pairing Compression For Even Embedding Degree

We have seen that the output of a pairing is some unitary element a + αb ∈ Fq2. Hence for

each value of a, there are two possibile values for b since a2 − α2b2 = 1.

Just as point compression works by recording only the x-coordinate and one bit that

signifies which y-coordinate to take, we may compress pairing values by recording only the

a value and one bit that represents which solutions of a2 − α2b2 = 1 the b takes.

To invert a group element on an elliptic curve is to negate the y-coordinate. Similarly,

we have (a + αb)−1 = a− αb for pairing values.

Furthermore, in some applications it may be possible to dispose of b entirely and not

bother recording which solution to take. This is similar to the point reduction described

earlier, and in fact, these two tricks work well in unison.

The BLS signature scheme is a good example of this. Recall a signature is an x-

coordinate of some point P and we need to check if e(P,Q) is a certain pairing value v,

where Q is a system parameter. Since we have discarded the y-coordinate, when guessing a

value for P we may have in fact selected −P , in which case we will have computed e(−P,Q)

instead, and previously we recommended checking the other possible y-coordinate in event

of a mismatch.

But observe that e(P,Q) and e(−P,Q) will have the same a-value, and are the only

pairing values that share this a-value. This suggests the following BLS signature verification

procedure:

1. Given a signature σ, compute any point P with x-coordinate σ.

2. Compute the a-value of e(P,Q), where Q is the system parameter. Do not bother

with the b-value.

3. If this value matches the a-value of v then the signature verifies. Otherwise it is

rejected.

6.14 Pairing Compression For Embedding Degree Six

Now consider a curve E(Fq) with embedding degree k = 6. Recall from the discussion of

Tate exponentiation that r | Φ6(q) = q2−q+1 (and r does not divide any smaller cyclotomic

polynomial).

CHAPTER 6. FASTER PAIRINGS 98

These are precisely the conditions that occur in the XTR cryptosystem [44], the opti-

mizations and algorithms of which we quote here.

Let tr denote the Fq2-trace in Fq6, that is

tr(x) = x + xq2

+ xq4 ∈ Fq2.

Let x ∈ Fq6 be an element of order r (such as the output of a pairing). Define ck = tr(xk).

It can be shown that

cu+v = cucv − cq
vcu−v + cu−2v

for all u, v ∈ Z, which leads to the identities:

cn+2 = c1cn+1 − cq
1cn + cn−1

c2n = c2
n − 2cq

n

c2n−1 = cncn−1 − c1c
q
n + cq

n+1

c2n+1 = cncn+1 − c1c
q
n + cq

n−1

Then for any integer n, we can use a repeated-squaring-like algorithm to compute tr(xn)

from tr(x).

One can show tr(xn) = (tr(x−n))q so without loss of generality assume n ≥ 0. Trivially

c0 = 3, c1 = tr(x) and c2, c3, c4 can be computed easily using the above identities, e.g.

c2 = c2
1 − 2cq

1. Otherwise:

1. If n is odd let 2m + 1 = n, otherwise let 2m = n, and let the binary representation of

m is mt...m0.

2. k ← 1.

3. For j ← t− 1 to 0 do

(a) If mj = 0 then compute c4k, c4k+1, c4k+2 from c2k, c2k+1, c2k+2, using the above

identities.

(b) Otherwise mj = 1 and compute c4k+2, c4k+3, c4k+4 from c2k, c2k+1, c2k+2, using

the above identities.

(c) k ← 2k + mj

CHAPTER 6. FASTER PAIRINGS 99

4. We have now computed c2m, c2m+1, c2m+2. (If n is odd cn = c2m+1 otherwise cn =

c2m.)

Thus we can compress the output x of a pairing by a factor of three by using tr(x)

instead of x, and the above shows how to find tr(xn) for any integer n, a feature often

required by pairing-based cryptosystems. (In general tr(x)n 6= tr(xn) so we cannot use

a standard exponentiation algorithm.) Of course, in doing so we lose some information:

x, xq2

, xq4

all have the same trace, but this is tolerable in most cases.

Recall from Section 5.7 that if q = 2 (mod 3) or q = 3 (mod 4), then with a suitable

constructed field extension Fq2 , for x, y, z ∈ Fq2:

1. computing xq is free

2. computing x2 costs 2 multiplications in Fq

3. computing xy costs 3 multiplications in Fq

4. computing xz − yzq costs 4 multiplications in Fq

where we assume the time taken by a few additions and subtractions is negligible.

Since these are the operations aside from addition and subtraction involved in the above

identities, exponentiating compressed pairings is significantly faster for carefully constructed

field extensions.

6.15 Powered Pairings

Michael Scott notes that in many cryptosystems the result of a pairing is raised to some

power at some stage. In some cases the output of a pairing is not used until after it has

been exponentiated. Thus when designing a pairing library, one should make a powered

pairing function available to the user, to take full advantage of the above optimizations that

allow faster exponentiation of pairing outputs.

Also, for any m coprime to the group order r, the mth power of a pairing is a nonde-

generate bilinear map. Thus in any cryptosystem we can replace the pairing with the mth

power of the pairing.

One application of this is to replace a Weil pairing e of even embedding degree k = 2d in

any cryptosystem with eqd−1, which means denominator elimination can be applied during

CHAPTER 6. FASTER PAIRINGS 100

the computation of the Weil pairing. Recall raising to the qth power is a cheap operation,

so this will speed up the Weil pairing [43].

In fact, this optimization makes it less clear which pairing is faster. The Tate pairing

costs one Miller-Lite operation and a final powering. The powered Weil pairing costs one

Miller-Lite and one Miller-Full operation, and needs no final powering. In both cases,

denominator elimination applies. Without final powering optimizations, a Miller-Full might

outperform it, in which case the Weil pairing would beat the Tate pairing [36].

6.16 Exponentiation Tricks

Miller’s algorithm has features in common with exponentation by repeated squaring. Ac-

cordingly, tricks that speed up the latter can be adapted for the former.

Let us analyze the analogue of division in Miller’s algorithm. Using the notation of

Chapter 3, we have

(f−k) = (P)−k/(−kP)

hence

f−k(Q) =
1

fk(Q)Vk(Q)

and

fa−b(Q) =
fa(Q)La,−b(Q)

fb(Q)Vb(Q)Va−b(Q)

Since group inversion, i.e. point negation, is practically free, we may neglect the cost of

computing −kP from kP . We may treat the cost of computing (a − b)P from aP and bP

as the same as the cost of computing (a + b)P .

We see a division in Miller’s algorithm is slightly more expensive than a multiplication,

requiring also an inversion in GT along with another vertical line.

Denominator elimination allows us to ignore vertical lines. Also, the inversions can

be collated. We can defer divisions, and have one inversion at the end instead of one

per iteration, by maintaining numerator and denominator variables during the main loop

and only dividing at the end. (In other words, compute (g1(Q)...gm(Q))/(h1(Q)...hm(Q))

instead of (g1(Q)/h1(Q))...(gm(Q)/hm(Q)).)

Thus addition-subtraction-chain exponentiation can be better than plain addition-chain

exponentiation and as with point multiplication, one can employ signed sliding windows [47,

Chapter 14] [9, Section IV.2.5].

CHAPTER 6. FASTER PAIRINGS 101

As mentioned before the last iteration of Miller’s algorithm can be skipped if denomi-

nation elimination is applied. This is also true for the signed representation, because

fr+1 = frLrP /Vr+1P

but since rP = O we have that LrP is a vertical line at P and hence fr+1 = fr (recall we

ignore verticals for denominator elimination).

Sometimes it is possible to choose the order r of the input and output groups. In such

cases it is desirable to pick r so that the resulting addition-subtraction-chain is as short as

possible. For example, a good choice is an r that has the form 2a±2b±1 (Solinas numbers)

or has low Hamming weight [4].

Like multiexponentiation, when computing products or quotients of pairings we bene-

fit from using vector addition chains [47, Chapter 14], with much time saved by using a

precomputed table.

Although we recommend avoiding characteristic 3 curves, we note some special opti-

mizations for them [4]. Firstly, point tripling is extremely fast. Given a point (x, y) we can

quickly compute (x3, y3) = 3(x, y) via

x3 = (x3)3 − b

y3 = −(y3)3

since cubing is cheap in characteristic 3 (here b is the constant term of the elliptic curve).

Then if we use signed ternary representation point multiplication can be sped up. Further-

more, if r is chosen to a base 3 analogue of a Solinas number 3a ± 3b ± 1, then Miller’s

algorithm is much faster.

6.17 Higher Degree Twists

We quote facts neatly summarized by Hess, Smart and Vercauteren [38].

Let E be an elliptic curve over Fq where q ≥ 5 is prime. Let t be the trace of Frobenius,

that is, t satisfies #E(Fq) = q− t+1. Table 6.1 describes the twists of E for various choices

of v ∈ F∗
q. Some choices of v result in the original curve (or rather a curve easily mapped

to the original), while others lead to quadratic, cubic, quartic or sextic twists, which are

depicted in the table. We define w, the degree of the twist, as the smallest integer such that

CHAPTER 6. FASTER PAIRINGS 102

Curve w Twist Twist Map Point Count

Y 2 = X3 + aX + b 2 Y 2 = X3 + a/v2X + b/v3 vx, v3/2y q + 1 + t

Y 2 = X3 + aX 2 Y 2 = X3 + a/vX v1/2x, v3/4y q + 1 + t
4 q + 1± f

(t2 − 4q = −f2)

Y 2 = X3 + b 2 Y 2 = X3 + b/v v1/3x, v1/2y q + 1 + t
3 q + 1− (±3f − t)/2
6 q + 1− (±3f + t)/2

(t2 − 4q = −3f2)

Table 6.1: Twist curves

the twist curve maps to E(Fqw) by taking a point (x, y) to the point shown in the table.

We must have q = 1 mod w for a twist of degree w to exist.

A simple method to find a desired twist is to

1. Choose v ∈ F∗
q and construct the twist E′ using v.

2. Generate a random point P ∈ E′.

3. If P does not have the order specified by Table 6.1 then goto step 1.

The twist curve optimization tricks discussed earlier correspond to quadratic twists. For

this case, Hess, Smart and Vercauteren note the alternate form:

E : vY 2 = X3 + aX + b

with

φ : (x, y) 7→ (x, v1/2y)

may be better from a programmer’s point of view.

We can generalize our method to higher-degree twists on certain curves (and embedding

degrees), leading to greater time and space savings.

Let G be a cyclic subgroup of E(Fq) of prime order r ≥ 5 and embedding degree k. In

all cases, it can be shown exactly one of the twist curves has order that is a multiple of r.

Let w be the degree of this twist.

We assume that w divides k. When this is not the case, we can use a suitable factor

of w instead with reduced savings. In the extreme case, we have E′ = E and d = k which

CHAPTER 6. FASTER PAIRINGS 103

implies we are not using the twist curve optimization at all and gain nothing. Let d = k/w.

Then as before, we can work within the groups E(Fq)[r] and E′(Fqd) for a suitable twist

curve E′ at all times except during a pairing computation, where we use the twist map and

operate in Fqk .

6.18 The Ate and Twisted Ate Pairing

Barreto et al. discovered a variation on the Tate pairing, dubbed the Eta pairing, that can

be more efficient in some cases [2]. Hess, Smart and Vercauteren further refine this new

pairing and obtain the Ate pairing [38]. We state their results without proof.

Let E be an elliptic over Fq containing a cyclic subgroup G1 of order r and even embed-

ding degree k. Let G2 be the group of trace zero points in E′(Fqd) where, like the previous

section, E′ and d represent the twist curve optimization being employed. Let t be the trace

of Frobenius, that is t satisfies #E(Fq) = q − t + 1.

Let fn,P be a rational function with divisor n(P)/(nP) for any integer n and any point P .

Then the following are bilinear and nondegenerate up to coset representatives (in practice

one needs to execute a final powering on the output of any of these functions).

1. Tate pairing:

fr,P (Q)

2. Ate pairing:

ft−1,Q(P)

3. Twisted Ate pairing:

f(t−1)d ,P (Q)

In some cases, the Ate or twisted Ate pairing may be faster than the Tate pairing. Note

that even when t− 1 is much smaller than r, the Ate pairing may not necessarily be faster

because it requires a Miller-Full operation.

Chapter 7

Summary of Contributions

We briefly reiterate our main original contributions.

7.1 Abstract definitions

In Chapter 1 we gave abstract definitions of pairings that bridge the gap between formal

security proofs and bilinear maps used in practice. We began with a symmetric definition,

which was the first to appear in the literature, and gradually extended it so that a greater

variety of pairings are available.

We presented examples of assumptions that pairing-based cryptosystems rely on, and

indicated how to modify them for different pairing definitions.

7.2 The BLS Signature Scheme

We exhibited a practical digital signature scheme with the shortest known signature length

at typical security levels. This signature scheme, often referred to as the BLS signature

scheme, has many other desirable features [17, 15], but they fall outside the scope of this

text. The BLS signature scheme is a pairing-based cryptosystem, and many of these features

rely heavily on properties of bilinear maps. It is not known how to construct signature

schemes with similar advantages without using pairings.

104

CHAPTER 7. SUMMARY OF CONTRIBUTIONS 105

7.3 Constructing With Prescribed Embedding Degree

We presented the first published method for constructing cryptographically useful pair-

ings with any given embedding degree. Inspired by the work of Miyaji et al. [50], we use

cyclotomic polynomials to guarantee certain conditions are met, yielding cryptographically-

usedful pairings with any given embedding degree [5].

7.4 Optimizations

In the last chapter we showed how to improve the running time of a pairing by roughly a

factor of four over a naive implementation.

Firstly, we proved that the classic definition of the Tate pairing may be replaced by a

simpler version that can be evaluated in half the time [4].

Secondly, using twist curves we can ignore denominators in Miller’s algorithm, doubling

its speed [6]. This technique is now so commonplace that it is considered “standard” [38].

We also described methods for efficiently computing the final powering, a costly opera-

tion that is required to standardize coset representatives in the output group [4].

Additionally, we gave more minor optimizations that together substantially speed up a

pairing computation, and pairing-based cryptosystems in general [4, 6].

Bibliography

[1] R. Balasubramanian and N. Koblitz. The improbability that an elliptic curve has

subexponential discrete log problem under the Menezes-Okamoto-Vanstone algorithm.

Journal of Cryptology, 11(2):141–145, Spring 1998.

[2] P. Barreto, S. Galbraith, C. O’hEigeartaigh, and M. Scott. Efficient pairing computa-

tion on supersingular abelian varieties, 2004. http://eprint.iacr.org/2004/375.

[3] P. S. L. M. Barreto. The pairing-based cryptography lounge. http://paginas.terra.

com.br/informatica/paulobarreto/pblounge.html.

[4] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-

based cryptosystems. In CRYPTO ’02: Proceedings of the 22nd Annual International

Cryptology Conference on Advances in Cryptology, pages 354–368, London, UK, 2002.

Springer-Verlag.

[5] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with prescribed

embedding degrees. In Third Conference on Security in Communication Networks,

2002.

[6] P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly groups.

In Proceedings of Selected Areas in Cryptography – SAC, 2003.

[7] P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementation of pairing-based

cryptosystems. Journal of Cryptology, 17(1):321–334, 2004.

[8] D. J. Bernstein. Faster square roots in annoying finite fields.

http://cr.yp.to/papers/sqroot.ps.

106

BIBLIOGRAPHY 107

[9] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography. Cambridge

University Press, July 1999.

[10] D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption with-

out random oracles. In EUROCRYPT 2004, volume 3027 of LNCS, pages 223–238.

Springer-Verlag, 2004.

[11] D. Boneh and X. Boyen. Short signatures without random oracles. In EUROCRYPT

2004, volume 3027 of LNCS, pages 56–73. Springer-Verlag, 2004.

[12] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO 2004.

Springer-Verlag, 2004.

[13] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. Lecture

Notes in Computer Science, 2139:213+, 2001.

[14] D. Boneh, C. Gentry, and M. Hamburg. Space-efficient identity-based encryption with-

out pairings. Cryptology ePrint Archive, Report 2007/177, 2007. http://eprint.

iacr.org/.

[15] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and verifiably encrypted

signatures from bilinear maps. In In E. Biham, editor, Proceedings of Advances in

Cryptology – Eurocrypt’03, LNCS. Springer-Verlag, 2003.

[16] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts. In

Theory of Cryptography ’05, volume 3378 of Lecture Notes in Computer Science, pages

325–341. Springer-Verlag, 2005.

[17] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In

Asiacrypt, volume 2248 of Lecture Notes in Computer Science, pages 514+, 2001.

[18] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Journal

of Cryptology, 17(1):297–319, 2004.

[19] F. Brezing and A. Weng. Elliptic curves suitable for pairing-based cryptography. http:

//eprint.iacr.org/2003/143.

[20] C. Cocks. An identity based encryption scheme based on quadratic residues. In IMA

Int. Conf., pages 360–363, 2001.

BIBLIOGRAPHY 108

[21] C. Cocks and R. G. E. Pinch. Identity-based cryptosystems based on the Weil pairing.

unpublished manuscript, 2001.

[22] Cohen, Miyaji, and Ono. Efficient elliptic curve exponentiation using mixed coordi-

nates. In ASIACRYPT: Advances in Cryptology – ASIACRYPT: International Con-

ference on the Theory and Application of Cryptology. LNCS, Springer-Verlag, 1998.

[23] H. Cohen. A course in computational algebraic number theory, volume 138 of Graduate

Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[24] D. Coppersmith. Fast evaluation of logarithms in fields of characteristics two. In IEEE

Transactions on Information Theory, volume 30, pages 587–594, 1984.

[25] H. Coxeter and G. Beck. The Real Projective Plane. Springer-Verlag, 1992.

[26] C. Diem. The ghs attack in odd characteristic. In J. Ramanujan Math. Soc., volume 18,

pages 1–32, 2003.

[27] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, IT-22(6):644–654, 1976.

[28] D. Freeman. Constructing pairing-friendly elliptic curves with embedding degree 10.

In ANTS VII. LNCS 4076, Springer-Verlag, 2006.

[29] D. Freeman. Constructing pairing-friendly genus 2 curves over prime fields with or-

dinary jacobians. preprint, 2007. http://math.berkeley.edu/~dfreeman/papers/

pairing-friendly-genus2.pdf.

[30] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves.

preprint, 2006.

[31] G. Frey, M. Muller, and H.-G. Ruck. The Tate pairing and the discrete logarithm

applied to elliptic curve cryptosystems. Trans. on Inf. Th., 45:1717–1719, 1999.

[32] G. Frey and H. Ruck. A remark concerning m-divisibility and the discrete logarithm

in the divisor class group of curves. Math. of Computaions, 62:865–874, 1994.

[33] S. Galbraith. Supersingular curves in cryptography. In Asiacrypt, volume 2248 of

Lecture Notes in Computer Science, pages 495–513. Springer-Verlag, 2001.

BIBLIOGRAPHY 109

[34] S. Galbraith and N. P. Smart. A cryptographic application of Weil descent. In

M. Walker, editor, Cryptology and Coding, volume 1746 of LNCS, pages 191–200.

Springer-Verlag, 1999.

[35] P. Gaudry, F. Hess, and N. P. Smart. Constructive and destructive facets of Weil

descent on elliptic curves. Technical Report CSTR-00-016, Department of Computer

Science, University of Bristol, 2000.

[36] R. Granger, D. Page, and N. Smart. High security pairing-based cryptography revisited.

Cryptology ePrint Archive, Report 2006/059, 2006. http://eprint.iacr.org/.

[37] T. Granlund. The GMP library. http://www.swox.com/gmp/.

[38] F. Hess, N. Smart, and F. Vercauteren. The eta pairing revisited. In IEEE Transactions

on Information Theory, volume 52, pages 4595–4602, 2006.

[39] J. Horwitz and B. Lynn. Toward hierarchical identity-based encryption. In Proceeding

of Advances in Cryptology – Eurocrypt’02, LNCS. Springer-Verlag, pages 466–481,

2002.

[40] A. Joux. A one round protocol for tripartite Diffie-Hellman. In Proc. Fourth Algorith-

mic Number Theory Symposium, volume 1838 of Lecture Notes in Computer Science,

pages 385–394. Springer-Verlag, 2000.

[41] A. Joux. The Weil and Tate pairings as building blocks for public key cryptosystems.

In Proc. Fifth Algorithmic Number Theory Symposium, Lecture Notes in Computer

Science. Springer-Verlag, 2002.

[42] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Program-

ming. Addison-Wesley, Reading, Massachusetts, second edition, 10 Jan. 1981.

[43] N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels. Cryp-

tology ePrint Archive, Report 2005/076, 2005. http://eprint.iacr.org/.

[44] A. K. Lenstra and E. R. Verheul. The XTR public key system. In CRYPTO, 2000.

[45] B. Lynn. Authenticated identity-based encryption. Cryptology ePrint Archive, Report

2002/072, 2002. http://eprint.iacr.org/.

BIBLIOGRAPHY 110

[46] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to

logarithms in a finite field. In STOC ’91: Proceedings of the twenty-third annual ACM

symposium on Theory of computing, pages 80–89, New York, NY, USA, 1991. ACM

Press.

[47] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied Cryptog-

raphy. CRC Press, Inc., Boca Raton, FL, USA, 1996.

[48] V. Miller. Short functions for programs on curves. unpublished manuscript.

[49] V. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,

17(4):235–262, 2004.

[50] A. Miyaji, M. Nakabayashi, and S. Takano. New explicit conditions of ellip-

tic curve traces for FR-reduction. TIEICE: IEICE Transactions on Communica-

tions/Electronics/Information and Systems, 2001.

[51] T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for the

security of cryptographic schemes. In Public Key Cryptography, pages 104–118, 2001.

[52] D. Page, N. P. Smart, and F. Vercauteren. A comparison of MNT curves and

supersingular curves. Cryptology ePrint Archive, Report 2004/165, 2004. http:

//eprint.iacr.org/.

[53] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C. Cambridge University Press, 1997 (?).

[54] R. L. Rivest, A. Shamir, and L. M. Adelman. A method for obtaining digital signatures

and public-key cryptosystems. Technical Report MIT/LCS/TM-82, 1977.

[55] R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. Lecture Notes in

Computer Science, 2248:552+, 2001.

[56] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In Advances

in Cryptology – Crypto 2002, volume 2442 of Lecture Notes on Computer Science, pages

336–353. Springer-Verlag, 2002.

[57] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In The 2000

Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.

BIBLIOGRAPHY 111

[58] M. Scott. MIRACL. http://www.shamus.ie/.

[59] M. Scott and P. S. L. M. Barreto. Compressed pairings. In Crypto 2004, 2004.

[60] M. Scott and P. S. L. M. Barreto. Generating more MNT elliptic curves. Cryptology

ePrint Archive, Report 2004/058, 2004. http://eprint.iacr.org/.

[61] A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryp-

tology - Crypto ’84, volume 196 of Lecture Notes in Computer Science, pages 47–53.

Springer-Verlag, 1984.

[62] J. H. Silverman. The arithmetic of elliptic curves. Springer-Verlag, Berlin, 1995.

[63] K. E. Stange. The Tate pairing via elliptic nets. Cryptology ePrint Archive, Report

2006/392, 2006. http://eprint.iacr.org/.

[64] D. R. Stinson. Some baby-step giant-step algorithms for the low hamming weight

discrete logarithm problem. In Math. Comput 71(237), pages 379–391, 2002.

[65] E. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryp-

tosystems. Journal of Cryptology, 17(4):277–296, 2004.

[66] A. Weimerskirch and C. Paar. Generalizations of the Karatsuba algorithm for polyno-

mial multiplication.

