
Title: Linearity and Group Homomorphism Testing / Test-
ing Hadamard Codes

Name: Sofya Raskhodnikova1, Ronitt Rubinfeld2

Affil./Addr. 1: Pennsylvania State University
Affil./Addr. 2: MIT and Tel Aviv University
Keywords: Property testing, sublinear-time algorithms, linear-

ity of functions, group homomorphism, error-correcting
codes

SumOriWork: 1993; Blum, Luby, Rubinfeld

Linearity and Group Homomorphism
Testing / Testing Hadamard Codes

Sofya Raskhodnikova1, Ronitt Rubinfeld2

1 Pennsylvania State University
2 MIT and Tel Aviv University

Years aud Authors of Summarized Original Work

1993; Blum, Luby, Rubinfeld

Keywords

Property testing, sublinear-time algorithms, linearity of functions, group homomor-
phism, error-correcting codes

Problem Definition

In this article, we discuss the problem of testing linearity of functions and, more gen-
erally, testing whether a given function is a group homomorphism. An algorithm for
this problem, given by Blum, Luby, and Rubinfeld [9], is part of or is a special case
of many important property testers for algebraic properties. Originally designed for
program checkers and self-correctors, it has found uses in Probabilistically Checkable
Proofs (PCPs), which are an essential tool in proving hardness of approximation.

We start by formulating an important special case of the problem, testing lin-
earity of Boolean functions. A function f : {0, 1}n → {0, 1} is linear if for some
a1, a2, . . . , an ∈ {0, 1},

f(x1, x2, . . . , xn) = a1x1 + a2x2 + · · · anxn.

The operations in this definition are over F2. That is, given vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn), where x1, . . . , xn, y1, . . . , yn ∈ {0, 1}, the vector x + y = (x1 +
y1 mod 2, . . . , xn + yn mod 2). There is another, equivalent, definition of linearity of
Boolean functions over {0, 1}n: a function f is linear if for all x, y ∈ {0, 1}n,

2

f(x) + f(y) = f(x+ y).

A generalization of a linear function, defined above, is a group homomorphism.
Given two finite groups, (G, ◦) and (H, ?), a group homomorphism from G to H is a
function f : G→ H such that for all elements x, y ∈ G,

f(x) ? f(y) = f(x ◦ y).

We would like to test (approximately) whether a given function is linear or,
more generally, is a group homomorphism. Next, we define the property testing frame-
work [23; 12]. Linearity testing was the first problem studied in this framework. The
linearity tester of Blum, Luby, and Rubinfeld [9] actually preceded the definition of this
framework and served as an inspiration for it. Given a proximity parameter ε ∈ (0, 1),
a function is ε-far from satisfying a specific property P (such as being linear or being
a group homomorphism) if it has to be modified on at least an ε fraction of its domain
in order to satisfy P . A function is ε-close to P if it is not ε-far from it. A tester for
property P gets a parameter ε ∈ (0, 1) and an oracle access to a function f . It must
accept with probability3 at least 2/3 if the function f satisfies property P and reject
with probability at least 2/3 if f is ε-far from satisfying P . Our goal is to design an
efficient tester for group homomorphism.

Alternative formulation Another way of viewing the same problem is in terms
of error correcting codes. Given a function f : G → H, we can form a codeword
corresponding to f by listing the values of f on all points in the domain. The homo-
morphism code is the set of all codewords that correspond to homomorphisms from
G to H. This is an error-correcting code with large distance because, for two different
homomorphisms f, g : G→ H, the fraction of points x ∈ G on which f(x) = g(x) is at
most 1/2. In the special case when G is {0, 1}n and H is {0, 1}, we get the Hadamard
code. Our goal can be formulated as follows: Design an efficient algorithm that tests
whether a given string is a codeword of a homomorphism code (or ε-far from it).

Key Results

The linearity (homomorphism) tester designed by Blum, Luby, and Rubinfeld [9] re-
peats the following test several times, until the desired success probability is reached,
and accepts iff all iterations accept.

Algorithm 1: BLR Linearity (Homomorphism) Test
input : Oracle access to an unknown function f : G→ H.

1 Pick x, y ∈ G uniformly and independently at random.
2 Query f on x, y, and x+ y to find out f(x), f(y), and f(x+ y).
3 Accept if f(x) + f(y) = f(x+ y); otherwise, reject.

Blum et al. [9] and Ben-Or et al. [7] showed that O(1/ε) iterations of the BLR
test suffice to get a property tester for group homomorphism. (The analysis in [9]
worked for a special case of the problem, and [7] extended it all groups). It is not
hard to prove that Ω(1/ε) queries are required to test for linearity and, in fact, any

3 The choice of error probability in the definition of the tester is arbitrary. Using standard techniques,
a tester with error probability 1/3 can be turned into a tester with error probability δ ∈ (0, 1/3) by
repeating the original tester O(log 1

δ) times and taking the majority answer.

3

non-trivial property, so the resulting tester is optimal in terms of the query complexity
and the running time.

Lots of effort went into understanding the rejection probability of the BLR test
for functions that are ε-far from homomorphisms over various groups and, especially, for
the case F = {0, 1}n (see [17] and references therein). A nice exposition of the analysis
for the latter special case, which follows the Fourier-analytic approach of Bellare et al.
[5], can by found in the book by O’Donnell [21].

Several works [26; 24; 14; 8; 25] showed how to reduce the number of random
bits required by homomorphism tests. In the natural implementation of the BLR test,
2 log |G| random bits per iteration are used to pick x and y. Shpilka and Wigderson
[25] gave a homomorphism test for general groups that needs only (1 + o(1)) log2 |G|
random bits.

The case when G is a subset of an infinite group, f is a real-valued function, and
the oracle query to f returns a finite-precision approximation to f(x) has been consid-
ered in [11; 2; 10; 19; 20]. These works gave testers with query complexity independent
of the domain size (see [18] for a survey).

Applications

Self-testing/correcting programs The linearity testing problem was motivated
in [9] by applications to self-testing and self-correcting of programs. Suppose you are
given a program that is known to be correct on most inputs, but has not been checked
(or, perhaps, is even known to be incorrect) on remaining inputs. A self-tester for f is an
algorithm that can quickly verify whether a given program that supposedly computes
f is correct on most inputs, without the aid of another program for f that has already
been verified. A self-corrector for f is an algorithm that takes a program that correctly
computes f on most inputs and uses it to correctly compute f on all inputs.

Blum et al. [9] used their linearity test to construct self-testers for programs
intended to compute various homomorphisms. Such functions include integer, polyno-
mial, matrix and modular multiplication and division. Once it is verified that a program
agrees on most inputs with some homomorphism, the task of determining whether it
agrees with the correct homomorphism on most inputs becomes much easier.

For programs intended to compute homomorphisms, it is easy to construct self-
correctors: Suppose a program outputs f(x) on input x, where f agrees on most inputs
with a homomorphism g. Fix a constant c. Consider the algorithm that, on input x,
picks c log 1/δ values y from the domain G uniformly at random, computes f(x+ y)−
f(y), and outputs the value that is seen most often, breaking ties arbitrarily. If f is
1
8
-close to g then, since both y and x+ y are uniformly distributed in G, it is the case

that for at least 3/4 of the choices of y, both g(x+ y) = f(x+ y) and g(y) = f(y), in
which case f(x + y) − f(y) = g(x). Thus, it is easy to show that there is a constant
c such that if f is 1

8
-close to a homomorphism g, then for all x, the above algorithm

outputs g(x) with probability at least 1− δ.

Probabilistically Checkable Proofs We discussed an equivalent formulation of
the linearity testing problem in terms of testing whether a given string is a codeword of a
Hadamard code. This formulation has been used in proofs of hardness of approximation
of some NP-hard problems and to construct PCP systems that can be verified with a
few queries (see, e.g., [3; 13]).

The BLR Test as a Building Block The BLR test has been generalized and
extended in many ways, as well as used as a building block in other testers. One

4

generalization, particularly useful in PCP constructions, is to testing if a given function
is a polynomial of low degree (see, e.g., [16; 1; 15]). Other generalizations include tests
for long codes [6; 13] and tests of linear consistency among multiple functions [4].
An example of an algorithm that uses the BLR test as a building block is a tester
by Parnas, Ron, and Samorodnitsky [22] for the singleton property of functions f :
{0, 1}n → {0, 1}, namely, the property that the function f(x) = xi for some i ∈ [1, n].

Open Problems

We discussed that the BLR test can be used to check whether a given string is a
Hadamard codeword or far from it. For which other codes can such a check be performed
efficiently? In other words, which codes are locally testable? We refer the reader to the
entry “Locally Testable Codes”.

Which other properties of functions can be efficiently tested in the property
testing model? Some examples are given in the entries “Testing Juntas and Related
Properties of Boolean Functions” and “Monotonicity Testing”. Testing properties of
graphs is discussed in the entries “Testing Bipartiteness in the Dense-Graphs Model”
and “Testing Bipartiteness of Graphs in Sublinear Time”.

Cross-References

Testing Juntas and Related Properties of Boolean Functions
Locally Testable Codes
Monotonicity Testing
Testing if an Array Is Sorted
Testing Bipartiteness in the Dense-Graphs Model
Testing Bipartiteness of Graphs in Sublinear Time
Learning Heavy Fourier Coefficients of Boolean Functions
Error correction

Acknowledgements

The first author was supported in part by NSF award CCF-1422975 and by NSF
CAREER award CCF-0845701.

Recommended Reading

1. Alon N, Kaufman T, Krivilevich M, Litsyn S, Ron D (2003) Testing low-degree polynomials over
GF(2). In: Proceedings of RANDOM ’03, pp 188–199

2. Ar S, Blum M, Codenotti B, Gemmell P (2003) Checking approximate computations over the reals.
In: Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, pp
786–795

3. Arora S, Lund C, Motwani R, Sudan M, Szegedy M (1998) Proof verification and the hardness of
approximation problems. J ACM 45(3):501–555

4. Aumann Y, H̊astad J, Rabin MO, Sudan M (2001) Linear-consistency testing. J Comput Syst Sci
62(4):589–607

5. Bellare M, Coppersmith D, H̊astad J, Kiwi M, Sudan M (1996) Linearity testing over characteristic
two. IEEE Transactions on Information Theory 42(6):1781–1795

6. Bellare M, Goldreich O, Sudan M (1998) Free bits, PCPs, and nonapproximability—towards tight
results. SIAM J Comput 27(3):804–915

5

7. Ben-Or M, Coppersmith D, Luby M, Rubinfeld R (2008) Non-Abelian homomorphism testing,
and distributions close to their self-convolutions. Random Struct Algorithms 32(1):49–70

8. Ben-Sasson E, Sudan M, Vadhan S, Wigderson A (2003) Randomness-efficient low degree tests and
short PCPs via epsilon-biased sets. In: Proceedings of the Thirty-Fifth Annual ACM Symposium
on the Theory of Computing, pp 612–621

9. Blum M, Luby M, Rubinfeld R (1993) Self-testing/correcting with applications to numerical prob-
lems. JCSS 47:549–595

10. Ergun F, Kumar R, Rubinfeld R (2001) Checking approximate computations of polynomials and
functional equations. SIAM J Comput 31(2):550–576

11. Gemmell P, Lipton R, Rubinfeld R, Sudan M, Wigderson A (1991) Self-testing/correcting for
polynomials and for approximate functions. In: Proceedings of the Twenty-Third Annual ACM
Symposium on Theory of Computing, pp 32–42

12. Goldreich O, Goldwasser S, Ron D (1998) Property testing and its connection to learning and
approximation. J ACM 45(4):653–750

13. H̊astad J (2001) Some optimal inapproximability results. J ACM 48(4):798–859
14. Hastad J, Wigderson A (2003) Simple analysis of graph tests for linearity and PCP. Random

Structures and Algorithms 22(2):139–160
15. Jutla CS, Patthak AC, Rudra A, Zuckerman D (2009) Testing low-degree polynomials over prime

fields. Random Struct Algorithms 35(2):163–193
16. Kaufman T, Ron D (2006) Testing polynomials over general fields. SIAM J Comput 36(3):779–802
17. Kaufman T, Litsyn S, Xie N (2010) Breaking the epsilon-soundness bound of the linearity test

over GF(2). SIAM J Comput 39(5):1988–2003
18. Kiwi M, Magniez F, Santha M (2001) Exact and approximate testing/correcting of algebraic

functions: A survey. Electronic Colloqium on Computational Complexity 8(14)
19. Kiwi M, Magniez F, Santha M (2003) Approximate testing with error relative to input size. JCSS

66(2):371–392
20. Magniez F (2005) Multi-linearity self-testing with relative error. Theory Comput Syst 38(5):573–

591
21. O’Donnell R (2014) Analysis of Boolean Functions. Cambridge University Press
22. Parnas M, Ron D, Samorodnitsky A (2002) Testing basic Boolean formulae. SIAM J Discrete

Math 16(1):20–46
23. Rubinfeld R, Sudan M (1996) Robust characterizations of polynomials with applications to pro-

gram testing. SIAM J Comput 25(2):252–271
24. Samorodnitsky A, Trevisan L (2000) A PCP characterization of NP with optimal amortized query

complexity. In: stoc00, pp 191–199
25. Shpilka A, Wigderson A (2006) Derandomizing homomorphism testing in general groups. SIAM

J Comput 36(4):1215–1230
26. Trevisan L (1998) Recycling queries in PCPs and in linearity tests. In: Proceedings of the Thirtieth

Annual ACM Symposium on the Theory of Computing, pp 299–308

