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Abstract

Learning problems form an important category of com-
putational tasks that generalizes many of the computations
researchers apply to large real-life data sets. We ask: what
concept classes can be learned privately, namely, by an al-
gorithm whose output does not depend too heavily on any
one input or specific training example? More precisely, we
investigate learning algorithms that satisfy differential pri-
vacy, a notion that provides strong confidentiality guaran-
tees in the contexts where aggregate information is released
about a database containing sensitive information about
individuals. We present several basic results that demon-
strate general feasibility of private learning and relate sev-
eral models previously studied separately in the contexts of
privacy and standard learning.

1. Introduction

The data privacy problem in modern databases is similar
to that faced by statistical agencies and medical researchers:
to learn and publish global analyses of a population while
maintaining confidentiality of the participants in a survey.
There is a vast body of work on this problem in statistics and
computer science. However, until recently, most schemes
proposed in the literature lacked rigorous analysis of pri-
vacy and utility.

A recent line of work, initiated by Dinur and Nissim [15]
and called private data analysis, seeks to place data privacy
on firmer theoretical foundations and has been successful
at formulating a strong, yet attainable privacy definition.
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The notion of differential privacy [17] that emerged from
this line of work provides rigorous guarantees even in the
presence of a malicious adversary with access to arbitrary
auxiliary information. It requires that whether an individual
supplies her actual or fake information has almost no effect
on the outcome of the analysis.

Given this definition, it is natural to ask: what compu-
tational tasks can be performed while maintaining privacy?
Research on data privacy, to the extent that it formalizes
precise goals, has mostly focused on function evaluation
(“what is the value of f(z)?”), namely, how much privacy
is possible if one wishes to release (an approximation to) a
particular function f , evaluated on the database z. (A no-
table exception is the recent work of McSherry and Talwar,
using differential privacy in the design of auction mecha-
nisms [34]). Our goal is to expand the utility of private pro-
tocols by examining which other computational tasks can
be performed in a privacy-preserving manner.

Private Learning. In this work, we ask what can be
learned privately, namely, by an algorithm whose output
does not depend too heavily on any one input or specific
training example? Our goal is a broad understanding of the
resources required for private learning in terms of samples,
computation time, and interaction. We examine two basic
notions from learning: Valiant’s probabilistically approxi-
mately correct (PAC) learning [39] model and Kearns’ sta-
tistical query (SQ) model [29].

Informally, a concept is a function from examples to la-
bels, and a class of concepts is learnable if for any distri-
bution D on examples, one can, given limited access to ex-
amples sampled from D labeled according to some target
concept c, find a small circuit (hypothesis) which predicts
c’s labels with high probability over future examples taken
from the same distribution. In the PAC model, a learning
algorithm can access a polynomial number of labeled ex-
amples. In the SQ model, instead of accessing examples
directly, the learner can specify some properties (i.e., pred-
icates) on the examples, for which he is given an estimate,
up to an additive polynomially small error, of the probabil-
ity that a random example chosen from D satisfies the prop-
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erty. PAC learning is strictly stronger than the SQ learning
[29].

We model a statistical database as a vector z =
(z1, · · · , zn), where each entry has been contributed by an
individual. When analyzing how well a private algorithm
learns a concept class, we assume that entries zi of the
database are random examples generated i.i.d. from the un-
derlying distribution D and labeled by a target concept c.
This is exactly how (not necessarily private) learners are
analyzed. For instance, an example might consist of an in-
dividual’s gender, age, and blood pressure history, and the
label, whether this individual has had a heart attack. The
algorithm has to learn to predict whether an individual has
had a heart attack, based on gender, age, and blood pressure
history, generated according to D.

We require a private algorithm to keep entire examples
(not only the labels) confidential. In the scenario above,
it translates to not revealing each participant’s gender, age,
blood pressure history, and heart attack incidence. More
precisely, the output of a private learner should not be sig-
nificantly affected if a particular example zi is replaced with
arbitrary z′i, for all zi and z′i. In contrast to correctness or
utility, which is analyzed with respect to distribution D, dif-
ferential privacy is a worst-case notion. Hence, when we
analyze the privacy of our learners we do not make any as-
sumptions on the underlying distribution. Such assumptions
are fragile and, in particular, would fall apart in the presence
of auxiliary knowledge that the adversary might have: con-
ditioned on the adversary’s auxiliary knowledge, the distri-
bution over examples might look very different from D.

1.1. Our Contributions

We introduce and formulate private learning problems,
as discussed above, and develop novel algorithmic tools and
bounds on the sample size required by private learning al-
gorithms. Our results paint a picture of the classes of learn-
ing problems that are solvable subject to privacy constraints.
Specifically, we provide:

(1) A Private Version of Occam’s Razor. We present a
generic private learning algorithm. For any concept class
C, we give a distribution-free differentially-private ag-
nostic PAC learner for C that uses a number of samples
proportional to log |C|. This is a private analogue of Oc-
cam’s razor, a basic sample complexity bound from the
non-private learning setting. The sample complexity of
our version is similar to that of the original, although the
private algorithm is very different. As in Occam’s razor,
the learning algorithm is not necessarily computationally
efficient.

(2) An Efficient Private Learner for Parity. We give a
computationally efficient, distribution-free differentially

private PAC learner for the class of parity functions1 over
{0, 1}d. The sample and time complexity are compara-
ble to that of the best non-private learner.

(3) Equivalence of Local (“Randomized Response”) and
SQ Learning. We precisely characterize the power of lo-
cal, or randomized response, private learning algorithms.
Local algorithms are a special (practical) class of pri-
vate algorithms and are popular in the data mining and
statistics literature. They add randomness to each indi-
vidual’s data independently before processing the input.
We show that a concept class is learnable by a local dif-
ferentially private algorithm if and only if it is learnable
in the statistical query (SQ) model. This equivalence
relates notions that were conceived in very different con-
texts.

(4) Separation of Interactive and Noninteractive Local
Learning. Local algorithms can be noninteractive,
that is, using one round of interaction with individuals
holding the data, or interactive, that is, using more than
one round (and in each receiving randomized responses
from individuals). We construct a concept class, called
masked-parity, that is efficiently learnable by interactive
local algorithms, but requires an exponential (in the di-
mension) number of samples to be learned by a noninter-
active local algorithm. The equivalence (3) of local and
SQ learning shows that interaction in local algorithms
corresponds to adaptivity in SQ algorithms. The masked-
parity class thus also separates adaptive and nonadaptive
SQ learning.

1.1.1 Implications

“Anything” learnable is privately learnable using few
samples. The generic agnostic learner (1) has an impor-
tant consequence: if some concept class C is learnable by
any algorithm, not necessarily a private one, whose output
length in bits is polynomially bounded, then C is learnable
privately using a polynomial number of samples (possibly
in exponential time). This result establishes the basic fea-
sibility of private learning: it was not clear a priori how
severely privacy affects sample complexity, even ignoring
computation time.

Learning with noise is different from private learning.
There is an intuitively appealing similarity between learn-
ing from noisy examples and private learning: algorithms
for both problems must be robust to small variations in the
data. This apparent similarity is strengthened by a result
of Blum et al. [9] showing that any algorithm in Kearns’

1While the Occam’s razor result (1) extends easily to “agnostic” learn-
ing (defined below), the learner for parity does not. The limitation is not
surprising, since even non-private agnostic learning of parity is at least as
hard as learning parity with random noise.
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statistical query (SQ) model [29] can be implemented in a
differentially private manner. SQ was introduced to capture
a class of noise-resistant learning algorithms. These algo-
rithms access their input only through a sequence of approx-
imate averaging queries. One can privately approximate the
average of a function with values in [0, 1] over the data set of
n individuals to within additive error O(1/n) (Dwork and
Nissim [18]). Thus, one can simulate the behavior of an SQ
algorithm privately, query by query.

Our efficient private learner for parity (2) dispels the
similarity between learning with noise and private learning.
First, SQ algorithms provably require exponentially many
(in the dimension) queries to learn parity [29]. More com-
pellingly, learning parity with noise is thought to be com-
putationally hard, and has been used as the basis of several
cryptographic primitives (e.g., [11, 25, 4, 38]).

Limitations of local (“randomized response”) algo-
rithms. Local algorithms (also referred to as randomized
response, input perturbation, Post Randomization Method
(PRAM), and FRAPP) have been studied extensively in the
context of privacy-preserving data mining, both in statistics
and computer science (e.g., [41, 2, 1, 3, 40, 20, 35, 26]).
Roughly, a local algorithm accesses each individual’s data
via independent randomization operators. Local algorithms
were introduced to encourage truthfulness in surveys: re-
spondents who know that their data will be randomized are
more likely to answer honestly (Warner [41]). The accepted
privacy requirement for local algorithms is equivalent to
imposing differential privacy on each randomization opera-
tor [20]. Local algorithms are popular because they are easy
to understand and implement. In the extreme case, users can
retain their data and apply the randomization operator them-
selves, using a physical device [41, 36] or a cryptographic
protocol [5].

The equivalence between local and SQ algorithms (3) is
a powerful tool that allows us to apply results from learn-
ing theory. In particular, since parity is not learnable with
a small number of SQ queries [29] but is PAC learnable
privately (2), we get that local algorithms require exponen-
tially more data for some learning tasks than do general pri-
vate algorithms. Our results also imply that local algorithms
are strictly less powerful than (non-private) algorithms for
learning with classification noise because subexponential
(non-private) algorithms can learn parity with noise [11].

Adaptivity in SQ algorithms is important. Just as local
algorithms can be interactive, SQ algorithms can be adap-
tive, that is, the averaging queries they make may depend
on answers to previous queries. The equivalence of SQ and
local algorithms (3) preserves interaction/adaptivity: a con-
cept class is nonadaptively SQ learnable if and only if it is
noninteractively locally learnable. The masked parity class

(4) shows that interaction (resp., adaptivity) adds consider-
able power to local (resp., SQ) algorithms.

Most of the reasons that local algorithms are so attractive
in practice, and have received such attention, apply only to
noninteractive algorithms. This suggests that further inves-
tigating the power of nonadaptive SQ learners is an impor-
tant problem. For example, the SQ algorithm for learning
conjunctions [32] is nonadaptive, but SQ formulations of
the perceptron and k-means algorithms [9] seem to rely on
adaptivity.

Understanding the “price” of privacy for learning prob-
lems. The SQ result of Blum et al. [9] and our learner
for parity (2) provide efficient (i.e., polynomial time) pri-
vate learners for essentially all the concept classes known
(by us) to have efficient non-private distribution-free learn-
ers. Finding a concept class that can be learned efficiently,
but not privately and efficiently, remains an interesting and
important question.

Our results also lead to questions of optimal sample
complexity for learning problems of practical importance.
The private simulation of SQ algorithms in [9] uses a fac-
tor of approximately

√
t/ε more data points than the naı̈ve

non-private implementation, where t is the number of SQ
queries and ε is the parameter of differential privacy (typ-
ically a small constant). In contrast, the generic agnos-
tic learner (1) uses a factor of at most 1/ε more samples
than the corresponding non-private learner. For parity, our
private learner uses a factor of roughly 1/ε more samples
than, and about the same computation time as, the non-
private learner. What, then, is the additional cost of pri-
vacy when learning practical concept classes (half-planes,
low-dimensional curves, etc)? Can the theoretical sample
bounds of (1) be matched by (more) efficient learners?

1.1.2 Techniques

Our generic private learner (1) adapts the exponential sam-
pling technique of [34], developed in the context of auc-
tion design. Our use of the exponential mechanism in-
spired an elegant subsequent result of Blum, Liggett, and
Roth [12] (BLR) on simultaneously approximating many
different functions. Their result can, in turn, be used
to derive a version of our statement for hypotheses of
bounded VC-dimension (rather than bounded cardinality),
when the space of examples has bounded size. The generic
private learner from this paper and that implied by the
BLR result are incomparable: roughly, our original re-
sult requires discretizing (quantizing) the set of hypothe-
ses, whereas the BLR result requires discretizing the space
of examples. Neither achieves the generality of the origi-
nal Vapnik-Chernovenkis bound (see [32]), which requires
only bounded VC-dimension and makes no assumptions on

533533

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 15:19 from IEEE Xplore.  Restrictions apply.



the cardinality of either the hypothesis or example space.
The efficient private learner for parity (2) uses a very dif-

ferent technique, based on sampling, running a non-private
learner, and occasionally refusing to answer based on del-
icately calibrated probabilities. Running a non-private
learner on a random subset of examples is a very intuitive
approach to building private algorithms, but it is not private
in general. The private learner for parity illustrates both
why this technique can leak private information and how it
can sometimes be repaired based on special (in this case,
algebraic) structure.

The interesting direction of the equivalence between SQ
and local learners (3) is proved via a simulation of any local
algorithm by a corresponding SQ algorithm. We found this
simulation surprising since local protocols can, in general,
have very complex structure (see, e.g., [20]). The SQ algo-
rithm proceeds by a direct simulation of the output of the
randomization operators. For a given input distribution D
and any operator R, one can sample from the corresponding
output distribution R(D) via rejection sampling. We show
that if R is differentially private, the rejection probabilities
can be approximated via low-accuracy SQ queries to D.

Finally, the separation between adaptive and nonadaptive
SQ (4) uses a Fourier analytic argument inspired by Kearns’
SQ lower bound for parity [29].

1.2. Related Work

The literature on differential privacy has focused on
function approximation tasks, with the exception of [34],
devoted to mechanism design. Blum et al. [9] considered a
specific class of learning algorithms (SQ), and showed that
algorithms in the class could be simulated using function
evaluations. In an independent unpublished work, Chaud-
huri, Dwork, and Talwar considered a version of private
learning in which privacy is afforded only to input labels,
but not to examples.

Dwork et al. [17] separated interactive and noninterac-
tive private protocols in the centralized model, where the
user accesses the data via a server that runs differentially
private algorithms on the database and sends back the an-
swers. Any example of a computation that cannot be per-
formed noninteractively in the centralized model must rely
on the fact that the computational task is not defined until
after the first answer from the server is received. (Other-
wise, the user can send an algorithm for that task to the
server holding the data, thus obviating the need for interac-
tion.) Our separation of interactive and noninteractive local
protocols (3) is of a different nature: the computational task
that is hard for noninteractive local algorithms – learning
masked parity – is defined in advance.

In the machine learning literature, several notions similar
to differential privacy have been explored under the rubric

of “algorithmic stability” [14, 30, 13, 33, 19, 7]. The most
closely related notion is change-one error stability, which
measures how much the generalization error changes when
an input are changed (see the survey [33]). In contrast, dif-
ferential privacy measures how the distribution over the en-
tire output changes—a more complex measure of stability
(in particular, differential privacy implies change-one error
stability). A different notion, stability under resampling of
the data from a given distribution [8, 7], is connected to the
sample-aggregate method of [37] but is not directly relevant
to the techniques considered here.

2. Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. Logarithms
base 2 and base e are denoted by log and ln, respectively.
A(x) is the probability distribution over outputs of a ran-
domized algorithm A on input x. The statistical difference
between distributions P and Q on a discrete space D is de-
fined as maxS⊂D | P (S)−Q(S)|.

2.1. Databases and Privacy

A statistical database is a vector z = (z1, . . . , zn) over a
domain D, where each entry zi ∈ D represents information
contributed by one individual. Databases z and z′ are neigh-
bors if zi %= z′i for exactly one i ∈ [n] (i.e., the Hamming
distance between z and z′ is 1).

A (randomized) algorithm (in our context, this will
usually be a learning algorithm) is private if neighboring
databases induce nearby distributions on its outcomes:

Definition 2.1 (ε-differential privacy [17]). A randomized
algorithm A is ε-differentially private if for all neighboring
databases z, z′, and for all sets S of outputs, Pr[A(z) ∈
S] ≤ exp(ε) · Pr[A(z′) ∈ S]. The probability is taken over
the random coins of A.

Claim 2.2 (Composition and Post-processing [16, 37, 34,
28]). If a randomized algorithm A runs k algorithms
A1, ...,Ak, where each Ai is εi-differentially private, and
outputs a function of the results (that is, A(x) = g(A1(x),
A2(x), ...,Ak(x)) for some probabilistic algorithm g), then
A is (

∑k
i=1 εi)-differentially private.

2.2. Preliminaries from Learning Theory

A concept is a function that labels examples taken from
the domain X by the elements of the range Y . We focus on
binary classification problems, where the range Y is {0, 1}
(or, equivalently, {+1,−1}). A concept class C is a set
of concepts. It comes implicitly with a way to represent
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concepts; size(c) is the size of the (smallest) representa-
tion of c under the given representation scheme. The do-
main of the concepts in C is understood to be an ensemble
X = {Xd}d∈N where the representation of elements in Xd

is of size at most d. (We use the parameter d to formu-
late asymptotic complexity notions.) The concept classes
are ensembles C = {Cd}d∈N where Cd is the class of con-
cepts from Xd to {0, 1}. When the size parameter is clear
from the context or not important, we omit the subscript in
Xd, Cd.

Let D be a distribution over labeled examples in Xd ×
{0, 1}. A learning algorithm is given access to D (the
method for accessing D depends on the type of learning
algorithm). It outputs a hypothesis h : Xd → {0, 1}
from a hypothesis class H = {Hd}d∈N. The goal is to
minimize the misclassification error of h on D, defined as
error(h) = Pr(x,y)∼D[h(x) %= y] . The success of a learn-
ing algorithm is quantified by parameters α and β, where α
is the desired error and β bounds the probability of failure
to output a hypothesis with this error.

A learning algorithm is usually given access to an oracle
that produces i.i.d. samples from D. Equivalently, one can
view the learning algorithm’s input as a list of n labeled
examples, i.e., z ∈ Dn where D = Xd × {0, 1}.

PAC learning algorithms are frequently designed assum-
ing a promise that the examples are labeled consistently
with some target concept c from a class C: namely, c ∈ Cd

and y = c(x) for all (x, y) in the support of D. In that case,
we can think of D as a distribution only over examples Xd.
To avoid ambiguity, we use X to denote a distribution over
Xd. In the PAC setting, error(h) = Prx∼X [h(x) %= c(x)].

Definition 2.3 (PAC Learning). A concept class C over X
is PAC learnable using hypothesis class H if there exist an
algorithm A and a polynomial poly(·, ·, ·) such that for all
d ∈ N, all concepts c ∈ Cd, all distributions X on Xd, and
all α,β ∈ (0, 1/2), given inputs α,β and z = (z1, · · · , zn),
where n = poly(d, 1/α, log(1/β)), zi = (xi, c(xi)) and xi

are drawn i.i.d. from X for i ∈ [n], algorithm A outputs a
hypothesis h ∈ H satisfying

Pr[error(h) ≤ α] ≥ 1− β. (1)

The probability is taken over the random choice of the ex-
amples z and the coin tosses of A.

Class C is PAC learnable if there exists some hypothesis
class H and a PAC learner A such that A PAC learns C
using H. Class C is efficiently PAC learnable if A runs it
time polynomial in d, 1/α, and log(1/β).

Remark: Our definition deviates slightly from the standard
one (see, e.g., [32]) in that we do not take into consideration
the size of the concept c. This choice allows us to treat PAC
learners and agnostic learners identically.

Agnostic learning [23, 31] is an extension of PAC learn-
ing that removes assumptions about the target concept. In
this setting, error(h) = Pr(x,y)∼D[h(x) %= y].

Definition 2.4 (Agnostic Learning). (Efficiently) agnosti-
cally learnable is defined identically to (efficiently) PAC
learnable with two exceptions: (i) the data are drawn from
an arbitrary distribution D on Xd × {0, 1}; (ii) instead of
Equation 1, the output of A has to satisfy:

Pr[error(h) ≤ OPT + α] ≥ 1− β,

where OPT = minf∈Cd {error(f)} .

Definitions 2.3 and 2.4 capture distribution-free learning,
in that they do not assume a particular form for the distribu-
tions X or D.

3. Private PAC and Agnostic Learning

We define private PAC learners as algorithms that sat-
isfy definitions of both differential privacy and PAC learn-
ing. We emphasize that these are qualitatively different re-
quirements. Learning must succeed on average over a set
of examples drawn i.i.d. from D (often under the additional
promise that D is consistent with a concept from a target
class). Differential privacy, in contrast, must hold in the
worst case, with no assumptions on consistency.

Definition 3.1 (Private PAC Learning). Let d, α, β be as
in Definition 2.3 and ε > 0. Concept class C is pri-
vately PAC learnable using hypothesis class H if there
exists an algorithm A that takes inputs ε, α, β, z, where
n, the number of labeled examples in z, is polynomial in
1/ε, d, 1/α, log(1/β), and satisfies

a. [Privacy] For all ε > 0, algorithm A(ε, ·, ·, ·) is ε-
differentially private (Definition 2.1);

b. [Utility] A PAC learns C using H (Definition 2.3).

C is efficiently privately PAC learnable if A runs in time
polynomial in d, 1/ε, 1/α, and log(1/β).

Definition 3.2 (Private Agnostic Learning). (Efficient) pri-
vate agnostic learning is defined analogously to (efficient)
private PAC learning with Definition 2.4 replacing Defini-
tion 2.3 in the utility condition.

Evaluating the quality of a particular hypothesis is easy:
one can privately compute the fraction of the data it clas-
sifies correctly (enabling cross-validation) using the sum
query framework of [9]. The difficulty of constructing pri-
vate learners lies in finding a good hypothesis in what is
typically an exponentially large space.
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3.1. A Generic Private Agnostic Learner

In this section, we present a private analogue of the car-
dinality version of Occam’s razor, a classical construction
of PAC learners that weeds out all bad hypotheses given a
number of labeled examples that is logarithmic in the size
of the hypothesis class (see [32] for details). Our generic
private learner is based on the exponential mechanism of
McSherry and Talwar [34].

Let q : Dn × Hd → R take a database z and a candi-
date hypothesis h, and assign it a score q(z, h) = −|{i :
xi is misclassified by h, i.e., yi %= h(xi)}| . That is, the
score is minus the number of points in z misclassified by h.
The classic Occam’s razor argument assumes a learner that
selects the hypothesis with maximum score (that is, min-
imum empirical error). Instead, our private learner Aε

q is
defined to sample a random hypothesis with probability de-
pendent on its score:

Aε
q(z) : Output hypothesis h ∈ Hd with probability

proportional to exp
(

1
2εq(z, h)

)
.

Since the score ranges from −n to 0, hypotheses with low
empirical error are exponentially more likely to be selected
than ones with high error.

Algorithm Aε
q fits the framework of McSherry and Tal-

war, and so is ε-differentially private. This follows from the
fact that changing one entry zi in the database z can change
the score by at most 1.

Lemma 3.3 (following [34]). The algorithm Aε
q is ε-

differentially private.

A similar exponential weighting algorithm was consid-
ered by [22] for constructing binary classifiers with good
generalization error bounds. We are not aware of any di-
rect connection between the two results. Also note that, ex-
cept for the case where |Hd| is polynomial, the exponential
mechanism Aε

q(z) does not necessarily yield a polynomial
time algorithm.

Theorem 3.4 (Private version of Occam’s Razor). For all
d ∈ N, any concept class Cd whose cardinality is at
most exp(poly(d)) is privately agnostically learnable us-
ing Hd = Cd. More precisely, the learner uses n =
O((ln |Hd|+ ln 1

β ) ·max{ 1
εα , 1

α2 }) labeled examples from
D, where ε, α, and β are parameters of the private learner.
(The learner might not be efficient.)

Proof. Let Aε
q be as defined above. The privacy condition

in Definition 3.1 is satisfied by Lemma 3.3.
We now show that the utility condition is also satisfied.

Consider the event E = {Aε
q(z) = h with error(h) >

α + OPT}. We want to prove that Pr[E] ≤ β. Define the
training error of h as

errorT (h) =
∣∣{i ∈ [n] |h(xi) %= yi}

∣∣/n = −q(z, h)/n .

By Chernoff-Hoeffding bounds,

Pr
[
|error(h)− errorT (h)| ≥ ρ

]
≤ 2 exp(−2nρ2)

for all hypotheses h ∈ Hd. Hence,

Pr
[
|error(h)− errorT (h)| ≥ ρ for some h ∈ Hd

]

≤ 2|Hd| exp(−2nρ2).

We now analyze Aε
q(z) conditioned on the event that for

all h ∈ Hd, |error(h) − errorT (h)| < ρ. For every h ∈
Hd, the probability that Aε

q(z) = h is

exp(− ε
2 · n · errorT (h))∑

h′∈Hd
exp(− ε

2 · n · errorT (h′))

≤
exp

(
− ε

2 · n · errorT (h)
)

maxh′∈Hd exp(− ε
2 · n · errorT (h′))

= exp
(
− ε

2
· n · (errorT (h)− min

h′∈Hd

errorT (h′))
)

≤ exp
(
− ε

2
· n · (errorT (h)− (OPT + ρ))

)
.

Hence, the probability that Aε
q(z) outputs a hypothesis

h ∈ Hd such that errorT (h) ≥ OPT + 2ρ is at most
|Hd| exp(−εnρ/2).

Now set ρ = α/3. If error(h) ≥ OPT + α
then |error(h) − errorT (h)| ≥ α/3 or errorT (h) ≥
OPT + 2α/3. Thus Pr[E] ≤ |Hd|(2 exp(−2nα2/9) +
exp(−εnα/6)) ≤ β where the last inequality holds for
n ≥ 6

(
(ln |Hd|+ ln 1

β ) ·max{ 1
εα , 1

α2 }
)

.

In the non-private case one can also bound the sample
size (of a PAC learner) in terms of the VC-dimension of
the concept class. A result in [12], inspired by the initial
version of our work, can be used to get a private analogue
of this VC-dimension bound, assuming a small domain size
for examples. As explained in Section 1.1.2, this statement
and the generic private learner from Theorem 3.4 are in-
comparable. Details are deferred to the full version [27].

Proposition 3.5. Every concept class Cd is privately ag-
nostically learnable using hypothesis class Hd = Cd

with O
(

VCDIM (Cd) log(1/α)d
α3ε + log(1/β)

αε

)
labeled examples

from D. Here, ε, α, and β are parameters of the private ag-
nostic learner, d = log |Hd| and V CDIM(Cd) is the VC-
dimension of Cd. (The learner is not necessarily efficient.)

Remark: In the non-private agnostic case, the stan-
dard VC-dimension (see, e.g., [6]) bound states that
O

(
VCDIM (Cd) log(1/α)

α2 + log(1/β)
α2

)
labeled examples suf-

fice to agnostically learn a concept class Cd. Therefore, the
current VC-dimension-based upper bounds on the sample
size of private and non-private agnostic learners differ by a
factor of O(d/(αε)) for moderate values of β.
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4. An Efficient Private Learner for PARITY

Let PARITY be the class of parity functions cr :
{0, 1}d → {0, 1} indexed by r ∈ {0, 1}d, where cr(x) =
r * x denotes the inner product modulo 2. In this sec-
tion, we present an efficient private PAC learning algo-
rithm for PARITY. The standard (non-private) PAC learner
for PARITY [24, 21] looks for the hidden vector r by
solving a system of linear equations imposed by examples
(xi, cr(xi)) that the algorithm sees. It outputs an arbitrary
vector consistent with the examples, i.e., in the solution
space of the system of linear equations. One important
point is that the private algorithm has to be defined on all
databases z, even the ones which are not consistent with any
parity function because the privacy guarantee has to hold for
all neighboring databases z and z′. In particular, we have to
guarantee that the probability that the algorithm fails (does
not find a consistent hypothesis and, in our notation, outputs
⊥) is similar for all neighbors z and z′. Observe that this is
not true for the standard learning algorithm for PARITY.

We first present a private algorithm A for learning
PARITY with failure probability 1/2+β′. Later we amplify
its success probability and get a private PAC learner A∗ for
PARITY. Intuitively, the reason PARITY can be learned
privately is that when a new example (corresponding to a
new linear constraint) is added, the space of consistent hy-
potheses shrinks by at most a factor of 2. This holds unless
the new constraint is inconsistent with previous constraints.
In the latter case, the size of the space of consistent hypothe-
ses goes to 0. Thus, the solution space changes drastically
on neighboring inputs only when the algorithm fails (out-
puts ⊥). The fact that algorithm outputs ⊥ on a database z
and a valid (non ⊥) hypothesis on a neighboring database
z′ might lead to privacy violations. To avoid this, our al-
gorithm outputs ⊥ with probability ≥ 1/2 on any input
(Step 1).

A PRIVATE LEARNER FOR PARITY, A(n, z, ε)

1. With probability 1/2, output ⊥ and terminate.

2. Construct a set S by picking each element of [n] inde-
pendently with probability p = ε/4.

3. Use Gaussian elimination to solve the system of equa-
tions imposed by examples, indexed by S: namely,
{xi * r = cr(xi) : i ∈ S}. Let VS denote the result-
ing affine subspace.

4. Pick r∗ ∈ VS uniformly at random and output cr∗ ; if
VS = ∅, output ⊥.

The (omitted) proof of privacy is based on showing that the
inclusion of any single point in the sample set S increases

the probability of a hypothesis being output by at most 2.
The (omitted) proof of utility follows by considering all
the possible situations in which the algorithms fails to sat-
isfy the error bound, and by bounding the probabilities with
which these situations occur.

Lemma 4.1 (Privacy, Utility of A). (a) Algorithm A is
ε-differentially private. (b) Let X be a distribution over
X = {0, 1}d. Let z = (z1, . . . , zn), where every
zi = (xi, c(xi)) with xi drawn i.i.d. from X and c ∈
PARITY. If n ≥ 8

εα (d ln 2+ln(1/β′)) then Pr[A(n, z, ε) =
h with error(h) ≤ α] ≥ 1

2 − β′.

It remains to amplify the success probability of A. To do
so, we repeat it Θ(log 1

β ) times, and output the answer re-
turned by the first iteration that does not output ⊥. See [27]
for details. We obtain the following result.

Theorem 4.2. PARITY is efficiently privately PAC learn-
able with n = O

(
log(1/β)

εα (d + log 1
β )

)
examples.

Remark: It is possible to remove the quadratic dependency
on log(1/β) in the previous theorem statement, by run-
ning A with a slightly smaller value of n (hence increasing
the probability of outputting a bad hypothesis), and setting
aside a small part of the data (a test set) to verify, using sum
queries, how well the candidate hypotheses do. In this case,
the upper bounds on the sample size and the running time
of private and non-private PARITY learners only differ by a
factor of O(1/ε).

5. Local Protocols and SQ learning

In this section, we relate private learning in the local
model to SQ learning [29].

Local Model. We start by describing private computation
in the local model. Informally, each individual holds her
private information locally, and hands it to the learner af-
ter randomizing it. This is modeled by by letting the lo-
cal algorithm access each entry zi in the input database
z = (z1, . . . , zn) ∈ Dn only via local randomizers.

Definition 5.1 (Local Randomizer). An ε-local randomizer
R : D → W is an ε-differentially private algorithm, i.e.,
Pr[R(u) = w] ≤ eε Pr[R(u′) = w] for all u, u′ ∈ D and
all w ∈ W . The probability is taken over the coins of R
(but not over the choice of the input).

Note that a local randomizer works on a data set of size 1
and, therefore, u and u′ are neighbors for all u, u′ ∈ D. Let
LRz(·, ·) denote an oracle that gets an index i ∈ [n] and an
ε-local randomizer R, and outputs a random value w ∈ W
chosen according to the distribution R(zi). The distribution
R(zi) depends only on the entry zi in z.

537537

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 19, 2009 at 15:19 from IEEE Xplore.  Restrictions apply.



An ε-local algorithm accesses the database z via the or-
acle LRz with the following restriction: for all i ∈ [n],
if LRz(i, R1), . . . , LRz(i, Rk) are the invocations of LRz

on index i, where each Rj is an εj-local randomizer, then
ε1 + · · · + εk ≤ ε. Since ε1 + · · · + εk ≤ ε, by Claim 2.2,
ε-local algorithms are ε-differentially private.

Local algorithms that prepare all their queries to LRz

before receiving any reply are called noninteractive; other-
wise, they are interactive.

SQ Model. In the statistical query (SQ) model, algo-
rithms access statistical properties of a distribution rather
than individual examples.

Definition 5.2 (SQ Oracle). Let D be a distribution over a
domain D. An SQ oracle SQD takes as input a function
g : D → {+1,−1} and a tolerance parameter τ ∈ (0, 1);
it outputs v such that: |v − Eu∼D[g(u)]| ≤ τ.

An SQ algorithm accesses the distribution D via the SQ
oracle SQD. SQ algorithms that prepare all their queries
to SQD before receiving any reply are called nonadaptive;
otherwise, they are called adaptive.

5.1. Equivalence of Local and SQ Models

Both the SQ and local models restrict algorithms to ac-
cess inputs in a particular manner. There is a significant dif-
ference though: an SQ oracle sees a distribution D, whereas
a local algorithm takes as input a fixed (arbitrary) database
z. Nevertheless, we show that if the entries of z are cho-
sen i.i.d. according to D, then the models are equivalent.
Specifically, an algorithm in one model can simulate an al-
gorithm in the other model. Moreover, the expected query
complexity is preserved up to polynomial factors. In the full
version of this paper [27], we also investigate the efficiency
of these simulations.

5.1.1 Local Simulation of SQ Algorithms

Blum et al. [9] used the fact that sum queries can be an-
swered privately with little noise to show that any efficient
SQ algorithm can be simulated privately and efficiently. We
show that it can be simulated efficiently even by a local al-
gorithm, albeit with slightly worse parameters. Let g : D →
{+1,−1} be the SQ query we want to simulate. Let Lap(λ)
denote the Laplace probability distribution with mean 0,
standard deviation

√
2λ, and p.d.f. f(x) = 1

2λe−|x|/λ. If
η ∼ Lap(2b/ε), the algorithm R(u) = g(u) + η is an ε-
local randomizer [17].

Let z be a database with n = O(log(1/β)ε−2τ−2) en-
tries sampled i.i.d. from a distribution D on D, and let
g : D → {+1,−1}. Construct a local algorithm Ag that
for every i ∈ [n] invokes LRz with the randomizer R de-
fined above and outputs the average of the responses.

Lemma 5.3. Ag approximates Eu∼D[g(u)] within additive
error ±τ with probability at least 1− β.

Simulation. Consider an SQ algorithm making at most t
queries to SQD. Our local algorithm simulates each query
using Lemma 5.3 with parameters β′ = β/t, τ , and ε, on
a database z containing O(t log(1/β′)ε−2τ−2) entries sam-
pled from D. Each query is simulated with a fresh portion
of z, and hence privacy is preserved as each entry is sub-
jected to a single application of the ε-local randomizer R.
By the union bound, the probability that any of the queries
is not approximated within additive error τ is at most β.

5.1.2 SQ Simulation of Local Algorithms

Let z be a database containing n entries drawn i.i.d. from
D. Consider a local algorithm making t queries to LRz. We
show how to simulate any local randomizer invoked by this
algorithm by using statistical queries to SQD. Consider one
such randomizer R : D → W applied to database entry zi.
To simulate R we need to sample w ∈ W with probability
p(w) = Przi∼D[R(zi) = w] taken over choice of zi ∼ D
and random coins of R. (For interactive algorithms, it is
more complicated, as the outputs of different randomizers
applied to the same entry zi have to be correlated.)

The idea behind the (omitted) simulation is to sample
from a distribution p̃(w) that is within statistical distance
β/t from p(w). This would ensure a statistical distance of
at most β between the output distribution of the local algo-
rithm and the distribution resulting from the simulation. We
start by applying R to an arbitrary input (say, 0) and ob-
taining a sample w ∼ R(0). Let q(w) = Pr[R(0) = w]
(probability taken only over randomness in R). Since R
is ε-differentially private, q(w) approximates p(w) within
a multiplicative factor of eε. To sample w from p(w) we
use the following rejection sampling algorithm: (i) sample
w according to q(w); (ii) output w with probability p(w)

q(w)eε ;
(iii) otherwise, repeat from (i). To complete the simula-
tion we show how statistical queries can be used to estimate
p(w). We now summarize the main result.

Lemma 5.4. Let z be a database with entries drawn i.i.d.
from a distribution D. For every noninteractive (resp. inter-
active) local algorithm A making t queries to LRz, there
exists a nonadaptive (resp. adaptive) statistical query algo-
rithm B that makes t ·eε queries in expectation to SQD with
accuracy τ = Θ(β/(e2εt)), such that the statistical differ-
ence between B’s and A’s output distributions is at most β.

5.2. Implications for Local Learning

In this section, we define learning in the local and SQ
models, and state that they are equivalent. Then we use
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results from learning theory to prove that local learners are
less powerful than general private learners.

Definition 5.5 (Local Learning). Locally learnable is de-
fined identically to privately PAC learnable (Definition 3.1),
except for the additional requirement that for all ε > 0,
algorithm A(ε, ·, ·, ·) is ε-local and invokes LRz at most
poly(d, size(c), 1/ε, 1/α, log(1/β)) times.

Let X be a distribution over an input domain X . Let
SQc,X denote the statistical query oracle that takes as in-
put a function g : X × {+1,−1} → {+1,−1} and a
tolerance parameter τ ∈ (0, 1) and outputs v such that:
|v − Ex∼X [g(x, c(x))]| ≤ τ .

Definition 5.6 (SQ Learning2). SQ learnable is de-
fined identically to PAC learnable (Definition 2.3),
except that instead of having access to examples z, an
SQ learner can make poly(d, size(c), 1/α, log(1/β))
queries to oracle SQc,X with tolerance τ ≥
1/poly(d, size(c), 1/α, log(1/β)).

From the simulations in Section 5.1.1 and 5.1.2 we ob-
tain the equivalence between SQ and local learning:

Theorem 5.7. A concept class is learnable by a noninter-
active (resp. interactive) local learner if and only if it is
learnable by a nonadaptive (resp. adaptive) SQ learner.

Now we can use lower bounds for SQ learners for
PARITY (see, e.g., [29, 10, 42]) to demonstrate limitations
of local learners. The lower bound of [10] rules out SQ
learners for PARITY (even under the uniform distribution)
that have unlimited running time, as long as they use at most
2d/3 queries of tolerance at least 2−d/3. Thus, using The-
orem 4.2 that states that PARITY is (efficiently) privately
learnable and Theorem 5.7, we obtain:

Corollary 5.8. Concept classes learnable by local learners
are a strict subset of concept classes PAC learnable pri-
vately. This holds both with and without computational re-
strictions.

5.3. Interaction in Local Protocols

To complete the picture, we examine whether interaction
gives more power in the local (SQ) model. The question is
motivated by the fact that sometimes interaction is costly,
complicated, or even impossible (for instance, when statisti-
cal information is collected by an interviewer, or at a polling
booth.) We show that the answer to this question is positive
by specifying a concept class that an interactive algorithm
can learn with a polynomial number of examples, whereas

2Unlike in the standard SQ definition, we allow a failure probability β
as our simulations can fail with tiny probability.

any noninteractive algorithm requires an exponential num-
ber of examples.

Let MASKED-PARITY be the class of functions cr,a :
{0, 1}d × {0, 1}log d × {0, 1}→{ +1,−1} indexed by r ∈
{0, 1}d and a ∈ {0, 1}:

cr,a(x, i, b) =

{
(−1)r'x+a if b = 0
(−1)ri if b = 1

where r * x denotes the inner product of r and x modulo
2, and ri is the ith bit of r. For simplicity, assume d is an
integral power of 2.

We consider the concept class MASKED-PARITY =
{cr,a} when the underlying distribution X is uniform over
binary strings of length d + log d + 1. Our adaptive learner
for MASKED-PARITY uses two rounds of communication
with the SQ oracle: first, to learn r from the b = 1 half of the
input, and second, to retrieve the bit a from the b = 0 half
of the input via queries that depend on r. The impossibil-
ity result (Theorem 5.9) for nonadaptive learners uses ideas
from statistical query lower bounds (see, e.g., [29, 10, 42]).
The intuition is that as the queries are prepared nonadap-
tively, any information about r gained from the b = 1 half
of the input cannot be used to prepare queries to the b = 0
half. Since information about a is contained only in the
b = 0 half, in order to extract a, the SQ algorithm is forced
to learn PARITY. Our separation in the SQ model directly
translates to a separation in the local model (using Theo-
rem 5.7).

Theorem 5.9. There exists an efficient adaptive SQ
learner for MASKED-PARITY over the uniform distri-
bution. However, no nonadaptive SQ learner can learn
MASKED-PARITY (with polynomial number of queries)
even over the uniform distribution.

Remark: The learning theory literature distinguishes be-
tween strong learning, in which the learning algorithm can
be required to produce hypotheses with arbitrarily low error
(as in Definition 2.3, where the parameter α can be arbi-
trarily small), and weak learning, in which the learner is
only required to produce a hypothesis with error bounded
below 1/2. The separation of Theorem 5.9 applies only
to strong learning: it is simple to design a noninteractive
weak SQ learner for MASKED-PARITY. It is impossible
to obtain an analogous separation for weak learning, since
the characterization of SQ learnable classes in terms of “SQ
dimension” by Blum et al. [10] implies that adaptive and
nonadaptive SQ algorithms are equivalent for weak learn-
ing (this is not explicit in [10] but follows from the fact
that the weak learner constructed for classes with low SQ
dimension is non-adaptive).
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